LOWER RADICALS IN NONASSOCIATIVE RINGS

R. TANGEMAN and D. KREILING

(Received 2nd April 1970)

Communicated by G. E. Wall

Let W be a universal class of (not necessarily associative) rings and let $A \subseteq W$. Kurosh has given in [6] a construction for LA, the lower radical class determined by A in W. Using this construction, Leavitt and Hoffmann have proved in [4] that if A is a hereditary class (if $K \in A$ and I is an ideal of K, then $I \in A$), then LA is also hereditary. In this paper an alternate lower radical construction is given. As applications, a simple proof is given of the theorem of Leavitt and Hoffmann and a result of Yu-Lee Lee for alternative rings is extended to not necessarily associative rings.

Let $A \subseteq W$ be any class of rings. Define $R_1(A)$ to be the homomorphic closure of A. Proceeding inductively, let β be an ordinal exceeding one and suppose the classes $R_a(A)$ have been defined for all $\alpha < \beta$. If β is not a limit ordinal, define

$$R_{\beta}(A) = \{ K \in W \mid I, K/I \in R_{\beta-1}(A) \text{ for some } I < K \}.$$

If β is a limit ordinal, define

 $R_{\beta}(A) = \{K \in W \mid K \text{ contains a chain } \{I_{\gamma}\} \text{ of ideals such that each }$

 $I_{\gamma} \in \bigcup_{\alpha < \beta} R_{\alpha}(A)$, and $K = \bigcup I_{\gamma}$.

Finally define $R(A) = \bigcup R_{\alpha}(A)$, where the union is taken over all ordinals α .

The following characterization of radical classes is found in [2]. Using this characterization, we prove that R(A) = L(A).

THEOREM 1. Let W be a universal class and let $A \subseteq W$. Then A is a radical class in W if, and only if, the following conditions are satisfied:

i) A is homomorphically closed

ii) If I, $K/I \in A$, then $K \in A$

iii) The union of a chain of A-ideals of a W-ring K is again an A-ideal of K.

The following lemma is obvious.

LEMMA 1. If α and β are ordinals with $\alpha \leq \beta$, then $R_{\alpha}(A) \subseteq R_{\beta}(A)$.

419

LEMMA 2. For every ordinal $\alpha \ge 1$, $R_{\alpha}(A)$ is homomorphically closed. Hence R(A) is homomorphically closed.

PROOF. $R_1(A)$ is homomorphically closed. Let $\beta > 1$ be an ordinal, and suppose $R_{\alpha}(A)$ is homomorphically closed for all $\alpha < \beta$. Let $K \in R_{\beta}(A)$ and let I < K. If β is a limit ordinal, there is a chain $\{I_{\gamma}\}$ of ideals of K such that I_{γ} belongs to one of the classes $R_{\alpha}(A)$ with $\alpha < \beta$ and such that $K = \bigcup I_{\gamma}$. But $\{(I + I_{\gamma})/I\}$ is a chain of ideals of K/I, and K/I is its union. Since

$$(I + I\gamma)/I \cong I\gamma/(I \cap I_{\gamma}),$$

each of these ideals is a homomorphism of some I_{γ} , and thus by the induction hypothesis each $(I + I\gamma)/I$ belongs to some $R_{\alpha}(A)$ with $\alpha < \beta$. This means $K/I \in R_{\beta}(A)$.

Now suppose $\beta - 1$ exists. Then K contains an ideal J so that J, $K/J \in R_{\beta-1}(A)$. By the induction hypothesis, (J + I)/I and K/(I + J) both belong to $R_{\beta-1}(A)$, since the former is a homomorphic image of J and the latter of K/J. Since

$$[R/I]/[(J+I)/I] \cong R/(J+I),$$

 $R/I \in R_{\beta}(A)$. Thus by transfinite induction $R_{\beta}(A)$ is homomorphically closed for all ordinals β . It follows immediately that R(A) is homomorphically closed.

We now show that R(A) satisfies conditions (ii) and (iii) of Theorem 1.

LEMMA 3. Let $K \in W$ and let $\{I_{\alpha}\}$ be a chain of R(A)-ideals of K. Then $\cup I_{\alpha}$ is an R(A)-ideal of K.

PROOF. Since K is a set, there is by Lemma 1 an ordinal β with the property that $I_{\alpha} \in R_{\beta}(A)$ for each α . Let δ be a limit ordinal exceeding β , then $\bigcup I_{\alpha} \in R_{\delta}(A)$.

LEMMA 4. Let $K \in W$, and suppose K contains an ideal $I \in R(A)$ such that $K/I \in R(A)$. Then $K \in R(A)$.

PROOF. By Lemma 1, there is an ordinal β such that I, $K/I \in R_{\beta}(A)$. This means that $K \in R_{\beta+1}(A)$.

THEOREM 2. R(A) = L(A).

PROOF. By Theorem 1 and Lemmas 2, 3, and 4, R(A) is a radical class in W. By the minimality of L(A) among radical classes in W which contain A, it is enough to show $R(A) \subseteq L(A)$. This is accomplished by proving $R_{\alpha}(A) \subseteq L(A)$ for every ordinal α .

Clearly $R_1(A) \subseteq L(A)$. Let β be an ordinal exceeding one, and assume $R_{\alpha}(A) \subseteq L(A)$ for all ordinals $\alpha < \beta$. Let $K \in R_{\beta}(A)$. If β is a limit ordinal, K is the union of a chain of ideals from the classes $R_{\alpha}(A)$, where $\alpha < \beta$. Thus by the induction hypothesis K is the union of L(A)-ideals, so $K \in L(A)$ by Theorem 1.

If β is not a limit ordinal, there is an ideal *I* of *K* such that *I* and *K/I* both belong to $R_{\beta-1}(A) \subseteq L(A)$. Again, $K \in L(A)$ by Theorem 1. Thus $R_{\beta}(A) \subseteq L(A)$ for all ordinals $\beta \geq 1$.

The referee has provided an alternate proof that $L(A) \subseteq R(A)$, independent of Lemma 2 as follows.

Let A_{α} be the Kurosh classes (see [1]), then $A_1 = R_1(A) \subseteq R(A)$. Let β be an ordinal and suppose $A_{\alpha} \subseteq R(A)$ for all $\alpha < \beta$. Let $K \in A_{\beta}$ and let S be the set of all R(A)-ideals of K. By Lemma 3 S, is closed under taking unions of chains, so by Zorn's Lemma S contains a maximal element I. If I = K we are done, but if $0 \neq K/I$ there exists

$$0 \neq J/1 < K/I$$
 with $J/I \in A_{\alpha} \subseteq R(A)$.

By Lemma 4 we have $J \in R(A)$ contradicting the maximality of I. Hence $I = K \in R(A)$ so $A_{\alpha} \subseteq R(A)$ for each ordinal α . Therefore $LA = \bigcup A_{\alpha} \subseteq R(A)$.

We now give a simple proof of the following theorem which appears in [4]. Other results of the form "A has property P implies LA has property P" may, perhaps, be provable in a similar way.

THEOREM 3. [4] Let $A \subseteq W$ where W is some universal class. Then if A is hereditary, so is L(A).

PROOF. We prove that $R_{\beta}(A)$ is hereditary for each $\beta \ge 1$. This is easily seen to be true if $\beta = 1$. Thus, assume $\beta > 1$, and suppose $R_{\alpha}(A)$ is a hereditary class for each $\alpha < \beta$. Let $K \in R_{\beta}(A)$, and suppose I is an ideal of K. If β is a limit ordinal, $K = \bigcup I_{\gamma}$ where $\{I_{\gamma}\}$ is a chain of ideals each belonging to one of the (hereditary) classes $R_{\alpha}(A)$, $\alpha < \beta$. But then $I = \bigcup (I_{\gamma} \cap I)$ so $I \in R_{\beta}(A)$.

If β is not a limit ordinal, there is an ideal J of K so that $J, K/J \in R_{\beta-1}(A)$. Since $R_{\beta-1}(A)$ is hereditary, $I \cap J$ and

$$(J+I)/J \cong I/(I \cap J)$$

both belong to $R_{\beta-1}(A)$. This implies $I \in R_{\beta}(A)$.

The proof of Theorem 4 requires the following lemma.

LEMMA 5. If P is a radical class in W and for some $K' \in W$ a subring $K \subseteq K'$ is the set-theoretic union of P-ideals of K', then $K \in P$.

PROOF. If $K = \bigcup I_{\alpha} \notin P$, then $K/I \in SP = \{H \in W \mid H \text{ has no nonzero } P \text{-ideals}\}$ for some $I \neq K$. Then for some α we have $I_{\alpha} \notin I$, so $(I_{\alpha} + I)I \cong I_{\alpha}/(I \cap I_{\alpha})$ is a nonzero *P*-ideal of K/I. This contradiction proves that $K \in P$.

The following theorem is proved for alternative rings in [7] by Yu-Lee Lee.

THEOREM 4. If A_1 and A_2 are homomorphically closed, hereditary classes of W-rings, then $L(A_1 \cap A_2) = LA \cap LA_2$.

PROOF. Trivially $L(A_1 \cap A_2) \subseteq LA_1 \cap LA_2$. Since $K \in LA_1 \cap LA_2$ if and only if $K \in R_{\gamma}(A_1) \cap R_{\gamma}(A_2)$ for some ordinal number γ . It suffices to prove

$$R_{\gamma}(A_1) \cap R_{\gamma}(A_2) \subseteq LA_1 \cap A_2),$$

for each ordinal $\gamma \ge 1$. This is clear for $\gamma = 1$. Let β be an ordinal number greater than 1 and suppose

$$R_{\alpha}(A_1) \cap R_{\alpha}(A_2) \subseteq L(A_1 \cap A_2)$$

for each ordinal $\alpha < \beta$. Let $K \in R_{\beta}(A_1) \cap R_{\beta}(A_2)$.

If β is a limit ordinal, K is the union of a chain $\{I_{\gamma}\}_{\gamma \in C}$ of ideals each belonging to one of the classes $R_{\alpha}(A_1)$ for $\alpha < \beta$. Also K is the union of a chain $\{J_{\delta}\}_{\delta \in D}$ of ideals each belonging to one of the classes $R_{\alpha}(A_2)$ for $\alpha < \beta$. If $x \in K$, $x \in J\delta$ for some $\delta \in D$ and $x \in I_{\gamma}$ for some $\gamma \in C$, so $x \in J_{\delta} \cap I_{\gamma}$ for some $(\delta, \gamma) \in D \times C$. Since $J_{\delta} \in R_{\alpha}(A_2)$ for some $\alpha < \beta$, and since $R_{\alpha}(A_2)$ is hereditary (see proof of Theorem 3), $J_{\delta} \cap I_{\lambda} \in R_{\alpha}(A_2)$. Similarly $J_{\delta} \cap I_{\gamma} \in R_{\alpha}(A_1)$ for some $\eta < \beta$. Thus

$$J_{\delta} \cap I_{\gamma} \in R_{\mu}(A_1) \cap R_{\mu}(A_2),$$

where $\mu = \max[\eta, \alpha]$. Since $\mu < \beta$, the induction hypothesis implies $J_{\delta} \cap I_{\gamma} \in L(A_1 \cap A_2)$ so that K is the set-theoretic union of $L(A_1 \cap A_2)$ -ideals. Thus, by Lemma 5, $K \in L(A_1 \cap A_2)$.

Now suppose $\beta - 1$ exists, and let $K \in R_{\beta}(A_1) \cap R_{\beta}(A_2)$. Then there exist ideals *I* and *J* such that *I*, $K/I \in R_{\beta-1}(A_1)$ and *J*, $K/J \in R_{\beta-1}(A_2)$. Since $R_{\beta-1}(A_1)$ and $R_{\beta-1}(A_2)$ are hereditary,

$$I \cap J \in R_{\beta-1}(A_1) \cap R_{\beta-1}(A_2)$$

so $I \cap J \in L(A_1 \cap A_2)$. Since $R_{\beta-1}(A_1)$ is homomorphically closed (Lemma 2),

$$I/(I \cap J) \cong (I+J)/J \in R_{\beta-1}(A_1).$$

Since $R_{\beta-1}(A_2)$ is hereditary, (I+J)/J, as an ideal of K/J is a member of $R_{\beta-1}(A_2)$. Thus

$$I/(I \cap J) \cong (I+J)/J \in R_{\beta-1}(A_1) \cap R_{\beta-1}(A_2) \subseteq L(A_1 \cap A_2).$$

Thus $I \cap J$ and $I/(I \cap J)$ belong to $R_{\beta-1}(A_1) \cap R_{\beta-1}(A_2) \subseteq L(A_1 \cap A_2)$.

Thus since $I \cap J$ and $I/(I \cap J)$ belong to $L(A_1 \cap A_2)$, $I \in L(A_1 \cap A_2)$. Similarly, $J \in L(A_1 \cap A_2)$ so that I + J is an $L(A_1 \cap A_2)$ -ideal of K. Also K/(I + J) belongs to

$$R_{\beta-1}(A_1) \cap R_{\beta-1}(A_2) \subseteq L(A_1 \cap A_2)$$

since it is the homomorphic image of both K/J and K/I. Thus, since I + J and K/(I + J) belong to $L(A_1 \cap A_2)$, we have that $K \in L(A_1 \cap A_2)$.

We have shown that $R_{\beta}(A_1) \cap R(A_2) \subseteq L(A_1 \cap A_2)$ which proves the theorem.

COROLLARY. If A_i , i = 1, 2, ..., n, are homomorphically closed, hereditary classes of W-rings, then $L(\bigcap_{i=1}^{n} A_i) = \bigcap_{i=1}^{n} LA_i$.

PROOF. By induction.

It is shown in [1] that the Kurosh-Amitsur construction terminates at ω , the first infinite ordinal in case W is an associative universal class. If A is hereditary in an associative class, then $LA = A_3$, the third step in the Kurosh-Amitsur construction (see [3]). To see that similar properties do not hold for the construction of Theorem 2, let W be the class of all associative rings and $Z \subseteq W$ the class of rings having zero multiplication. Then the classes $R_n(Z)$, n finite, are all distinct. Jacobson has given in [5] an example of an LZ-ring K which is not the sum (and thus not the union) of its nilpotent ideals. Therefore $K \notin R_{\omega}(Z)$ so that $LZ \neq R_{\omega}(Z)$.

References

- T. Anderson, N. Divinsky, and A. Sulinsky, 'Lower, Radical Properties for Associative and Alternative Rings'; J. London Math. Soc. 41 (1966), 417–424.
- [2] S. A. Amitsur, 'Radicals in Rings and Bicategories', Amer. J. Math. 76 (1954), 100-125.
- [3] E. P. Armendariz and W. G. Leavitt, 'The Hereditary Property in the Lower Radical Construction', Canad. J. Math. 20 (1968), 474–476.
- [4] A. E. Hoffman and W. G. Leavitt, 'Properties Inherited by the Lower Radical.' Protugaliae Mathematica 27 (1968), 63-66.
- [5] N. Jacobson, Structure of Rings (Amer. Math. Soc. Coll. Publ. 37, Providence, 1956).
- [6] A. Kurosh, 'Radicals in Rings and Algebras', Math. Sb. 33, (1953), 13-26.
- [7] Yu-Lee Lee, 'On Intersections and Unions of Radical Classes', J. Aust. Math. Soc. (To appear).

University of Florida Western Illinois University Macomb, Illinois 61455 U.S.A.