
Proceedings of the Edinburgh Mathematical Society (2013) 56, 211–222
DOI:10.1017/S001309151200020X

2-SUBNORMAL QUADRATIC OFFENDERS AND
OLIVER’S p-GROUP CONJECTURE

JUSTIN LYND∗

Department of Mathematics, The Ohio State University,
Columbus, OH 43210, USA

Abstract Bob Oliver conjectures that if p is an odd prime and S is a finite p-group, then the Oliver
subgroup X(S) contains the Thompson subgroup Je(S). A positive resolution of this conjecture would
give the existence and uniqueness of centric linking systems for fusion systems at odd primes. Using the
ideas and work of Glauberman, we prove that if p � 5, G is a finite p-group, and V is an elementary
abelian p-group which is an F -module for G, then there exists a quadratic offender which is 2-subnormal
(normal in its normal closure) in G. We apply this to show that Oliver’s Conjecture holds provided that
the quotient G = S/X(S) has class at most log2(p − 2)+1, or p � 5 and G is equal to its own Baumann
subgroup.
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1. Introduction

Let F be a saturated fusion system on a finite p-group S. If F = FS(G) for some finite
group G, then Broto et al . show [1] that one can associate a classifying space to F whose
completion at p has the homotopy type of the completion of BG at p. The construction
of such a classifying space is based upon a centric linking system associated to F . But,
for arbitrary F , it is an open question as to whether an associated centric linking system
(and thus a suitable classifying space for F) exists.† See the survey article [2] for more
details.

In the course of proving the Martino–Priddy Conjecture for odd primes [11], Oliver
defines a certain subgroup X(S) of S, now called the Oliver subgroup. He shows that if
p is odd and the Thompson subgroup Je(S) is contained in X(S), then the homological
obstruction to the existence and uniqueness of a centric linking system for F vanishes.

In this paper we investigate Oliver’s (purely group theoretic) conjecture that this
inclusion Je(S) � X(S) always holds for odd p and prove it for p-groups whose quotient
G = S/X(S) has small nilpotence class.

∗ Present address: Department of Mathematics, Rutgers University, Piscataway, NJ 08854, USA
(jlynd@rutgers.edu).

† Note added in proof: this question has now been resolved in the affirmative by Andrew Chermak [3].
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Theorem A. Let p be an odd prime, and suppose S is a finite p-group such that
G = S/X(S) has nilpotence class at most log2(p−2)+1. Then Je(S) � X(S), so Oliver’s
Conjecture holds for S.

Green et al . show in [7] that Je(S) � X(S) if the quotient G is metabelian, of maximal
class or of p-rank at most p. They also settle the case where G has class at most 4, so
the above result is known for p � 17. To our knowledge though, Theorem A provides the
first non-constant lower bound on the class of a counter-example to Oliver’s Conjecture.

The Baumann subgroup (see [10]) of a finite p-group G is defined as Baum(G) =
CG(Ω1Z(Je(G))). In particular, Baum(G) � Je(G). We define in § 2 the kth Oliver
subgroup for 3 � k � p in direct analogy with X(S), which gives a chain of characteristic,
self-centralizing subgroups X3(S) � X4(S) � · · · � Xp(S) of S. The last one, Xp(S), is
the original Oliver subgroup X(S). We prove the following.

Theorem B. Let p � 5 and 3 � k � p. Suppose S is a finite p-group, and set
G = S/Xk(S). If Baum(G) = G, then Je(S) � Xk(S). In particular, taking k = p,
Oliver’s Conjecture holds for S.

Perhaps one reason there has not been a general attack on Oliver’s Conjecture to
date lies in its resistance to any kind of inductive argument. The strategy for proving
Theorem B gives some hint of how such an inductive argument may possibly proceed, at
least for p � 5. See Lemma 5.2 and § 6 for speculation on this matter.

In general, we take the point of view of Green et al . in [6], where they reformulate
Oliver’s Conjecture in terms of a statement about representations of the quotient group
G over Fp. In particular, in a putative counter-example to Oliver’s Conjecture, V =
Ω1Z(X(S)) is an F -module for G.

Our methods rely on ideas of Glauberman (G. Glauberman, personal communication,
2008) and a modification of Glauberman’s generalization of Thompson’s Replacement
Theorem in [4]. For p � 5 and V an F -module for G, the modification gives rise to the
existence of 2-subnormal quadratic offenders in G, and we use this to prove Theorems A
and B. Recall that a subgroup H of G is 2-subnormal if it is normal in a normal subgroup
of G or, equivalently, normal in its normal closure in G.

Theorem C. Suppose p � 5. Let V be an elementary abelian p-group which is an
F -module for the p-group G. Then there exists a quadratic offender on V in G which is
normal in its normal closure in G.

The organization of the paper is as follows. In § 2, we recap definitions and outline the
reformulation of Oliver’s Conjecture due to Green et al . Section 3 contains a couple of
elementary lemmas needed for § 4, where we prove Theorem C. We use Theorem C in § 5
to produce in a counter-example an elementary abelian subgroup generated by quadratic
elements, and we leverage this subgroup to prove Theorems A and B. In the final section
we record an observation which could allow for an inductive approach to the conjecture.
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2. Definitions and preliminaries

Let p be an odd prime. We outline in this section the module-theoretic version of Oliver’s
Conjecture from [6].

Definition 2.1. Let 3 � k � p. The kth Oliver subgroup of S is the largest subgroup
Xk(S) such that there exists a series

1 = Q0 < Q1 < · · · < Qn−1 < Qn = Xk(S)

with each Qi normal in S and with the property that for all 1 � i � n,

[Ω1(CS(Qi−1)), Qi; k − 1] = 1.

Taking k = p in the definition, we get Oliver’s original definition, and so Xp(S) = X(S).
For each k, Xk(S) is a characteristic subgroup of S. Furthermore, as is clear from the
definition, Xk(S) contains every normal subgroup of S of nilpotence class at most k−2. In
particular, it contains every normal abelian subgroup of S, and so CS(Xk(S)) = Z(Xk(S))
(that is, Xk(S) is self-centralizing). A recent preprint from Green et al . [8] independently
calls attention to X3(S), which is their Y(S).

Recall that the Thompson subgroup is the subgroup Je(S) of S generated by the ele-
mentary abelian subgroups of maximum order. We will keep the e subscript throughout,
since in § 4 we will be working with (not necessarily elementary) abelian subgroups of
maximum order. In [11, Conjecture 3.9], Oliver poses the following.

Conjecture 2.2 (Oliver). Let S be a finite p-group with p odd. Then Je(S) � X(S).

Perhaps the most effective way of viewing these Oliver subgroups is by way of the
action of the quotient group G := S/Xk(S) on V := Ω1Z(Xk(S)). If the kth Oliver
subgroup is a proper subgroup of S, then, for each element z ∈ S such that zXk(S) is an
element of order p in Z(G), the subgroup 〈z〉Xk(S) is normal in S and properly contains
Xk(S). Thus, by maximality of the Oliver subgroup,

[V, Xk(S)〈z〉; k − 1] �= 1.

Since Xk(S) and V commute, this means that [V, z; k − 1] �= 1. In other words, zXk(S)
acts on V with minimum polynomial of degree at least k.

This motivates the following definition.

Definition 2.3. Suppose that G is a finite p-group and V is an elementary abelian
p-group on which G acts. Then V is said to be a PS-module of degree k for G if each
1 �= z ∈ Ω1Z(G) has minimum polynomial of degree at least k. We drop the degree
qualifier if k = p, and say V is a PS-module if it is a PS-module of degree p.

Thus, whenever Xk(S) is a proper subgroup of S, V is a PS-module of degree k for
G. Conversely, if G is any finite p-group and V is a PS-module of degree k for G, then
Xk(V � G) = V .

Let us examine what happens if Oliver’s Conjecture fails. If Je(S) is not contained
in Xk(S), then there is an elementary abelian subgroup A � S of maximum order not
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contained in Xk(S). Setting E = AXk(S)/Xk(S) � G, this means by maximality of A

that |E| |CV (E)| has order at least |V |. This leads us to the next definition and to the
reformulation of Oliver’s Conjecture due to Green et al . in [6, Theorem 1.2].

Definition 2.4. Let G be a finite p-group and V an elementary abelian p-group
on which G acts faithfully. Then V is an F -module for G if there exists a non-trivial
elementary abelian subgroup E of G such that |E| |CV (E)| � |V |. In this case, we call E

an offender and say that E offends on V .

Theorem 2.5. Let p be an odd prime. Oliver’s Conjecture holds if and only if for
every finite p-group G, no PS-module for G is an F -module.

First appearing in John Thompson’s N -group paper as obstructions to factorizations in
2-constrained groups, the properties of F -modules are by now well known. In particular,
as proved by Thompson in his Replacement Theorem, if there exists an offender E � G

on V , then one may choose E to act quadratically, that is, satisfying [V, E, E] = 1 but not
centralizing V . In particular, the nonidentity elements of E are quadratic elements, that
is, they have quadratic minimum polynomial on V . Recall that because of the identity
(x − 1)p = xp − 1 in characteristic p, a quadratic element is of order p provided G is
faithful on V .

When 3 � k � p and Je(S) is not contained in Xk(S), the existence of quadratic
offenders in G = S/Xk(S) on V = Ω1Z(Xk(S)) portends the presence of quadratic
elements in Z(G) and leads the way to a possible contradiction. Indeed, many of the
proofs for special classes of p-groups have gone this way. So it is quite possible that if
Oliver’s original conjecture holds at all, it holds in the stronger form: Je(S) � X3(S) for
all S.

In §§ 3 and 4, where the focus is on abelian subgroups of S of maximal order, we follow
Huppert and Blackburn’s treatment [9, pp. 19–21] of Thompson’s Replacement Theorem.
Then in the proof of Theorem B, we use inside the quotient group G a version [5,
Theorem 25.2] of the Thompson Replacement Theorem stated in terms of elementary
abelian subgroups. Here we state the following well-known preliminary lemma to the
Thompson Replacement Theorem from [9] for use in § 4.

Lemma 2.6. Suppose that S is a p-group and A is an abelian subgroup of S. Let v

be an element of S for which N = [v, A] is abelian, and put A∗ = NCA(N). Then

(a) A∗ is an abelian subgroup and |A ∩ M | � |A∗ ∩ M | for every normal subgroup M

of S. In particular, |A| � |A∗|;

(b) if also 1 = Z0 � Z1 � · · · � Zn = S is a central series of S such that |A ∩ Zi| =
|A∗ ∩ Zi| for all i = 1, . . . , n, then A∗ = A.

3. Product subgroups

Let V be an elementary abelian p-group. Suppose G is a p-group which acts faithfully
on V , and set S = V � G. Let π : S → G denote the canonical projection.
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In this section we make a definition and collect a couple of elementary lemmas needed
for carrying out a modification of Glauberman’s generalization of the Thompson Replace-
ment Theorem in the next section.

Definition 3.1. Let B be a subgroup of S. Define B× to be the subgroup (B∩V )π(B)
of S. We say B is a product subgroup if B = B×.

The following lemma is clear from the definitions, but is included here for reference.

Lemma 3.2. Let B be a subgroup of S. Then we have the following:

(a) (B×)× = B×;

(b) |B| = |B×|;

(c) B = B× if and only if π(B) � B;

(d) if B � V or V � B, then B = B×;

(e) if B is abelian, then B× is abelian.

Lemma 3.3. Let A and M be subgroups of S and suppose M � V or V � M . Then
(A ∩ M)× = A× ∩ M .

Proof. Since π(A∩M) � π(A)∩π(M), we always have (A∩M)× � A× ∩M×, and by
Lemma 3.2 (d), the right-hand side is A× ∩M , so it suffices to show the reverse inclusion.

If M � V , then A× ∩ M = A× ∩ V ∩ M = A ∩ V ∩ M = (A ∩ M)×, so we may assume
V � M .

Let s ∈ A× ∩ M , and write s = uh with u ∈ A ∩ M ∩ V and h ∈ π(A) ∩ π(M) � M ,
the inclusion by Lemma 3.2 (c). For s to be in (A ∩ M)×, it is enough to show that
h ∈ π(A ∩ M). But as h ∈ π(A), there exists v ∈ V � M with vh ∈ A. So vh ∈ M as
well. Therefore, h ∈ π(A ∩ M), completing the proof. �

4. Offenders

In this section, we shall investigate properties of offending subgroups of G, using ideas
(G. Glauberman, personal communication (2008)) and results [4] of Glauberman, and
work towards the proof of Theorem C.

Given an elementary abelian p-group V and a p-group G acting faithfully on V , we
form the semidirect product S = V � G, as before.

Denote by A(S) the set of abelian subgroups of S of maximum order, and set

A×(S) = {A ∈ A(S) | A = A× and A � V }.

Definition 4.1. Let
S : 1 = Z0 � Z1 � · · · � Zn = S

be a central series of S. For abelian subgroups A and B of S, we say that A �S B if

|A| = |B| and |A ∩ Zi| � |B ∩ Zi| for all 1 � i � n.
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If A �S B and, furthermore, |A ∩ Zi| < |B ∩ Zi| for some i, we say that A <S B. Let C
be a collection of abelian subgroups of S. We say that A is maximal in C with respect to
S if A ∈ C and there does not exist B ∈ C with A <S B.

As a consequence of the Thompson Replacement Theorem, there exists A ∈ A(S) such
that, for any abelian subgroup B of S which is normalized by A, we have that A in
turn is normalized by B. The corollary to [4, Theorem 1] extends this statement for odd
primes to include B of nilpotence class at most 2 by choosing A to be maximal in A(S)
with respect to any fixed central series of S. Furthermore, for p � 5, Glauberman obtains
with the same choice of A that

(∗) A is normalized by any subgroup B of S (not necessarily normalized by A) for
which A � 〈AB〉 and [A, u; 3] = 1 for every u ∈ B.

To get a statement modulo V about offenders, we must take A not contained in V , and
make sure the replacement still lies outside V . To do this, we modify Glauberman’s proof
of his Theorem 1 in a couple of ways to obtain a version of this last result (∗) for p � 5.
Firstly, because of difficulties retaining the commutator condition [A, u; 3] = 1 after
mapping u into G, we restrict the discussion and replacement process only to elements
of A×(S) and require that B be a product subgroup of S. Secondly, we require that A

is maximal with respect to a central series which contains our distinguished subgroup V

as a member. Since we are just concerned with what happens modulo V , this is harmless
and facilitates verification that our replacement subgroup A∗ truly is greater than A in
the above ordering.

We begin by showing that A×(S) is non-empty and proving a product subgroup version
of a consequence of the Thompson Replacement Theorem.

Lemma 4.2. The following hold.

(a) If V is an F -module for G, then A×(S) is not empty.

(b) Let S be a central series of S. Suppose A is maximal in A×(S) with respect to S.
Then V normalizes A, and so [V, A, A] = 1.

Proof. Suppose V is not an element of A(S). If A ∈ A(S), then in this case |A×| =
|A| > |V |, and A× is a product subgroup by Lemma 3.2. Thus, A× ∈ A×(S).

Suppose that V ∈ A(S). By assumption, S = V � G and V is an F -module for G.
Choose a non-trivial elementary abelian subgroup E � G such that |E| |CV (E)| � |V |.
Then A := CV (E)E ∈ A(S) by maximality of |V |, and A is a product subgroup. Since
E �= 1, A ∈ A×(S), proving (a).

Suppose A is maximal in A×(S) with respect to S. Let E = A ∩ G, and note that
E �= 1 by definition. Set D = A ∩ V = CV (A).

Suppose V does not normalize A and let M = NV (A), which is a proper subgroup
of V . Then M and V are normal subgroups of V A. Thus, 1 �= V/M � V A/M and so
V/M ∩ Z(V A/M) �= 1. Let v ∈ V − M such that v maps into Z(V A/M) in the quotient
V A/M . Then N := [v, A] � M is abelian and normalizes A. Furthermore, N is not
contained in D = CV (A) < A since v does not normalize A.
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Thus, D < ND � M < V . Set A∗ = NCA(N). Since [D, N ] = 1 and A = D×E, we get
A∗ = NDCE(N) so that A∗ is a product subgroup. Then, as A∗∩V = ND > D = A∩V ,
we have that A∗ �= A. By Lemma 2.6 (a), A∗ is abelian and |A∗| � |A|. First, this
means that A∗ ∈ A(S). Second, we get A∗ ∩ G �= 1 and therefore A∗ ∈ A×(S), since
A∗ ∩V = ND is proper in V and |V | � |A| = |A∗|. Also, A �S A∗ by Lemma 2.6 (a). But
|A ∩ Zi| < |A∗ ∩ Zi| for some i by Lemma 2.6 (b). This contradicts the maximality of A,
and shows that V does indeed normalize A. Thus, we also have [V, A, A] � [A, A] = 1. �

We now assume for the remainder of this section that p � 5.

Definition 4.3. Given a subgroup A of S, let BA be the set of all B � S such that
B = B×, A � 〈AB〉 and [A, u; 3] = 1 for all u ∈ B.

Theorem 4.4. Suppose SV is a central series of S which passes through V and A is
maximal in A×(S) with respect to SV . Then A is normalized by every member of BA.

Proof. Suppose the contrary, and choose B ∈ BA such that B does not normalize
A. By Lemma 4.2 (b), V normalizes A. As B = B× = (B ∩ V )(B ∩ G), there exists
b ∈ B ∩ G which does not normalize A. Set T = 〈A, b〉 and Â = 〈AT 〉. Under this set-up,
Glauberman shows (see the last paragraph of step 1 in [4, p. 320]) that

Â = 〈A, Ab, Ab2〉 and Â has class at most 3.

Since p � 5 and the class of Â is at most 3, we view Â as a Lie ring by the Lazard
Correspondence [4, Theorem 3.4]. Let α be the map on Â which is conjugation by b, and
let δ = log(α). By [4, pp. 320–323], we have that δ3 = 0,

δ = (α − 1) − 1
2 (α − 1)2 is a derivation of Â,

Â = A + δ(A) + δ2(A),

and

A � Z(Â).

Set
A1 = {a1 − 2δ(a2) | a1, a2 ∈ A and δ(a1) − δ2(a2) ∈ Z(Â)}

and
A∗ = A1 + δ2(A).

Then Glauberman shows by way of a Lie ring theoretic result [4, Theorem 3.2] that,
as groups, A∗ is abelian, |A| = |A∗| and A <S A∗ for every central series S of S.
Set A∗

× = (A∗)×. Then, by Lemma 3.2 (b), |A∗
×| = |A∗| = |A| and by Lemma 4.5,

below, A∗ � V so A∗
× � V . Thus, A∗

× ∈ A×(S). Since every member M of SV satisfies
M � V or V � M , we have by Lemma 3.3 that A∗ �SV

A∗
×. Therefore, A <SV

A∗
×.

This contradicts the assumption that A is maximal in A×(S) with respect to SV and
completes the proof. �

https://doi.org/10.1017/S001309151200020X Published online by Cambridge University Press

https://doi.org/10.1017/S001309151200020X


218 J. Lynd

Lemma 4.5. Let A, δ, Â and A∗ be as in the proof of Theorem 4.4, with Â and its
subgroups viewed as Lie rings. Let D = A ∩ G, and set D̂ = D + δ(D) + δ2(D). Then
A∗ ∩ D̂ �= {0}, and therefore A∗ ∩ G �= 1.

Proof. Note that for the proof we do not need to knowledge that D̂ is closed under
the Lie bracket, but only that D̂ is a abelian group (as a subspace of a Lie ring).

Recall that A∗ = A1 + δ2(A), where

A1 = {a1 − 2δ(a2) | a1, a2 ∈ A and δ(a1) − δ2(a2) ∈ Z(Â)}.

As D = A ∩ G is non-trivial, we have that D̂ is non-trivial. Since δ2(D) is contained in
A∗, the moment δ2(a) �= 0 for some a ∈ D, we are finished. So assume that δ2(D) = 0.

Let a be a non-zero element of D. Suppose first that δ(a) = 0. Let a2 = 0. Then
δ(a) − δ2(a2) = 0 ∈ Z(Â), and so a = a − 2δ(a2) ∈ A1 � A∗, and a ∈ D̂ as well.

Suppose δ(a) �= 0. If a ∈ Z(Â), then δ(a) ∈ Z(Â) as well, by [4, Theorem 3.2 (b)].
Taking a2 = 0 again, we have δ(a)−δ2(a2) ∈ Z(Â), giving a ∈ A∗∩D̂. Suppose a /∈ Z(Â).
By [4, Theorem 3.2 (c)], either δ2(a) ∈ A∗ −A or δ(a) ∈ A∗ −A. The former cannot hold
as δ2(a) = 0, and the latter gives δ(a) ∈ A∗ ∩ D̂.

This shows that A∗ ∩ D̂ �= {0}. However, recall that δ is a polynomial in α, which is an
automorphism induced by conjugation by an element of G. It follows that D̂ � G, and
A∗ ∩ G is non-trivial as claimed. �

The following is basically the content of [4, Theorem 4.1]. However, since we have
restricted the collections from which A and B are chosen in proving Theorem 4.4, the
statement and argument have to be modified. We present a complete proof in our case
for the convenience of the reader.

Theorem 4.6. Suppose A and B are abelian product subgroups of S, both normalized
by V . Assume that A is normalized by every member of BA and B is normalized by every
member of BB . Then A and B normalize each other.

Proof. We proceed by induction on the order of G. If G = 1, then S = V , and the
statement is trivial. Suppose that G > 1.

Assume first that A ∩ G = G. Then G is abelian and so the conjugation action of S

is trivial modulo V . Hence, 〈AB〉 � V A, so A is normal in 〈AB〉 because V normalizes
A. As [S, S] � V and V normalizes B, we also have [A, u, u, u] � [V, u, u] � [B, u] = 1
for all u ∈ B. So B ∈ BA. Because G is abelian, we still have 〈BA〉 � V B, and the same
argument applies to give A ∈ BB . Thus, A and B normalize each other. By symmetry,
the same conclusion holds in the case when B ∩ G = G.

So, we may assume that A ∩ G and B ∩ G are proper in G. Let M0 be a maximal
subgroup of G containing A ∩ G, and set M = V M0. Then M � S, so

A � 〈AB〉 � 〈MS〉 = M.

If x ∈ B, then Ax = Aπ(x), since V normalizes A. Hence, Ax is a product subgroup.
Furthermore, it is easy to see that Ax is normalized by every member of BAx = (BA)x.
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By the inductive hypothesis, Ax normalizes A. It follows that A � 〈AB〉 and

[B, A; 3] � [〈AB〉, A, A] � [A, A] = 1.

By symmetry [A, B; 3] = 1. This means that B ∈ BA. Hence, B normalizes A by hypoth-
esis. By symmetry, A normalizes B. �

Now we are in a position to prove Theorem C.

Proof of Theorem C. Let S = V � G. By Lemma 4.2 (a), A×(S) is non-empty. Let
S be a central series which passes through V and let A be an element of A×(S) maximal
in A×(S) with respect to S. Set E := A ∩ G �= 1. As A ∈ A(S), we have |V | � |A|.
Since A is a product subgroup, |V | � |A| = |A ∩ V | |A ∩ G| = |CV (E)| |E|. So E offends
on V . By Lemma 4.2 (b), V normalizes A, and E acts quadratically on V . Let B be
a conjugate of A. Then B is a product subgroup because V normalizes A. Thus, B is
maximal in A×(S) with respect to S. By Theorem 4.4, B is normalized by each element
in BB . By Theorem 4.6, A is normalized by its S-conjugates. Therefore, E is normalized
by its G-conjugates. This is another way of saying that E � 〈EG〉. �

5. Oliver’s Conjecture

In this section we leverage the existence of a 2-subnormal quadratic offender guaranteed
in Theorem C to prove Theorems A and B. First we state the key lemma of Green et al .
in [6, Lemma 4.1].

Lemma 5.1. Suppose that V is an elementary abelian p-group and G is a p-group
acting faithfully on V . Let a be an element of G acting quadratically on V . Let x ∈ G

and suppose that c := [a, x] �= 1 centralizes both a and x. Then c acts quadratically
on V .

Lemma 5.1 allows one, under certain conditions, to begin with a quadratic element
and descend the central series of G, finding quadratics further and further down. This
process stops when at some point, and, having some quadratic element a, one can find no
element x ∈ G for which [a, x] �= 1 centralizes a, and [a, x, x] = 1. The proof of the next
lemma uses the existence of a 2-subnormal offender to produce normal abelian subgroups
of G that act as a container for descent, and identifies a normal abelian subgroup W at
the bottom when the descent process terminates.

Lemma 5.2. Suppose that p � 5 and 3 � k � p. Suppose that S is a finite p-group
such that Je(S) is not contained in Xk(S). Set G = S/Xk(S), which acts faithfully on
V = Ω1Z(Xk(S)). Then there exists a normal elementary abelian subgroup W = 〈aG〉
of G, generated by the G-conjugates of a quadratic element, such that for each x ∈ G

either [W, x] = 1 or [W, x, x] �= 1.

Proof. Note that Je(V � G) is not contained in Xk(V � G) = V , and so we assume
that S = V � G. Furthermore, V is both a PS-module of degree k and an F -module
for G. Choose by Theorem C a quadratic offender E � G which is normalized by its
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conjugates in G. Let N be the normal closure 〈EG〉 of E in G, so that E � N . Then
E ∩ Ω1Z(N) �= 1, and hence there are quadratic elements in Ω1Z(N). For each i � 0,
set Wi = [Ω1Z(N), G; i]. Let j be the greatest integer such that there exists a quadratic
element in Wj . Choose such a quadratic element a ∈ Wj . Note that Wj is not in the
centre of G, as Z(G) has no quadratic elements. Set W = 〈aG〉. Then W is a normal
elementary abelian subgroup of G generated by quadratic elements.

Let x ∈ G. Suppose that x does not centralize W , but that [W, x, x] = 1. Then there
exists a G-conjugate b of a such that [b, x] �= 1, but [b, x, x] = 1. Setting c = [b, x], we
have that c centralizes both b and x. Since b is quadratic, c is as well, by Lemma 5.1.
Thus, c ∈ Wj+1 and quadratic. This contradicts the maximality of j. Therefore, for every
x ∈ G, we have either [W, x] = 1 or [W, x, x] �= 1. �

We have recently learned that Green et al . have independently obtained a similar
subgroup (generated by last quadratics in the terminology of their paper) as the W in
Lemma 5.2 under only the assumption that G has quadratic elements on V ; see [8, § 8].

Proof of Theorem B. Suppose the contrary and, as in the proof of Lemma 5.2, let
S = V � G be a counter-example. Let W = 〈aG〉 be as in Lemma 5.2. Let Ae(G) denote
the set of elementary abelian subgroups of G of maximum order.

By the Thompson Replacement Theorem [5, Theorem 25.2], there exists A∗ ∈ Ae(G)
acting quadratically on W , or else [W, A] = 1 for all A ∈ Ae(G). The first possibility is
ruled out by Lemma 5.2. It follows that [W, A] = 1, whence W � A for all A ∈ Ae(G).
So W � Ω1Z(Je(G)) = Ω1Z(G) as Baum(G) = G. Since W contains quadratic elements
and V is a PS-module of degree k � 3 for G, this is a contradiction. �

We need the following basic lemma for the proof of Theorem A.

Lemma 5.3. Suppose G is a p-subgroup of GL(n, p). Assume that a and b are com-
muting elements of G whose minimum polynomials on V have degree at most k and l,
respectively. Then ab has minimum polynomial of degree at most k + l −1. In particular,
if a1, . . . , ak are commuting quadratic elements, then a1 · · · ak has minimum polynomial
of degree at most k + 1.

Proof. We have ab − 1 = (a − 1) + (b − 1) + (a − 1)(b − 1). Raise the right-hand side
to the (k + l − 1)th power, and distribute. Since a and b commute, each term is of the
form (a − 1)i(b − 1)j with i + j � k + l − 1. As (a − 1)k = 0 and (b − 1)l = 0, either
(a − 1)i or (b − 1)j must be zero in the respective term. Therefore, (ab − 1)k+l−1 = 0.
The last statement follows by induction on k. �

Proof of Theorem A. The conjecture has been shown in [7, Theorem 5.2] to hold
when S/X(S) has nilpotence class at most 4, so the result is known for small primes.
Therefore, we may assume that p � 5.

Suppose the contrary and choose a counter-example S = V � G with V both a PS-
module and an F -module for G. Let W = 〈aG〉 be the normal elementary abelian sub-
group of G guaranteed by Lemma 5.2.
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As W � G, there exists an integer k > 0 such that 1 �= [W, G; k] � Ω1Z(G). Hence,
there exists a G-conjugate b of a, and elements x1, . . . , xk of G, such that

1 �= [b, x1, . . . , xk] ∈ Ω1Z(G).

Applying (k times) the standard identity [x, y] = x−1xy, one sees that

z := [b, x1, . . . , xk] =
k∏

j=0

∏
(i1,...,ij)∈Xj

(b(−1)j+1
)xi1 ···xij ,

where Xj is the set of strictly increasing sequences of length j from {1, . . . , k}. It follows
that z is a product of

k∑
j=0

(
k

j

)
= 2k

commuting conjugates of b and b−1. By Lemma 5.3, the degree of the minimum poly-
nomial of z on V is at most 2k + 1. On the other hand, the degree of the minimum
polynomial of z is p, because V is a PS-module for G. Thus, p < 2k + 2, and hence
log2(p − 2) < k. By definition of k, we have that the class of G is at least k + 1. There-
fore, the class of G is strictly larger than log2(p−2)+1, and this completes the proof. �

6. Speculation regarding an inductive approach

Lemma 5.2 applied with k = 3 gives some hint as to how an inductive approach to the
conjecture might proceed, at least for p � 5. (In view of the subgroup generated by last
quadratics in [8, § 8], the approach applies for all odd p.) We record here an observation
that forms the main motivation for this idea.

Proposition 6.1. Suppose that p � 5 and S is a p-group such that Je(S) is not
contained in X3(S). Let G = S/X3(S). Then X3(G) is a proper subgroup of G.

Proof. As Je(S) is not contained in X3(S), X3(S) is a proper subgroup of S. Let W

be as in Lemma 5.2. Thus, W is a normal elementary abelian subgroup of G generated by
quadratic elements. Set X := CG(W ), and note that X is a proper normal subgroup of
G. We will show that X3(G) � X, and this will settle the claim. Suppose to the contrary
that X3(G) is not contained in X. Let 1 = Q0 < Q1 < · · · < Qn = X3(G) be a series of
normal subgroups of G such that

[Ω1(CG(Qi−1)), Qi, Qi] = 1

for each i. Let j be the greatest integer such that Qj−1 � X. Let x ∈ Qj − X. Then as
W � Ω1Z(X) � Ω1(CG(Qj−1)), we have

[W, x, x] � [Ω1(CG(Qj−1)), x, x] = 1,

a contradiction to Lemma 5.2 because x /∈ X. Therefore, X3(G) � X, and X3(G) is a
proper subgroup of G. �
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For an inductive approach, we would choose S to be minimal subject to the condition
that Je(S) is not contained in X3(S). We would then like to show that Je(G) is not
contained in X3(G) to contradict the minimality of S. By the proof of Proposition 6.1,
we have that X3(S) � CG(W ). However, the content of the proof of Theorem B is that
Je(G) is also contained in CG(W ). In fact, one can see this explicitly in the example of
Green et al . in [6, § 5]. In this case G ∼= C3 	 C3 acting on an eight-dimensional module
V , and we have that X = W = Je(G) = X3(G) is the base subgroup of G. Note that G

is not a counter-example to Oliver’s Conjecture, as can be seen from subsequent work
(see [7, Theorem 1.1] or [8]). But this example shows that, taken alone, the existence
of a normal elementary abelian subgroup of G generated by quadratic elements is not
enough to carry out this inductive argument.
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