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We compute the full set of second-order inertial corrections to the instantaneous force
and torque acting on a small spherical rigid particle moving unsteadily in a general steady
linear flow. This is achieved by using matched asymptotic expansions and formulating
the problem in a coordinate system co-moving with the background flow. Effects of
unsteadiness and fluid-velocity gradients are assumed to be small, but to dominate in
the far field over those of the velocity difference between the body and fluid, making
the results essentially relevant to weakly positively or negatively buoyant particles. The
outer solution (which at first order is responsible for the Basset–Boussinesq history force
at short time and for shear-induced forces such as the Saffman lift force at long time) is
expressed via a flow-dependent tensorial kernel. The second-order inner solution brings
a number of different contributions to the force and torque. Some are proportional to the
relative translational or angular acceleration between the particle and fluid, while others
take the form of products of the rotation/strain rate of the background flow and the relative
translational or angular velocity between the particle and fluid. Adding the outer and inner
contributions, the known added-mass force or the spin-induced lift force are recovered,
and new effects involving the velocity gradients of the background flow are revealed.
The resulting force and torque equations provide a rational extension of the classical
Basset–Boussinesq–Oseen equation incorporating all first- and second-order fluid inertia
effects resulting from both unsteadiness and velocity gradients of the carrying flow.
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1. Introduction

Particle-laden flows are ubiquitous in geophysical and engineering contexts (Balachandar
& Eaton 2010). In such flows, the particle dynamics controls how the particles disperse,
how they settle, rise or deposit, how they modify the heat/mass transfer efficiency of the
carrying flow, at which rate they collide and then possibly fragment or agglomerate, etc.
Microscopic descriptions of particle suspensions are challenging, especially because ab
initio direct numerical simulations (DNS) resolving the local flow past many particles are
extremely demanding, both in terms of numerical schemes and computer time.

An alternative is to use the one-way coupling approximation in which one solves for the
fluid motion first, without considering the presence of the particles, and then advances in
time an equation of motion for the particles, given a model for the hydrodynamic force
and torque acting on them. For very small particles, the force and torque may be obtained
by solving the (possibly unsteady) Stokes equation for the disturbance flow caused by the
particle in motion, with input data given by the undisturbed fluid-velocity field. In this
approximation, the advective terms in the Navier–Stokes equation for the disturbance flow
are assumed small compared with the viscous term, so that any finite-Reynolds-number
effects are neglected.

This simple approach has two main limitations. First, it considers strictly independent
particles, neglecting any interactions within the particle population. This approximation
works well for very dilute suspensions, but when two particles come close to each other,
their relative motion is affected by hydrodynamic interactions. Second, even for a single
particle, it is not known in general how corrections to the above zero-Reynolds-number
description affect the particle motion. The larger the particles are, the more important
these corrections must become.

The above approximation in which effects of fluid inertia associated with unsteadiness
are possibly large while those due to advection are neglected, yields a closed-form
expression for the total time-dependent force experienced by a small buoyant spherical
particle with radius a and mass mp moving at velocity vp(t) in a uniform flow with velocity
U∞(t). This is the so-called Basset–Boussinesq–Oseen (BBO) equation (Boussinesq
1885; Basset 1888; Oseen 1910). Defining the mass of fluid mf corresponding to the
particle volume, together with the fluid dynamic and kinematic viscosities μ and ν, this
equation predicts that the total force acting on the particle at time t is

f (t) = f b(t) − 6πμa

{
us(t) +

∫ t

0

1√
πν(t − τ)/a2

dus(τ )

dτ
dτ

}
− 1

2
mf

(
dus

dt

)
(t),

(1.1)

in which us(t) = vp(t) − U∞(t) is the slip velocity of the particle with respect to the fluid
and f b = mf (dU∞/dt) + (mp − mf )g may be thought of as the generalized buoyancy
force acting on the particle, g denoting gravity. In the expression for f b, the contribution
mf (dU∞/dt) results from the non-uniform pressure distribution at the particle surface
induced by the acceleration of the undisturbed flow, and is frequently referred to as
the ‘pressure-gradient’ force (Batchelor 1967). The first term within curly braces is
the quasi-steady Stokes drag while the second is the well-known Basset–Boussinesq
history force resulting from the unsteady viscous diffusion of the disturbance around
the particle arising when the slip velocity changes over time. The last term is the
so-called added-mass or virtual-mass force. This force results from the no-penetration
condition at the particle surface, which constrains the fluid surrounding the particle to
react instantaneously if the particle accelerates with respect to the fluid or vice versa.
A counterpart of the BBO equation for a spherical bubble at the surface of which the
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Second-order inertial forces and torques on a sphere

outer fluid obeys a shear-free condition is also available (Gorodtsov 1975; Morrison &
Stewart 1976; Yang & Leal 1991). In this case, the 6π prefactor weighting the curly
braces becomes 4π and the π{ν(t − τ)/a2}−1/2 Basset–Boussinesq kernel is changed
into 2 exp{9ν(t − τ)/a2}erfc{

√
9ν(t − τ)/a2}. This kernel yields a finite contribution to

the total force at short time, in contrast with the Basset–Boussinesq kernel that diverges
as t−1/2. This difference stresses the fact that history effects are much less severe for a
shear-free bubble compared with a rigid sphere, thanks to the slip of the outer fluid along
the bubble surface.

The BBO equation was extended to arbitrary non-uniform flows by Gatignol (1983) and
Maxey & Riley (1983), still neglecting any advective effect in the disturbance equation (see
table 1 for an overview of the different approximations for the force on a small spherical
particle that are discussed in this section). Gatignol (1983) also obtained the corresponding
equation for the hydrodynamic torque, extending the result previously derived in a uniform
flow by Feuillebois & Lasek (1978). Once advective effects are assumed negligible in the
disturbance dynamics, the non-uniformity of the carrying flow manifests itself in two ways.
First, since the background velocity varies with the local position, it is necessary to define
the slip velocity at the instantaneous position of the particle centre, xp(t), which leads to
the definition

us(xp(t)) = vp(t) − U∞(xp(t)). (1.2)

Computing the disturbance-induced force then reveals that, in addition to us and dus/dt,
the last three terms on the right-hand side of (1.1) involve Faxén corrections proportional
to a2∇2U∞(xp(t)). These corrections are significant if the slip velocity is small (nearly
neutrally buoyant particles) and the carrying flow varies significantly and nonlinearly at
the particle scale. Second, although advective effects are assumed to have no effect on
the disturbance flow, they may be significant in the carrying flow. For this reason, they
must be taken into account consistently in the ‘pressure-gradient’ contribution involved
in the generalized buoyancy force f b. A simple reasoning shows that this is achieved by
replacing the time variation of the fluid velocity dU∞/dt with the Lagrangian acceleration
〈DU∞/Dt〉, the 〈 · 〉 symbol denoting the spatial average over the particle volume. If the
fluid acceleration may be considered uniform over this volume or if its spatial variations
with respect to the particle centre are odd (such as in a linear flow field), 〈DU∞/Dt〉
reduces to DU∞/Dt|xp , which is the approximation retained by Maxey & Riley (1983).
However, to remain consistent with the treatment used for the disturbance, variations of
the fluid acceleration within the particle volume must generally be taken into account. The
corresponding expansion yields an extra Faxén-type correction, as recognized by Gatignol
(1983), but also additional quadratic contributions proportional to a2(∇2U∞) · ∇U∞ and
a2(∇U∞ : ∇∇)U∞ (Rallabandi 2021).

As already pointed out, (1.1) is obtained by assuming that (i) unsteady effects are strong
enough for the time-derivative term in the Navier–Stokes equation to be comparable with
the viscous term; and (ii) advective effects are negligible throughout the flow. However, it
has been proved both theoretically and numerically that the latter assumption breaks down
when the disturbance reaches distances of the order of the Oseen length scale �u = ν/‖us‖
(Sano 1981; Mei, Lawrence & Adrian 1991; Lovalenti & Brady 1993). Indeed, whatever
the ratio a/�u (which may be thought of as the particle slip Reynolds number), advective
effects cannot be neglected at such a distance, and these effects result in a wake. In
this wake, advection being more efficient than viscous diffusion, the disturbance adjusts
more quickly to the new slip velocity us(t), than in the immediate surroundings of the
particle, yielding in most cases a t−2 long-time decay of the history force instead of the
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t−1/2 prediction resulting from the Basset–Boussinesq kernel. Based on these theoretical
findings, several authors have proposed approximate extensions of the BBO equation to
particles moving at finite Reynolds number in a uniform but possibly time-dependent flow.
Mei & Adrian (1992), Mei (1994) and Kim, Elghobashi & Sirignano (1998) designed
semi-empirical kernels that recover the correct asymptotic behaviours in the short- and
long-time limits. Influence of the Reynolds number was incorporated by introducing
empirical functions calibrated against DNS results in the kernel, and replacing Stokes’
expression for the quasi-steady drag by empirical fits based on the standard drag curve.
These attempts have proved successful up to slip Reynolds numbers of several tens, even
in configurations far from those in which the empirical functions were calibrated, such
as the unsteady rise of CO2 bubbles rapidly dissolving in water (Takemura & Magnaudet
2004).

Compared with the above picture, extensions of the BBO equation to particles
experiencing finite advective effects in non-uniform flows are much less mature, to say the
least. This does not have severe consequences regarding the prediction of the drag, which
is usually only marginally affected by the local fluid-velocity gradients. However, in many
configurations, these gradients are known to induce lift components in the hydrodynamic
force. For a sphere, this happens every time the slip velocity is not collinear with one of
the eigenvectors of the velocity-gradient tensor. Such lift forces strongly affect the particle
dynamics in many situations, such as particle deposition and shear-induced migration
in wall-bounded shear flows, or the migration of particles toward high-strain regions or
vortex cores in turbulent flows, to mention just a few examples. Most studies devoted to
these velocity-gradient-induced lift forces considered a steady framework in which the slip
velocity is prescribed and does not vary over time. The best known of these studies is that
of Saffman (1965) who examined the case of a spherical particle immersed in a linear
shear flow, with a non-zero slip velocity collinear with the background flow. Assuming the
shear-based length scale �s = (ν/s)1/2 (with s the shear rate) to be much smaller than the
Oseen length �u, Saffman employed the technique of matched asymptotic expansions to
calculate the dominant contribution to the shear-induced lift force acting on the particle.
This seminal work opened the way to a large number of investigations that considered other
canonical linear flows or other orientations of the slip velocity with respect to the flow (see
Stone (2000) and Candelier, Mehlig & Magnaudet (2019) for reviews). The corresponding
predictions for the hydrodynamic forces and torques are widely used. However, they are
frequently employed well beyond the original framework in which they were derived and
are known to be valid. In particular, Saffman’s expression for the shear-induced lift force
has routinely been added empirically to the right-hand side of (1.1) to compute the path
of particles immersed in non-uniform time-dependent environments barely resembling a
stationary linear shear flow; e.g. McLaughlin (1989) and Li & Ahmadi (1992).

Few studies have attempted to derive a rigorous expression for the total hydrodynamic
force acting on particles moving in steady linear flows with a time-varying slip velocity.
Their common point is the central assumption that the leading-order solution is governed
by the quasi-steady Stokes equation. In other words, effects of unsteadiness are assumed
to take place over a characteristic time of the order of the inverse shear rate, s−1, allowing
the time rate-of-change term to be treated as a perturbation, similar to the shear-induced
advective terms. This is in contrast with the assumption on which (1.1) is grounded, which
considers that velocity variations may take place over a characteristic time possibly as
short as the viscous time a2/ν. With the former assumption, the first-order corrections
to the quasi-steady Stokes force arise at order ε = a/�s and include contributions due to
the time variations of the slip velocity as well as to the nonlinear advective interaction
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of the disturbance with the background velocity field. Miyazaki, Bedeaux & Avalos
(1995) employed the so-called induced-force method to derive the O(ε) correction to
the force in the case of a linear shear flow, recovering Saffman’s prediction in the
long-time limit. Asmolov & McLaughlin (1999) made use of the matched asymptotic
expansions technique to obtain the time-dependent lift force in the same configuration,
in the specific case of a sphere undergoing periodic oscillations. More recently, Candelier
et al. (2019), hereinafter referred to as CMM, expressed the governing equations for the
disturbance in a non-orthogonal coordinate system moving with the undisturbed flow
and solved them using matched asymptotic expansions for the three canonical planar
linear flows, namely solid-body rotation, uniform straining and uniform shear. At this
point, it is important to stress that the problem is nonlinear, owing to the nonlinearity
of the advective term. Hence, the solution for an arbitrary linear flow cannot be obtained
via a linear superposition of the elementary contributions corresponding to solid-body
rotation and uniform straining motion (Candelier & Angilella 2006). Candelier et al.
(2019) expressed the O(ε) correction to the force and torque in the form of a convolution
integral involving a tensorial kernel whose components are specific to the linear flow
under consideration. This kernel does not depend on the shape of the particle. For this
reason, their approach allows the results obtained for a sphere to be straightforwardly
extended to arbitrarily shaped particles, simply by performing the dot product of the
convolution integral with the appropriate resistance tensor of the particle determined in
the creeping-flow limit. Since effects of unsteadiness are assumed to be small compared
with viscous effects, the results obtained through this approach are in general not valid
at very short times following the introduction of the particle in the flow, i.e. for times
t � a2/ν. In contrast, these results are valid in the intermediate range a2/ν � t � s−1

that corresponds to short times with respect to the characteristic time imposed by the
velocity gradient. At such ‘short’ times, the kernel is diagonal and its non-zero components
behave as t−1/2, recovering the contribution of the Basset–Boussinesq term in (1.1) to
the total force and torque. Corrections to this initial behaviour develop gradually over
time, both in the diagonal and off-diagonal components. Their evolution depends on the
background flow. For instance, the off-diagonal components, responsible for the lift force,
grow as t1/2 in a uniform shear flow, but only as t5/2 in a solid-body rotation flow. Each
component eventually converges toward a steady-state value for t � s−1 but the duration
of the corresponding transient significantly varies from one component to the other. At
this point, we need to stress that the validity of the BBO equation in the presence of
a linear background flow is limited to times usually significantly shorter than s−1. For
instance, figure 4 in CMM indicates that in a pure shear flow, the lift component that
eventually yields the Saffman lift force has already reached 20 % (respectively 80 %) of its
final value at t = 1

10 s−1 (respectively t = s−1), an effect which is not captured by the BBO
approximation. As a consequence, the BBO equation describes, for example, the dynamics
of a spherical particle with radius a = 100 μm moving in a water flow with s = 1 s−1 up to
t = a2/ν = 10−2 s, but fails to capture the growth of the shear-induced lift that becomes
significant for t = 1

10 s−1 = 10−1 s. The situation becomes obviously worse as the shear
rate increases, showing that, in this range of particle sizes, the time interval over which the
BBO equation is valid does not exceed a few characteristic viscous times.

The approach outlined above yields a consistent prediction of the hydrodynamic force
and torque at O(ε) in linear flows, provided the slip velocity does not vary ‘too’ rapidly,
and advective effects due to the linear background flow dominate over those due to the slip
velocity, i.e. �s 	 �u. Thus, it may be viewed as the desired rational first-order extension
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of Stokes’ quasi-steady prediction incorporating finite inertial effects, be they due to
unsteadiness or to advection by the linear background flow. However, referring to (1.1), it is
clear that this first-order extension does not include any added-mass contribution, owing
to the restriction imposed to the time variation of the slip velocity. Such a contribution
appears only at next order in the expansion with respect to ε.

For reasons of simplicity, many theories for the dynamics of inertial particles
in turbulence just use the quasi-steady Stokes approximation without added-mass or
history terms (Gustavsson & Mehlig 2016). For similar reasons, and also to limit the
computational cost, a number of studies devoted specifically to the dynamics of light
particles in turbulence retain the added-mass force but ignore any O(ε) contribution,
which makes the underlying model formally inconsistent and questions the relevance of its
predictions (Babiano et al. 2000; Bec 2003; Calzavarini et al. 2008a,b, 2009; Volk et al.
2008; Vajedi et al. 2016). Added-mass effects are known to be central in the dynamics of
light particles, not to mention bubbles. Therefore, determining the O(ε2) corrections to the
above expansion appears as essential to provide a robust model for studying the dynamics
of relatively light particles in which all potentially physically relevant building blocks are
included. Similarly, the possible rotation of the particle does not have any influence on the
O(ε) correction to the force and torque. However, it is well known that, as soon as effects
of fluid inertia come into play, a spinning particle translating in a fluid at rest experiences
a lift force proportional to the cross-product of the slip velocity and the spinning rate
(Rubinow & Keller 1961), a clear O(ε2) effect. Other cross-effects affecting the particle
dynamics may be expected at the same order, due to the possible quadratic terms arising
from the various combinations of the slip velocity, spinning rate, strain rate and vorticity
of the background flow.

When the added-mass force is mentioned, the known expression for the inviscid
hydrodynamic force on a sphere in motion in a general linear flow field comes to mind. In
present notation, this expression reads (Auton, Hunt & Prud’homme 1988)

f AHP = f b − 1
2

mf

(
dvp

dt
− DU∞

Dt

∣∣∣∣
xp

)
− 1

2
mf us × (∇ × U∞), (1.3)

with f b = mf (DU∞/Dt)|xp + (mp − mf )g in the case of a linear flow. In (1.3) the
disturbance-induced force appears to result from the addition of an added-mass force and
a shear-induced lift force. The latter was first computed by Auton (1987) for a sphere
held fixed in a stationary uniform shear flow, under the condition that the shear-induced
velocity at the body scale is weak compared with the slip velocity, i.e. η = as/‖us‖ 	 1.
This condition is needed for the velocity correction induced by the distortion of the
background vorticity to remain small compared with the slip-induced velocity at the body
surface, which in turn allows the pressure distribution at this surface, hence the force, to
be computed at first order with respect to η.

The mathematical form of the added-mass force in (1.3) involves the Lagrangian
acceleration of the background flow, in agreement with the expression established by
Taylor (1928) for pure straining (i.e. irrotational) flows. Noting that DU∞/Dt|xp =
dU∞/dt|xp − us · ∇U∞, with dU∞/dt|xp the time derivative of U∞ following the
particle path, allows this force, say f am, to be rewritten in the equivalent form

f am = −1
2

mf

(
dvp

dt
− DU∞

Dt

∣∣∣∣
xp

)
≡ −1

2
mf

(
dus

dt
+ us · ∇U∞

∣∣∣∣
xp

)
, (1.4)
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with the slip velocity evaluated at the particle centre. The latter form of f am makes
it clear that this force may be non-zero even though the slip velocity does not change
over time, provided the carrying flow varies in the direction collinear with the slip.
According to (1.3), Taylor’s expression applies even if the carrying flow has non-zero
vorticity. Moreover, Auton’s expression for the shear-induced lift force appears to apply
even if the carrying flow is unsteady. However, this extension holds only as long as the
magnitude of the slip rate of change, ‖dus/dt‖, is small compared with ‖us‖2/a, in which
case the stretching/tilting term in the vorticity equation remains primarily balanced by
the advective term. The above conditions limit the validity of (1.3) to weakly unsteady
and non-uniform flows, owing to the consequences of the distortion of the upstream
vorticity in the three-dimensional flow past a sphere. These limitations do not exist in
the two-dimensional case. That is, (1.3) (with the prefactors 1

2 replaced with 1) is an exact
solution for the inviscid force acting on a circular cylinder immersed in a general linear
time-dependent flow.

The connection between the inviscid force (1.3) and the proper generalization of the
visco-inertial force (1.1) to non-uniform flows has been considered by several authors
(Maxey & Riley 1983; Magnaudet, Rivero & Fabre 1995). In particular, Maxey & Riley
(1983) pointed out that the creeping-flow limit does not allow one to decide whether
the form of the added-mass term in (1.1) remains unchanged when the carrying flow is
non-uniform, i.e. whether it still involves the time derivative of the slip velocity following
the particle, or whether it rather includes the −1

2 mf us · ∇U∞|xp contribution resulting
from the Lagrangian fluid acceleration in (1.4). Indeed, this term is a quadratic cross-effect
in the sense employed above, and consequently appears only at O(ε2). Thus, computing
the second-order inertial corrections is a necessary step to clarify this issue, as well as to
quantify the role of the no-slip condition on the shear-induced lift force by comparing the
corresponding prediction with that of (1.3).

Given the open questions identified in this introduction, there is a clear need to
calculate all O(ε2) contributions to the force and torque acting on a rigid spherical
particle immersed in a stationary linear flow. Indeed, as shown above, these contributions
contain several physical effects that are not captured at O(ε), and are thus of fundamental
importance to better understand how (possibly coupled) effects of slip, spin, unsteadiness
and background velocity gradients modify the simpler picture provided by the O(ε0)
and O(ε) models. Obviously, one intuitively expects second-order contributions to only
produce small changes in the particle dynamics since ε is assumed small. However, lift
effects on a sphere only arise at O(ε). Therefore, it might be that the sign and magnitude
of the O(ε) and O(ε2) contributions to the lift force combine in such a way that the force
becomes dominated by second-order effects beyond some critical, but still small, ε. Indeed,
results discussed later will confirm this possibility in some flows, providing an additional
confirmation that these effects are worthy of investigation.

In the following, we describe how we computed all O(ε2) corrections to the force and
torque on a small rigid sphere moving in a steady linear flow with a time-dependent slip
velocity. We formulate the problem and the underlying assumptions in § 2. The technique
employed to obtain the corresponding contributions makes use of matched asymptotic
expansions. The way the outer problem is solved at the required order is a direct extension
of the approach developed by CMM to obtain the O(ε) corrections. We summarize this
approach in § 3, show how it extends to order O(ε2), and insist on the solution of the inner
problem that is required to obtain the complete set of second-order contributions. In § 4
we extensively discuss the general results derived in the previous section by considering
first the short-term limit (which in the framework of the present theory corresponds to
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r

x

e1

e2

e3

U∞(x)

vp

ωp

xp

Figure 1. Sketch of a spherical particle moving in a steady linear flow, with some definitions used throughout
the paper.

the intermediate range a2/ν 	 t 	 s−1) for the expressions of the force and torque, then
the long-term limit t � s−1 in four canonical linear flow configurations. We summarize
the main outcomes of the study in § 5, providing in particular the complete expressions
for the force and torque up to O(ε2) terms in both the short- and long-time limits. Readers
mostly interested in applications may directly consider the final results (5.1)–(5.5), together
with the specific expressions of the kernel in the different flow configurations, to obtain
a complete view of the effects involved in the force and torque balances at the order of
approximation considered here.

2. Basic assumptions and disturbance-flow equations

We consider a spherical particle of radius a moving freely in a linear flow of the form

U∞(x, t) = U0(t) + A · x, (2.1)

where x is the position vector in the laboratory reference frame whose origin is arbitrary,
and U0 denotes the (possibly time-dependent) undisturbed velocity U∞(0, t) at x = 0
(see figure 1 in which U0 has been set to zero). For reasons discussed in CMM and
outlined below in § 3.1, a major simplification is introduced in the calculation of the
disturbance induced by the particle in the far field by assuming that A does not depend
upon time, i.e. the undisturbed flow is stationary. However, this puts some restriction on
the class of linear flows that can be considered, since A is also uniform. Indeed, combining
these two assumptions implies that the balance for the possibly non-zero vorticity ∇ ×
U∞ reduces to the stretching term A · (∇ × U∞) ≡ S · (∇ × U∞), with S = 1

2 (A +
AT) the strain-rate tensor, the superscript T denoting the transpose. Consequently, this
stretching term must be zero, a constraint satisfied by every planar base flow. In contrast,
in three-dimensional configurations, this constraint implies that the general solutions
obtained below only hold for purely irrotational base flows.

Since the undisturbed fluid velocity is linear in x, no Faxén corrections can be involved
in the loads acting on the particle. Computing the second-order inertial contributions
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to the force and torque requires solving the Navier–Stokes equation for the disturbance
flow w caused by the particle motion relative to the undisturbed fluid. To identify the
order of magnitude of each term involved in this equation and in the associated boundary
conditions, we normalize the fluid and particle translational velocities with a velocity scale
uc, the angular velocities with ωc, distances with the sphere radius a, components of
A with a characteristic strain rate s, pressure with μuc/a and time with a characteristic
time τc over which the relative translational and angular velocities may vary. Using these
normalisations, and keeping the previous notations unchanged although all variables are
non-dimensional from now on, the equations that govern the disturbance become (CMM)

∇ · w = 0, (2.2a)

ResSl
∂w
∂t

∣∣∣∣
r
+ Res(A · w + (A · r) · ∇w) + Rep(−us · ∇w + w · ∇w) = −∇p + �w,

(2.2b)

w → 0 for r → ∞, (2.2c)

with, as shown in figure 1, r = x − xp the local distance to the particle centre (hence,
r = ‖r‖ = 1 at the particle surface), the time derivative in (2.2b) being evaluated at fixed r.
According to (1.2) and (2.1), the slip velocity in (2.2b) is us(t) = vp(t) − A · xp. However,
the entire problem is left unchanged if, in addition to the linear stationary component A · x,
the undisturbed flow is assumed to comprise a uniform time-dependent component, say
U0(t), provided the slip velocity is redefined in accordance with (1.2) as us(t) = vp(t) −
U0(t) − A · xp. For a rigid spherical particle, the no-slip condition at the particle surface
implies that

w = us + Reω

Rep
ωp × r − Res

Rep
(Ω × r + S · r) for r = 1, (2.3)

with ωp the particle angular velocity and Ω = 1
2∇ × U∞ half the undisturbed flow

vorticity, the antisymmetric tensor associated with Ω being the antisymmetric part of
A. The non-dimensional parameters in (2.2) and (2.3) are the rotation, shear and slip
Reynolds numbers, respectively, plus a Strouhal number characterizing the magnitude of
the time-derivative term in (2.2b), namely

Reω = a2ωc

ν
, Res = a2s

ν
, Rep = auc

ν
, Sl = 1

sτc
. (2.4a–d)

To simplify (2.2) and (2.3), we assume that the particle is small and only weakly positively
or negatively buoyant. Therefore, its slip velocity is expected to be small and so is the
slip Reynolds number, Rep. For the same reason, if the particle is free to rotate, its angular
velocity ωp is assumed to be close to Ω . We nevertheless keep track of the relative (or slip)
angular velocity ωs(t) = ωp(t) − Ω in order to allow for a possible transient regime or for
a forced particle spin. However, we assume that the magnitude of the particle angular
velocity remains of the same order as the shear rate s of the undisturbed flow. Having
defined

ε ≡ a
�s

≡ Re1/2
s , (2.5)

we therefore set

uc ≡ as, so that Rep = ε2 	 Re1/2
s , (2.6a)

ωc ≡ s and τc ≡ s−1, so that Reω = Res = ε2 and Sl = 1. (2.6b)
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Second-order inertial forces and torques on a sphere

The assumption Rep 	 Re1/2
s corresponds to the limit considered by Saffman in the

stationary O(ε) problem (Saffman 1965). It allows effects of slip (but not those due
to unsteadiness) to be disregarded in the far field, and we shall show in § 3.1 that
this simplification still holds at O(ε2). Conditions (2.6b) are less critical and simply
allow effects of slip, shear, unsteadiness and spin to all influence the disturbance close
to the particle at the retained order of approximation. With these assumptions, the
non-dimensional Navier–Stokes equations for the disturbance take the form

∇ · w = 0, (2.7a)

ε2 ∂w
∂t

+ ε2[A · w + (A · r) · ∇w] + ε2(−us · ∇w + w · ∇w) = −∇p + �w, (2.7b)

w = us(t) + [ωs(t) × r − S · r] for r = 1, (2.7c)

w → 0 for r → ∞. (2.7d)

The disturbance is assumed to be zero for t < 0. To avoid singularities in the force and
torque at t = 0, we assume that the particle is introduced in the flow with zero slip velocity
and relative rotation rate (us(0) = 0, ωs(0) = 0), but let both quantities have arbitrary
non-zero initial time derivatives ((dus/dt)(0) /= 0, (dωs/dt)(0) /= 0). In the usual case
of freely moving particles, the subsequent evolution of us and ωs is dictated by the
overall force and torque balances on the particles. Here in contrast, we are interested in
predicting the hydrodynamic loads resulting from arbitrary evolutions of both quantities.
The expressions for the force and torque obtained in this way may then be inserted in the
overall force and torque balances, which usually involve non-zero external forces (such as
the generalized buoyancy force f b introduced in § 1) and possibly external torques, and
the actual evolution of us and ωs ensues. Starting from (2.7), CMM computed the force
and torque to O(ε). They disregarded terms that do not contribute to the loads at this order.
This includes the term within square brackets on the right-hand side of (2.7c) because its
contribution to the disturbance flow (through a rotlet and a stresslet) vanishes at this order
for symmetry reasons, and the advective term due to the slip velocity in (2.7b) which is
negligible compared with that due to shear in the far field in the Saffman limit. However,
this term contributes to the inner solution at O(ε2).

Here our goal is to determine all O(ε2) corrections to the force and torque. When
commenting on the corresponding results, we shall frequently refer to the original BBO
equation (1.1). In the non-dimensional variables defined above, this equation reads

f BBO = f b − 6πus − 6πε

∫ t

0

1√
π(t − τ)

dus

dτ
dτ − 2π

3
ε2 dus

dt
. (2.8)

The generalized buoyancy force f b usually comprises an O(1) contribution due to
gravity/buoyancy, complemented with contributions due to the Lagrangian acceleration
of the undisturbed flow. Noting that dU∞/dt|xp ≡ vp · ∇U∞ + U̇0, with U̇0 the
time derivative of the possible uniform component U0(t) of U∞ evaluated in the
laboratory frame, one has DU∞/Dt|xp = U̇0 + (vp − us) · ∇U∞. Since the particle
velocity may be much larger than the slip velocity, one concludes that the dU∞/dt|xp
term in the Lagrangian acceleration may contribute up to O(1) to the total force,
whereas the contribution proportional to −us · ∇U∞ is of O(ε2). Later, we also
compare the predictions for the second-order force with their counterpart in the
inviscid limit. In non-dimensional form, (1.3) becomes f AHP = f b + ε2 f ′

inv , where the
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disturbance-induced force f ′
inv reads

f ′
inv = −2π

3

{(
dus

dt
+ us · ∇U∞

∣∣∣∣
xp

)
+ us × (∇ × U∞)

}
. (2.9)

In contrast to (2.8), no contribution arises in the disturbance-induced force at O(ε0) and
O(ε) in the inviscid limit. This is because no vorticity is generated at the surface of the
sphere, leading in particular to zero viscous drag (D’Alembert paradox). Keeping in mind
that the Saffman lift force is an O(ε) effect in the regime of interest here, the fact that no
term exists at this order in (2.9) implies that the inviscid shear lift force (last term on the
right-hand side) is one order of magnitude smaller than the dominant lift force present in
the low- but finite-Reynolds-number regime.

3. Method and solution

We use matched asymptotic expansions in the spirit of Childress (1964) and Saffman
(1965) to approximate the solution of (2.7) up to O(ε2). The O(ε) terms listed below
were computed earlier by CMM. Most of the technical steps described in § 3.1 also follow
closely the approach developed in that reference.

3.1. Outer problem
Far from the particle, the disturbance-flow equations (2.7) in the outer region simplify
thanks to Saffman’s assumption, Rep 	 ε 	 1. Indeed, the magnitude of the disturbance
velocity w scales as 1/r for large r. In the matching region r ∼ ε−1, one then has the
following estimates:

−us · ∇w ∼ O(ε2), w · ∇w ∼ O(ε3),
∂w
∂t

∼ A · w + (A · r) · ∇w ∼ O(ε).

(3.1a–c)

Therefore, the first two terms can be dropped in (2.7b) for r ∼ ε−1 and beyond, yielding
the leading-order momentum equation in the outer region

ε2
(

∂wout

∂t
+ A · wout + (A · r) · ∇wout

)
= −∇pout + �wout + (f (0) + εf (1))δ(r).

(3.2)

In the standard fashion pioneered by Childress (1964), we account for the particle in the
outer region through a delta function, δ(r). Usually, the strength of the corresponding
force, f (0), is taken to be the opposite of the disturbance-induced force experienced by
the particle in the creeping-flow limit, f ′(0). Here, however, we must allow for corrections
of O(ε) since we wish to compute the outer contribution to the force at O(ε2). This is
why there is a contribution ε f (1) on the right-hand side of (3.2). Strictly speaking, the
right-hand side of (3.2) should also comprise an additional source term in the form of a
dipolar contribution, D(0) · ∇δ(r), resulting from the strain- and rotation-induced terms in
the boundary condition (2.7c). This dipolar term adds a linear correction in the far-field
flow, which may be computed after the components of the second-rank tensor D(0) have
been evaluated by matching the leading-order inner and outer flows in the intermediate
region r ∼ ε−1. This matching procedure yields D(0) · ∇δ = (20π/3)S · ∇δ − 4πωs ×
∇δ, which corresponds to the stresslet and torque exerted by the particle on the fluid
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Second-order inertial forces and torques on a sphere

(Batchelor 1970). Nevertheless, the corresponding far-field correction does not change
the force on the particle at any order. Moreover, it may be shown that it only modifies
the torque at O(ε3) (Meibohm et al. 2016). For these reasons, we ignore this dipolar term
in what follows. We also need to examine whether or not the Oseen-like contribution
resulting from the first-order disturbance in the far field, −us · ∇w(1)

out, has to be included
in (3.2) to evaluate the second-order correction, w(2)

out. For reasons detailed below, it turns
out that this additional forcing term does not add any singular correction to the far-field
flow. Therefore, it is sufficient to consider the effect of Oseen-like contributions upon the
inner solution to evaluate the modification they introduce on the loads experienced by the
particle. This is why no Oseen-like term is included in (3.2). We shall return to this point
later in this section.

Equation (3.2) can be solved via Fourier transform (see CMM). In Fourier space, once
the pressure has been eliminated with the aid of the continuity equation, the transformed
outer momentum equation reads

ε2
(

∂ŵout

∂t

∣∣∣∣
k

+ A · ŵout − k · (A · ∇̂)ŵout − 2
(A · ŵout) · k

k2 k
)

= −k2ŵout + k2
Ĝ · (f (0) + εf (1)), (3.3)

where

Ĝ = 1
k2

(
I − k ⊗ k

k2

)
, (3.4)

is the Fourier transform of the Green function G(r) of the Stokes equation, with I the unit
matrix. Following CMM, (3.3) is expressed in a non-orthogonal coordinate system that
moves and deforms with the background flow. This transformation allows the problem
to be reduced to a set of ordinary differential equations that are much easier to solve.
However, this simplification only holds as long as A does not depend upon time. Indeed,
if A is time dependent, an extra term arises in the transformed momentum equation,
complicating the structure of the general solution and making it much more difficult to
obtain. This is why the outer solution described below is only valid when the linear flow
is stationary.

Once ŵout is obtained, it may be expanded in terms of generalized functions of k in the
form (Meibohm et al. 2016)

ŵout = T̂ (0)
reg + ε(T̂ (1)

reg + T̂ (1)
sing) + ε2(T̂ (2)

reg + T̂ (2)
sing) + · · · . (3.5)

Inserting this ansatz into (3.3) and expanding in powers of ε provides the regular
contributions T̂ (n)

reg, namely

T̂ (0)
reg = Ĝ · f (0), (3.6a)

T̂ (1)
reg = Ĝ · f (1), (3.6b)

T̂ (2)
reg = − 1

k2 Ĝ · df (0)

dt
− 1

k4 A · f (0)

− 1
k6

{
2[(A · k) · k]I − (A − A

T) · k ⊗ k − k ⊗ k · A
} · f (0)

+ 2
k8 [(A · k) · k]k ⊗ k · f (0). (3.6c)
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Transforming these contributions from Fourier space back to the configuration space
yields

T (0)
reg = G · f (0), (3.7a)

T (1)
reg = G · f (1), (3.7b)

T (2)
reg = 3r

32π

(
I − 1

3
r ⊗ r

r2

)
· df (0)

dt

+ r
32π

(
3
(

I − 1
3

r ⊗ r
r2

)
· A − (A − A

T) ·
(

I + r ⊗ r
r2

)
+ 2

A : r ⊗ r
r2 I

)
· f (0)

− r
96π

(
2S + 2

r ⊗ r
r2 · S + 2S · r ⊗ r

r2 + A : r ⊗ r
r2

(
I − r ⊗ r

r2

))
· f (0), (3.7c)

with

G(r) = 1
8π

(
I

r
+ r ⊗ r

r3

)
. (3.8)

The expansion (3.5) suggests that there are singular terms in k space, T̂ (n)
sing, that cannot

be obtained in this way. These terms, which are concentrated at k = 0, correspond to
uniform flow corrections in the far field, resulting from the presence of the particle. As is
well known, these corrections are directly related to the 1/r divergence of the advective
contribution A · w + (A · r) · ∇w based on the leading-order solution. These singular
terms may be computed by evaluating in the sense of generalized functions the successive
limits (Meibohm et al. 2016)

T̂ (1)
sing = lim

ε→0

ŵout − T̂ (0)
reg

ε
− T̂ (1)

reg, (3.9)

and

T̂ (2)
sing = lim

ε→0

ŵout − T̂ (0)
reg − εT̂ (1)

reg − εT̂ (1)
sing

ε2 − T̂ (2)
reg. (3.10)

The outer solution is obtained from (3.3), allowing the successive singular contributions
to be evaluated. The term T̂ (1)

sing was calculated in this way by CMM who showed that
it takes the form of a convolution product between a tensorial kernel, K(t), and the time
derivative of the leading-order forcing term in (3.3), f (0). That is,

T̂ (1)
sing = −8π3

[∫ t

0
K(t − τ) · df (0)

dτ
dτ

]
δ(k) ≡ 8π3U1(t)δ(k). (3.11)

The [K] j
i (t) component of the kernel expresses how an instantaneous change in the ith

component of the slip velocity (hence, in that of the force exerted by the particle on
the fluid) influences the jth component of the uniform velocity correction in the far field
at later time. The characteristic time scale over which this influence manifests itself is
that imposed by the shear, which is larger than the viscous time scale by a factor of
O(ε−2). Since T̂ (1)

sing contributes to ŵout at O(ε) according to (3.5), it may be concluded
that time variations in the slip velocity (hence, in f (0)) already affect the force on the
particle at O(ε) through the far-field velocity correction U1(t). Conversely, as (3.7c)
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shows, these time variations only affect the inner solution at O(ε2). Candelier et al. (2019)
computed the kernel K(t) and discussed its properties for the three canonical planar
linear flows. At very short time, comparable with the viscous time scale (t ∼ ε2), or in
the absence of fluid-velocity gradients, K reduces to the Basset–Boussinesq kernel, i.e.
K(t) → (πt)−1/2I. The second-order singular term takes the form

T̂ (2)
sing = −8π3

[∫ t

0
K(t − τ) · df (1)

dτ
dτ

]
δ(k) ≡ 8π3U2(t)δ(k). (3.12)

Remarkably, this term involves the same kernel, K(t), as T̂ (1)
sing. Since f (1)(t) = −6πU1(t)

results from the convolution product between the kernel K(t) and the time derivative of
the force f (0), T̂ (2)

sing has the form of a double convolution product. In the configuration
space, the above two singular terms give rise to two spatially uniform but time-dependent
velocity corrections, namely

T (1)
sing = U1(t) and T (2)

sing = U2(t). (3.13a,b)

Equations (3.7) and (3.13a,b) are the desired solutions of the outer problem. The velocity
field resulting from the superposition of these solutions serves as the outer boundary
condition for the inner problem, since the inner and outer solutions must match at r ∼ ε−1.
Note that we also evaluated T (2)

sing with the Oseen-like term included in (3.2). The far-field
disturbance resulting from this term comprises odd and even functions of k, but the former
is one order lower with respect to ε than the latter, owing to the assumption that the
Saffman length is shorter than the Oseen length by a factor of O(ε) (see appendix A in
CMM for details on the evaluation of the contributions to wout in k space). Conversely,
and for the same reason, the even part is one order lower with respect to ε than the
odd one in the case of the disturbance associated with the linear flow. Since odd terms
eventually integrate to zero, it turns out that, at the order of approximation we need
to consider, the Oseen-like term does not contribute to T (2)

sing whereas terms associated
with the linear flow do. In contrast, the Oseen-like term produces contributions in the
regular term T (2)

reg. However, the evaluation of T (2)
reg is not needed, since this term merely

matches the second-order inner solution for r ∼ ε−1. Therefore, only the contributions
induced in this inner solution by the Oseen-like term −us · ∇w(1)

in and the companion
term w(1)

in · ∇w(1)
in need to be considered (see below) to evaluate the loads on the body at

O(ε2).

3.2. Inner problem
At order ε0, the problem to solve is

∇ · w(0)
in = 0, −∇p(0)

in + �w(0)
in = 0, (3.14a,b)

w(0)
in = us + ωs × r − S · r at r = 1, w(0)

in ∼ T (0) = G · f (0) for r → ∞. (3.15a,b)

In a linear flow, the solution of this standard Stokes problem is known to be (Kim & Karrila
1991)

w(0)
in = G · f (0) + 1

6
�(G · f (0)) + ωs × r

r3 − S · r
r5 − 5

2r5

(
1 − 1

r2

)
r ⊗ r · S · r. (3.16)
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Only the first term on the right-hand side contributes to the disturbance-induced
force f ′(0) = − f (0) on the particle, which is of course nothing but the Stokes drag
corresponding to the slip velocity us, namely

f ′(0)(t) = −6πus(t). (3.17)

Similarly, only the rotlet (third term on the right-hand side of (3.16)) contributes to the
torque for a sphere, leading to

τ ′(0)(t) = −8πωs(t). (3.18)

At order ε, the problem to solve is

∇ · w(1)
in = 0, −∇p(1)

in + �w(1)
in = 0, (3.19a,b)

subject to the boundary conditions

w(1)
in = 0 at r = 1, w(1)

in ∼ U (1)(t) + T (1)
reg for r → ∞. (3.20)

This is a homogeneous Stokes problem. Its solution may be sought in the form

w(1)
in = U (1)(t) + v

(1)
in . (3.21)

Since U (1)(t) is uniform (see (3.13a,b)), the problem for v
(1)
in becomes

∇ · v
(1)
in = 0, −∇p(1)

in + �v
(1)
in = 0, (3.22a–d)

v
(1)
in = −U (1)(t) at r = 1, v

(1)
in ∼ G · f (1) for r → ∞. (3.23)

This problem is formally identical to the Stokes problem for a sphere moving in a fluid at
rest. Therefore, the solution for w(1)

in is readily obtained as

w(1)
in = U (1)(t) + G · f (1) + 1

6�(G · f (1)). (3.24)

This implies that the contribution f ′(1) = − f (1) to the force on the particle is the Stokes
drag corresponding to the slip velocity −U (1), namely

f ′(1)(t) = 6πU (1)(t) = −6π

∫ t

0
K(t − τ) · df (0)

dτ
dτ, (3.25)

where the second equality stems from (3.11). Since f ′(1) is generally not collinear to f ′(0),
the possibly non-zero component f ′(1) − ( f ′(1) · f ′(0)/ f ′(0) · f ′(0)) f ′(0) represents a lift
force. In the case of a sphere, and more generally of a body with a fore-aft symmetry, this
is even the leading-order lift contribution, since symmetry considerations indicate that no
lift force can exist at O(ε0) for such bodies (Bretherton 1962).

For an arbitrarily shaped particle, the O(ε) torque comprises a contribution proportional
to the right-hand side of (3.25). However, U (1) is a uniform velocity field. Therefore, just
as us cannot induce any torque on a spherical particle in the creeping-flow limit, no O(ε)

torque may result from U (1), implying that

τ ′(1)(t) = 0. (3.26)

Obviously, this conclusion would not hold if the shape of the particle were such that its
translational and rotational dynamics are coupled in the creeping-flow limit.
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Second-order inertial forces and torques on a sphere

The O(ε2) problem is more complicated, owing to the O(ε2) terms on the left-hand side
of (2.7b). More specifically, one has to solve

∇ · w(2)
in = 0, (3.27)

∂w(0)
in

∂t
+ A · w(0)

in + (A · r) · ∇w(0)
in − us · ∇w(0)

in + w(0)
in · ∇w(0)

in = −∇p(2)
in + �w(2)

in ,

(3.28)
together with the boundary conditions

w(2)
in = 0 at r = 1, w(2)

in ∼ U (2)(t) + T (2)
reg for r → ∞. (3.29)

The above problem is inhomogeneous. We seek its solution in the form of a particular
(forced) solution, to which we add the uniform contribution U2(t), plus a solution of the
homogeneous problem. In other words, we set

p(2)
in = pp + ph, w(2)

in = wp + U2(t) + wh. (3.30a,b)

We obtain the formal solutions corresponding to wp and wh using Maple�. Here we just
outline the main steps of the procedure but do not provide the final expressions since
they are extremely lengthy. Nevertheless, the corresponding routines may be obtained
on request from the authors. Moreover, a pivotal technical step in the building of these
inner solutions turned out to be the generic determination of the Fourier transforms of
functions involving negative or positive powers of r. Since this aspect may be of interest
to some readers, we provide the corresponding results in supplementary material available
at https://doi.org/10.1017/jfm.2022.1015.

To determine the particular solution wp, we first compute the Fourier transform (F ) of
the associated pressure in the form

p̂p = i

k2

(
k · F

(
∂w(0)

in
∂t

+ A · w(0)
in + (A · r) · ∇w(0)

in − us · ∇w(0)
in + w(0)

in · ∇w(0)
in

))
,

(3.31)

with i2 = −1. This allows us to obtain the particular solution for the velocity in Fourier
space as

ŵp = −Ĝ · F
(

∂win(0)

∂t
+ A · w(0)

in + (A · r) · ∇w(0)
in − us · ∇w(0)

in + w(0)
in · ∇w(0)

in

)
.

(3.32)
The inverse Fourier transform then yields the particular solution in the configuration space
as

wp = F−1(ŵp) and pp = F−1(p̂p). (3.33a,b)
Note that, in line with the comments made in § 3.1, the contribution of the Oseen-like
terms resulting from the leading-order solution w(0)

in is accounted for in (3.28)–(3.33a,b).
Next, we consider the homogeneous solution wh. It satisfies

∇ · wh = 0, −∇ph + �wh = 0, (3.34a,b)
together with the boundary conditions

wh = −wp − U2(t) at r = 1, wh ∼ 0 for r → ∞. (3.35)
As can be seen, the particular solution computed previously now appears as a boundary
condition on the particle surface, together with the uniform velocity correction U2(t)
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resulting from the outer solution. We finally obtain the solution of (3.35) using Lamb’s
expansion (Lamb 1932, art. 336). Note that, unlike the calculation of wout, the evaluation
of the inner solution is left unchanged if A is time dependent. Therefore, the second-order
inner contributions to the force and torque discussed below are valid even if the underlying
linear flow is not stationary.

3.3. Second-order force and torque
Using the successive solutions described above, the second-order contributions to the force
and torque acting on the particle may be computed from the standard definitions

f ′(2) =
∫
S

σ
(2)
in · ndS, τ ′(2) =

∫
S

r × σ
(2)
in · ndS. (3.36a,b)

Here n is the outward unit normal to the particle, and the second-order stress tensor σ
(2)
in is

defined as σ
(2)
in = −p(2)

in 1 + 2S
(2)
in , where S

(2)
in is the symmetric part of the velocity-gradient

tensor based on the velocity field w(2)
in . The final result for the second-order force and torque

resulting from the inner solution is found to be

f ′(2)(t) = 16π

3
dus

dt
+ 37π

12
S · us + π

3
(4Ω + 3ωs) × us + 6πU2(t), (3.37)

τ ′(2)(t) = −8π

3
dωs

dt
− 8π

3
S · Ω + πS · ωs. (3.38)

Equations (3.37) and (3.38) are the main results of the paper. For the reason mentioned
above, the expression for the torque and the inner contribution to the force are valid for
an arbitrary linear background flow, i.e. an arbitrary combination of a uniform straining
motion and a solid-body rotation, both of which may possibly be time dependent. In
contrast, for the reason explained in § 3.1, we were only able to obtain the far-field uniform
corrections U1(t) and U2(t) in the presence of a steady linear component of the carrying
flow, which restricts the general result for the force on the particle to this subclass of flows.
It must also be stressed that, because of the nonlinearity of the outer problem, the kernel
K must be computed separately for each given linear flow. This kernel is already known
explicitly for pure shear, solid-body rotation and planar elongation (see CMM).

The quadratic contributions in (3.37) and (3.38) involve all possible combinations of S,
Ω , ωs and us allowed by symmetry constraints, with the exception of Ω × ωs = Ω × ωp
in (3.38). Note that us does not appear in (3.38). This is because the torque is an axial (or
pseudo-) vector while us is a polar (or true) vector, and no axial vector can be formed by
combining quadratically us with Ω , ωs or S. Note also that U2 does not contribute to the
second-order torque, for reasons identical to those already discussed in connection with
τ ′(1). The presence of the term πωs × us in (3.37) is noticeable. This contribution, which
represents a lift force, is the extension to linear flows of that obtained by Rubinow & Keller
(1961) for a sphere rotating and translating in a fluid at rest. This force may be thought of
as the visco-inertial analogue of the inviscid Magnus lift force. It results from the coupling
of the translational and rotational velocity dynamics operated in the hydrodynamic force
by advective effects, a feature that does not exist in the creeping-flow regime, owing to the
geometrical symmetries of the particle.

In § 3 we showed that the O(ε2) problem is inhomogeneous, i.e. non-zero terms arise
on the left-hand side of (3.28). The solution of the problem is linear with respect to these
terms. In order to determine this full solution, one can therefore solve a succession of
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Second-order inertial forces and torques on a sphere

Regular terms

∂tw
(0)
in A · w(0)

in + (A · r) · ∇w(0)
in −us · ∇w(0)

in w(0)
in · ∇w(0)

in

f ′(2)
ν

2
3

d f (0)

dt
2
5 S · f (0) 0 − 1

15 S · f (0) + 1
12 ωs × f (0)

f ′(2)
p

2
9

d f (0)

dt
13
45 S · f (0) + 2

9 Ω × f (0) − 1
9 S · f (0) + 1

9 ωs × f (0) 1
360 S · f (0) − 1

36 ωs × f (0)

f ′(2) 8
9

d f (0)

dt
31
45 S · f (0) + 2

9 Ω × f (0) − 1
9 S · f (0) + 1

9 ωs × f (0) − 23
360 S · f (0) + 1

18 ωs × f (0)

τ ′(2) − 8π
3

dωs
dt − 8π

3 S · Ω + 16π
15 S · ωs − 1

3 us × f (0) = 0 − π
15 S · ωs

Singular terms, with U 2(t) = − ∫ t
0 K(t − τ) · d

dτ
(
∫ τ

0 6πK(τ − τ ′) · d f (0)(τ ′)
dτ ′ dτ ′) dτ

Short-time behaviour: Long-time behaviour:
K(t) ∼ 1

6π
I√
πt

K(t) → K̄

f ′(2)
ν 4πU 2(t) − 2

3
d f (0)

dt −4πK̄ · (6πK̄) · f (0)

f ′(2)
p 2πU 2(t) − 1

3
d f (0)

dt −2πK̄ · (6πK̄) · f (0)

f ′(2) 6πU 2(t) − d f (0)

dt −6πK̄ · (6πK̄) · f (0)

Table 2. Summary of all contributions to the second-order force and torque, the former expressed with respect
to f (0) = 6πus. Terms arising from the regular and singular parts of the solution are given in the upper and
lower tables, respectively. We also distinguish between the contributions to the force induced by the viscous part
of the stress tensor (e.g. f ν ) and those induced by the pressure (e.g. f p). The total second-order hydrodynamic
force is the sum of these two contributions.

‘elementary’ problems, considering first, for instance, only the unsteady term ∂tw
(0)
in , then

only terms A · w(0)
in + (A · r) · ∇w(0)

in and so on. The full solution is obtained by summing
up these partial solutions. With this procedure, one can trace back which contribution to
the force is due to the pressure gradient, which is of viscous origin, etc. Only viscous
stresses contribute to the torque since r and n are collinear for a sphere. The origin of the
various contributions to the second-order force and torque is summarized in table 2.

4. Discussion

4.1. The O(ε2) torque
At leading order, the angular velocity of a torque-free spherical particle immersed in a
linear flow is dictated by the vorticity of the undisturbed carrying flow. Indeed, for such
a particle, (3.18) and (3.26) imply that ωp = Ω + O(ε2). Now, considering the long-time
limit of (3.38), the O(ε2) disturbance-induced torque on such a particle is

τ ′(2) = −8π

3
S · Ω. (4.1)

This second-order torque is non-zero only if the base flow is three dimensional and has
a non-zero vorticity (which implies that it is unsteady for the reason discussed at the
beginning of § 2), since S · Ω is a vortex-stretching term vanishing in a two-dimensional
flow. Note that computing the spatial average of r × (DU∞/Dt) over the particle
volume reveals that the base flow generally brings a complementary contribution to the
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second-order torque, namely

τ b = −8π

15
ε2

S · Ω. (4.2)

Adding (4.1) and (4.2), one concludes that the total second-order torque resulting from
the velocity gradients of a general three-dimensional linear flow is −(16π/5)S · Ω , as
derived by Candelier, Einarsson & Mehlig (2016) for a neutrally buoyant particle. Since the
translational dynamics does not influence the torque for the symmetry reasons discussed
above, this result is unchanged if the particle is not neutrally buoyant, as (3.38) indicates.
Finally, setting the total torque τ ′(0) + ετ ′(1) + ε2τ ′(2) + τ b to zero yields the angular
velocity of a torque-free particle as

ωp ≈ Ω − 2
5ε2

S · Ω. (4.3)

No history (or memory) contribution appears in the expression of the second-order
torque provided by (3.38). This is surprising at first glance, since the problem reduces to
the unsteady Stokes equation when unsteady effects are large enough for advective terms
to become negligible near the particle. In this limit, Feuillebois & Lasek (1978) (see also
Gatignol 1983) computed the torque acting on a spinning sphere, showing that

τ ′(t) = −8πωs(t) − 8π

3

∫ t

0

dωs

dτ

⎡⎢⎢⎣ 1√
π(t − τ)

ε2

− exp
(

t − τ

ε2

)
erfc

(√
t − τ

ε2

)⎤⎥⎥⎦ dτ.

(4.4)

The first term on the right-hand side corresponds to the leading-order torque (3.18). To
compare the second term in (4.4) with the prediction (3.38), it must be borne in mind that
all terms on the left-hand side of (2.2b) are assumed small compared with unity, so that
the present theory is valid provided Sl 	 Re−1

s = ε−2. We show in Appendix A that in
the limit ε → 0, the term in square brackets in (4.4) tends toward ε2δ(t), with δ(t) the
delta function (see (A7)). In the limit of small ε, the memory term in (4.4) therefore tends
towards the first term on the right-hand side of (3.38), namely

−8π

3

∫ t

0

dωs

dτ

⎡⎢⎢⎣ 1√
π(t − τ)

ε2

− exp
(

t − τ

ε2

)
erfc

(√
t − τ

ε2

)⎤⎥⎥⎦ dτ → −8π

3
ε2 dωs

dt
.

(4.5)

This shows that (3.38) and (4.4) are consistent, and the first contribution on the right-hand
side of the former is what is left of the history torque at O(ε2) when ε is small. In other
words, the memory term derived by Feuillebois & Lasek (1978) converges – after a short
transient of the order of the viscous time scale – toward the expression obtained here,
in which only the instantaneous angular acceleration dωs/dt appears. This observation
also explains why the theory describing the O(Res) effects on the angular dynamics of
particles immersed in a stationary shear flow (Einarsson et al. 2015) does not contain a
memory term.
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Second-order inertial forces and torques on a sphere

4.2. Second-order force at short times
We now examine the force acting on the particle at short time with respect to the time scale
of the background flow, i.e. non-dimensional times such that ε2 	 t 	 1. Within this time
interval, the vorticity generated at the particle surface at t = 0 has already diffused several
radii away from the particle but has not yet entered the wake located at distances r � ε−1.
At order ε, it is known that unsteady inertial effects are responsible for the existence of
a history force, the expression of which takes the form of a convolution product between
a time-dependent kernel K(t) and the particle relative acceleration (or more precisely the
force f ′(0) acting on the particle in the creeping-flow limit). As discussed in § 3.1, a term
with a similar structure exists at O(ε2), namely U2, the kernel involved (twice) in the
expression of this second-order term being the same as that involved in the O(ε)-memory
term. Both kernels depend on the specific undisturbed flow under consideration. However,
at short times (ε2 	 t 	 1) and for any linear flow, K is closely approximated by the
Basset–Boussinesq kernel, namely

6πK(t) ∼ I√
πt

. (4.6)

In this case, U2(t) simplifies to

U2(t) =
∫ t

0

1
6π

1√
π(t − τ)

d
dτ

(∫ τ

0

1√
π(τ − τ ′)

df (0)

dτ ′

)
dτ = 1

6π

df (0)

dt
= dus

dt
. (4.7)

This can be shown using the definition of the fractional derivative d1/2/dt1/2 or,
equivalently, Laplace transform. Remarkably, the double convolution product reduces to a
simple ‘local’ term (with respect to time) expressible in the form of a time derivative of
the relative velocity. Using (4.7), (3.37) simplifies to

f ′(2) = −2π

3
dus

dt
+ 37π

12
S · us + π

3
(4Ω + 3ωs) × us. (4.8)

The first term on the right-hand side corresponds to the added-mass force if the
undisturbed flow is uniform; see (2.8). All quadratic terms in (4.8) come from the
inner solution. In contrast, the added-mass term results mostly from U2(t), i.e. from
the second-order outer solution, as its sign differs from that of the corresponding term
provided by the inner solution in (3.37). This situation contrasts with that found in (3.38)
for the torque, for which the contribution proportional to the time derivative dωs/dt results
entirely from the inner solution. Therefore, one has to conclude that the inner and outer
regions of the disturbance may both contribute to the ‘remains’ of history effects, the
region providing the dominant contribution to the corresponding time-derivative term
differing according to the load component under consideration.

Equation (4.8) may be recast in the form

f ′(2) = −2π

3

(
dvp

dt
− DU∞

Dt

∣∣∣∣
xp

)
+ 15π

4
S · us + π

(
Ω + ωp

)× us, (4.9)

using again the identity dU∞/dt|xp = DU∞/Dt|xp + A · us implying dus/dt = dvp/dt −
DU∞/Dt|xp − A · us. Equation (4.9) for f ′(2) allows a direct comparison with the inviscid
form (2.9) of the disturbance-induced force. In (4.9) the added-mass term (first term on
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the right-hand side) is identical to that known in the inviscid limit. From (4.9) and (2.9),
the difference f ′(2) − f ′

inv evaluates to

f ′(2) − f ′
inv = 15π

4
S · us + π(Ω − ∇ × U∞) × us + πωp × us. (4.10)

Note that in (4.10) the prefactor of the inviscid lift force is π instead of 2π/3 in (2.9).
This is because we have to employ the short-time expression for this force to remain
consistent with that considered for f ′(2). It has been shown (Legendre & Magnaudet
1998) that in this limit, more precisely for t 	 uc/as ≡ Res/Rep ∼ 1, the lift coefficient
(usually defined as 3/4π times the above prefactor) is 3

4 instead of 1
2 in the steady

state, which yields the above result. With this prefactor for the inviscid lift force, the
second term on the right-hand side of (4.10) may be simplified as (π/2)us × (∇ × U∞)

using the identity Ω = 1
2(∇ × U∞), but the original form appears more suitable for the

discussion that follows. Not surprisingly, f ′(2) does not coincide with f ′
inv , although the

two added-mass terms do. The last contribution on the right-hand side of (4.10) gives
an immediate clue to understand where the differences come from. Indeed, the particle
rotation does not matter in the inviscid limit, since (i) rotation does not displace any fluid
in the specific case of a sphere, and (ii) the fluid is free to slip at the particle surface.
Therefore, no force proportional to ωp can exist in this limit, which is in stark contrast
with the visco-inertial regime considered here, in which the no-slip condition forces the
surrounding fluid to follow the particle rotation, yielding the non-zero Rubinow–Keller lift
force.

The no-slip condition is also responsible for the contribution (15π/4)S · us that has
no counterpart in the inviscid limit, an indication that it results from the influence of the
ambient strain on the disturbance generated in the sphere vicinity by the no-slip condition.
Note that in general this term may contribute to both the drag and lift components of
the total force. The previous argument regarding the role of the no-slip condition holds
for the contribution −πus × Ω but the presence of the inviscid force πus × (∇ × U∞)

makes the point a little bit more subtle. As is well known, the inviscid shear lift force
results from the distortion of the vorticity ∇ × U∞ contained in the background flow
as it is transported along the curved streamlines around the (inviscid) sphere. Lighthill
(1956) gave an illuminating quantitative description of how this inviscid stretching/tilting
mechanism results in the generation of a pair of counter-rotating streamwise vortices
in the wake of a sphere immersed in a linear shear flow. This mechanism subsists
qualitatively at a finite Reynolds number. However, when the no-slip condition applies
at the sphere surface, the local kinematic structure of the undisturbed flow, characterized
by S and Ω , influences the velocity disturbance required to satisfy this condition; hence,
the near-surface vorticity. The term −πus × Ω in (4.10), or at least a part of it, results
from this effect. It may be that, owing to the identity Ω = 1

2(∇ × U∞), a non-zero part
of this term rather results from what remains at a low but finite Reynolds number of
the aforementioned stretching/tilting mechanism of the upstream vorticity, and that the
two combine to yield the prefactor −π. In any case, there is no reason for the entire
finite-Reynolds-number contribution to be identical to the inviscid lift force. Noting that
the magnitude of the former is smaller than that of the latter (−π/2 instead of −π once
expressed with respect to us × (∇ × U∞)), we may even conclude that the alteration of
the near-surface disturbance by the rotational component Ω of the undisturbed velocity
gradient yields a contribution to the force whose sign is opposite to that of the inviscid lift
force.
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4.3. Stationary limit: pure straining flows
In the stationary limit, the slip velocity between the particle and the fluid no longer varies.
Similarly, d f (0)/dt tends to zero and the singular term in (3.37) becomes

6πU2 → −(6πK̄) · (6πK̄) · f (0), (4.11)

where 6πK̄ may be thought of as the steady resistance tensor induced by fluid inertia
effects. The second-order force resulting from the flow disturbance then becomes

f ′(2) = 37π

12
S · us − π

6
us × (∇ × U∞) − πus × ωp − 6π(6πK̄) · (6πK̄) · us. (4.12)

Again, this expression is general in that it is valid in any linear flow. The actual difficulty
to use it in practice is that the explicit expression for the long-time kernel is generally not
known, except in some canonical configurations.

We first specialize the above result to the case of a planar extensional flow, defined as

A =
⎛⎝1 0 0

0 −1 0
0 0 0

⎞⎠ . (4.13)

The corresponding steady-state kernel was computed by CMM. However, a technical
difficulty (a non-convergence of a three-dimensional integral to be evaluated in Fourier
space) prevented the computation of the component of the kernel corresponding to the
compressional direction e2 beyond a certain time (t ≈ 30). The final result obtained in this
reference reads

6πK̄ ≈
⎛⎝0.901 0 0

0 [K̄]2
2 0

0 0 0.420

⎞⎠ , (4.14)

with [K̄]2
2 presumably negative and larger than 1.48 in absolute value. Fortunately, the

diagonal nature of K̄ leaves the e1 component of the resulting force unaffected by this
uncertainty, even at O(ε2). Let us assume that the particle is at rest at the location xp =
(1, xp2, xp3). This implies that us = −e1 + xp2e2, so that the first-order correction to the
e1 component of the disturbance-induced force becomes f ′(1) · e1 = 6πe1 · (6πK̄) · e1 ≈
16.98. As (3.38) shows, the undisturbed flow does not provide any contribution to the
second-order torque because Ω ≡ 0. Therefore, a torque-free sphere does not rotate in
the present flow whatever its transverse position xp2, unless it has been given an initial
non-zero rotation. If one sets ωp = 0 in (3.37), the second-order correction to the e1
component of the disturbance-induced force is found to be

f ′(2) · e1 = 37π

12
e1 · (S · us) + 6πe1 · (6πK̄) · (6πK̄) · us ≈ 5.615. (4.15)

Another straining motion of interest is the uniaxial axisymmetric flow characterized by
a constant stretching rate along the symmetry axis and a uniform compression in the
plane perpendicular to it. This flow was not considered by CMM. The corresponding
kernel is computed in Appendix B, for S = −(e1e1 + e2e2) + 2e3e3. The steady-state
result (B3) indicates that the axial component of the kernel is 6π[K̄]3

3 = 6πe3 · K̄ · e3 ≈
1.26. Therefore, considering a particle held fixed on the flow axis at the axial location
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xp3 = 1
2 (which implies us = −e3), the first-order correction to the force reads f ′(1) =

−6π(6πK̄) · us ≈ 23.75 e3, while the second-order correction is

f ′(2) = 37π

12
S · us − 6π(6πK̄) · (6πK̄) · us ≈ 10.55e3. (4.16)

In Appendix A we establish the counterpart of (4.16) in the case of a spherical bubble
at the surface of which the surrounding flow obeys a shear-free condition instead of the
no-slip condition in (2.3). The corresponding result reads

f ′(2) = 4π

3
S · us − 4π(4πK̄) · (4πK̄) · us ≈ 0.49e3. (4.17)

Comparing (4.16) and (4.17) reveals that the inner and outer contributions to f ′(2) both
differ. In particular, the former is more than twice as small in the case of a bubble. This is
a clear confirmation of the prominent role played by the vorticity produced at the particle
surface in all contributions to the hydrodynamic force.

The above comments call for a comparison between the predictions for f ′(2) and
those for the inviscid force f ′

inv given by (2.9). In a pure straining flow, f ′
inv reduces

to the added-mass force, i.e. f ′
inv = (2π/3)(DU∞/Dt|xp − (dvp/dt)). If the particle is

held fixed, U∞|xp = −us. Hence, in the case of the planar flow (4.13), setting again
us · e1 = −1, the e1 component of the inviscid force is f ′

inv · e1 = (2π/3)e1 · S · e1 =
2π/3. Similarly, in the uniaxial straining flow, f ′

inv · e3 = 4π/3. Remarkably, although
the inner contribution to f ′(2) and f ′

inv are both directly proportional to S · us, the former
is negative for both types of straining flow and whatever the nature of the particle, while
the latter is always positive. This observation sheds light on the debate summarized in § 1
regarding the proper form of the added-mass force in the low- but finite-Reynolds-number
limit. Indeed, from a theoretical point of view, this turns out to be a ‘non-question’ since
the dynamic boundary condition at the particle surface, by nature a viscous effect, is found
to produce contributions to the force proportional to S · us, just as the added mass does if
Taylor’s expression involving the Lagrangian derivative of U∞ holds. Having noticed this,
our only hope to disentangle both effects stood in the splitting of the inner contributions
to f ′(2) into viscous and pressure drag components in (4.16) and (4.17), from which a
comparison of all contributions for a solid sphere and a spherical bubble immersed in the
same flow is possible. However, nothing emerged from this comparison, as the ratio of
the viscous and pressure components (once the possible 4π/3 added-mass contribution
had been removed from the latter) differs for the two types of particle. Based on this
unsuccessful attempt, we have to conclude that whether the added-mass force involves the
fluid acceleration DU∞/Dt|xp or the derivative of U∞ following the particle motion, i.e.
dU∞/dt|xp , is undecidable at a low but finite Reynolds number.

Things are different at moderate-to-large Reynolds numbers, as the direct simulations
of Magnaudet et al. (1995) showed. Their study considered the flow experienced by a
rigid sphere or a spherical bubble held fixed in an axisymmetric uniaxial (or biaxial)
straining flow over a wide range of Reynolds numbers. Whatever the Reynolds number
Rep (which was varied from 0.05 to 150), the magnitude of the fluid acceleration and
the nature of the particle, the results revealed the existence of two series of contributions
dependent on both strain and slip effects. One, found in the pressure drag, has a magnitude
independent of Rep and equal, to numerical accuracy, to that of the inviscid force predicted
by (2.9). In contrast, the other, found in both the pressure and viscous drag components,
depends on Rep in the same way as the corresponding drag component in the case the
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body is immersed in a uniform flow. Its origin was readily identified by considering the
vorticity and pressure distributions at the surface of the particle. In particular, compared
with the same particle in a uniform stream, the fluid acceleration was observed to
decrease the surface vorticity on the front half and to increase it on the rear half. These
findings establish that these contributions are a direct consequence of the changes in
the vorticity distribution at the particle surface, which result from the strain component
of the base flow. To summarize, these simulations made it clear that (i) added-mass
effects due to the advective acceleration U∞ · ∇U∞ ≡ −S · us exist in the considered
configuration whatever Rep and are unaffected by the Reynolds number; and (ii) the local
strain characterizing the undisturbed flow modifies the near-surface vorticity distribution
resulting from the dynamic boundary condition (no slip or shear free), which in turn
yields additional contributions to the drag that depend linearly on S but experience large
variations with Rep. Apart from their different behaviours with respect to Rep, there is no
way to separate the various S-dependent contributions in the overall drag. The theoretical
low- but finite-Reynolds-number results obtained above in the planar and uniaxial straining
flows are just another illustration of this coexistence of two categories of strain-dependent
contributions to the drag resulting from two totally different physical mechanisms. Unlike
the aforementioned simulations in which Rep was varied by several orders of magnitude,
these contributions appear at the same O(ε2) order in the present asymptotic theory and,
for this reason, cannot be disentangled.

4.4. Stationary limit: vortical flows
We now turn to the case of a linear shear flow in which the velocity-gradient tensor A

takes the form

A =
⎛⎝0 0 1

0 0 0
0 0 0

⎞⎠ . (4.18)

Saffman (1965) computed the leading-order O(ε)-lift force in this flow for a sphere
translating steadily along the direction of the undisturbed stream and possibly rotating
perpendicular to it. Saffman also computed the O(ε2) contributions to the lift force arising
from the inner region of the disturbance. In contrast, Saffman did not consider the O(ε2)

force arising from the singular term U2(t). Setting the slip velocity us to −e1 and the
angular velocity of the particle to ωp = ωpe2, Saffman’s second-order result (his (2.17))
reads

f ′(2)
S =

(
πωp − 11π

8

)
e3. (4.19)

The present theory allows us to compute all O(ε2) contributions, including those resulting
from U2(t). Moreover, the orientation of the slip velocity may be kept arbitrary. Evaluating
all terms in (3.37) leads to

f ′(2) =

⎛⎜⎜⎜⎜⎝
0 0

41π

24
+ πωp

0 0 0

11π

8
− πωp 0 0

⎞⎟⎟⎟⎟⎠ · us − 6π(6πK̄) · (6πK̄) · us. (4.20)

954 A25-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
15

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1015


F. Candelier, R. Mehaddi, B. Mehlig and J. Magnaudet

The stationary kernel K̄ is known to be (Miyazaki et al. 1995, CMM)

6πK̄ ≈
⎛⎝0.0737 0 0.9436

0 0.5766 0
0.3425 0 0.3269

⎞⎠ , (4.21)

so that the leading-order correction to the Stokes drag is f ′(1) = −6π(6πK̄) · us. In
particular, the leading-order lift component f ′(1) · e3 in the configuration considered by
Saffman is f ′(1) · e3 = 6π(6πe3 · K̄ · e1) ≈ 6.456.

Using (4.21), (4.20) provides the next-order force as

f ′(2) =

⎛⎜⎜⎜⎜⎝
0 0

41π

24
+ πωp

0 0 0

11π

8
− πωp 0 0

⎞⎟⎟⎟⎟⎠ · us −
⎛⎝6.1942 0 7.1252

0 6.2669 0
2.5862 0 8.1062

⎞⎠ · us.

(4.22)
If the particle does not rotate, this reduces to

f ′(2) = −
⎛⎝ 6.1942 0 1.7583

0 6.2669 0
−1.7335 0 8.1062

⎞⎠ · us. (4.23)

The off-diagonal components of f ′(2) yield the second-order lift force f ′(2)
L ≈

−1.7583(us · e3)e1 + 1.7335(us · e1)e3. In the specific case us = −e1, (4.23) implies
that f ′(2) · e3 = −1.7335, to be compared with f (2)

S · e3 = −11
8 π ≈ −4.32 according

to (4.19). Hence, the actual magnitude of the second-order lift force is approximately
2.5 times smaller than Saffman’s incomplete prediction. It may be noted that the two
prefactors involved in f ′(2)

L have very close values, albeit with opposite signs, so that
on a purely empirical basis the second-order lift force may be approximated as f ′(2)

L ≈
1.746 us × (∇ × U∞). This expression may be compared with the prediction for the
inviscid disturbance-induced force f ′

inv in (2.9), which in the present case reduces to the
shear lift force f ′

inv = −(2π/3)us × (∇ × U∞). Although the two expressions have the
same structure and the two prefactors have a comparable magnitude (since 2π/3 ≈ 2.094),
they have opposite signs, a clear indication that the mechanism responsible for f ′(2)

L is
totally different from the Lighthill mechanism discussed in § 4.2.

Similarly, if the particle rotates freely, the torque-free condition implies that ‖ωs‖ =
O(ε2), i.e. ωp ≈ Ω = 1

2 e2, so that (4.22) simplifies to

f ′(2) =
⎛⎝−6.1942 0 −0.1876

0 −6.2669 0
0.1626 0 −8.1061

⎞⎠ · us. (4.24)

Now the off-diagonal components of f ′(2) yield the second-order lift force f ′(2)
L ≈

−0.1876(us · e3)e1 + 0.1626(us · e1)e3. Again, the two prefactors have very close values,
so that this contribution may be empirically approximated in the form f ′(2)

L ≈ 0.175us ×
(∇ × U∞). The prefactors involved in f ′(2)

L are fairly small compared with those found in
the non-rotating case because the contribution brought by the singular term −6π(6πK̄) ·
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(6πK̄) · us nearly balances the sum of the regular terms. In particular, with us = −e1,
(4.24) implies that f ′(2)

L = −0.1626e3. In contrast, with the relevant angular velocity ωp =
1
2 , Saffman’s partial result (4.19) yields f (2)

S = −7
8πe3 ≈ −2.75e3, which overpredicts

the actual second-order lift force by more than one order of magnitude. The above two
examples indicate that Saffman’s incomplete result for the second-order correction to
the lift force is grossly inaccurate. Therefore, practitioners using point-particle models
incorporating the steady-state form of the Saffman lift force should either consider only
the corresponding leading-order prediction or make use of (4.24) or (4.23) to estimate the
second-order correction, depending on whether the particle rotates or not.

Last, we turn to the solid-body rotation flow characterized by the velocity-gradient
tensor

A =
⎛⎝0 −1 0

1 0 0
0 0 0

⎞⎠ . (4.25)

Since S ≡ 0, there is no source term in (3.38), so that the torque-free condition implies
that ωs = 0 if the particle is not given an initial differential rotation. Therefore, once the
slip velocity no longer varies, (3.37) reduces to

f ′(2) = 4π

3
Ω × us − 6π(6πK̄) · (6πK̄) · us. (4.26)

For this flow, the steady-state kernel may be obtained in closed form and reads (Gotoh
1990; Miyazaki 1995, CMM)

6πK̄ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

3
√

2(19 + 9
√

3)

280
−3

√
2(19 − 9

√
3)

280
0

3
√

2(19 − 9
√

3)

280
3
√

2(19 + 9
√

3)

280
0

0 0
4
7

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (4.27)

The off-diagonal terms of (4.27) yield the leading-order rotational lift force f ′(1)
L =

(9π
√

2(19 − 9
√

3)/140)[(us · e2)e1 − (us · e1)e2] ≈ 0.980[(us · e2)e1 − (us · e1)e2].
Making use of (4.26), the second-order disturbance-induced force is found to be

f ′(2) = 4π

3
e3 × us − 6π

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1539
√

3
9800

− 531
9800

0

531
9800

1539
√

3
9800

0

0 0
16
49

⎞⎟⎟⎟⎟⎟⎟⎟⎠
· us

≈
⎛⎝−5.127 −3.167 0

3.167 −5.127 0
0 0 −6.155

⎞⎠ · us. (4.28)

In particular, the second-order rotational lift force resulting from the off-diagonal terms of
(4.28) is f ′(2)

L ≈ −3.167[(us · e2)e1 − (us · e1)e2] ≈ −1.584us × (∇ × U∞), since ∇ ×
U∞ = 2e3 according to the definition (4.25) of the velocity-gradient tensor.
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The prefactor involved in f ′(2)
L is significantly larger than that found in f ′(1)

L and of
opposite sign. The total lift force at the present order of approximation being f ′

L =
ε f ′(1)

L + ε2 f ′(2)
L , this force changes sign and becomes dominated by the second-order

contribution beyond ε ≈ 0.31, i.e. beyond a critical shear Reynolds number Res ≈ 0.096.
Hence, under many practical conditions, one may expect a small particle held fixed in a
solid-body rotation flow to experience a lift force of opposite sign to the one predicted by
the leading-order estimate f ′(1)

L . This surprising feature contrasts with what happens in
the pure shear configuration. Indeed, (4.24) indicates that the total lift force experienced
by a torque-free particle with a slip velocity us = −e1 is in that case f ′

L = (6.456ε −
0.1626ε2)e3. Again, the first- and second-order contributions have opposite signs but the
prefactor of the O(ε2) term is much smaller than that of the O(ε) term, so that f ′

L never
changes sign within the domain of validity of the present theory.

We may again compare f ′(2)
L with the inviscid force predicted by (2.9), noting that in the

present case DU∞/Dt|xp ≡ 1
2 us × (∇ × U∞) if the particle is at rest. For this reason, the

added-mass and shear-induced lift forces in (2.9) combine in the form of an ‘extended’ lift
force f ′

inv = −(π/3)us × (∇ × U∞). This inviscid force and the second-order lift force
f ′(2)

L are seen to have the same sign, which contrasts with what was noted above in the pure
shear configuration. However, the magnitude of f ′(2)

L (3.167) is larger than that of f ′
inv

(≈ 2.094), which once again underlines the role of the no-slip condition in the structure of
the disturbance flow. That f ′(2)

L and f ′
inv keep the same sign in a solid-body rotation flow

but have opposite signs in a linear shear flow emphasizes the crucial importance of the
alteration introduced in the near-surface disturbance by the presence of a non-zero strain
in the latter case. More specifically, this change of sign suggests that the surface vorticity
associated with this strain-induced disturbance contributes more to the lift force than any
other mechanism affecting the vorticity distribution around the particle, especially those
resulting from the stretching and tilting of the upstream vorticity ∇ × U∞.

5. Summary and concluding remarks

In this work, we computed the second-order inertial corrections to the creeping-flow
approximation of the time-dependent hydrodynamic force and torque acting on a small
rigid sphere immersed in a general steady linear flow. Our primary motivation was to
obtain a consistent approximation for the force and torque in which all fundamental
physical effects resulting from fluid inertia, such as shear- and spin-induced lift and
added mass, are accounted for to O(ε2). To achieve this goal, we used and extended
the methodology developed by CMM that employs asymptotic matching expansions and
formulates the problem in a coordinate system co-moving with the carrying flow. Some
of the second-order corrections derived here were already known, but others were not.
Computing these corrections in a systematic fashion is much more difficult than obtaining
the first-order corrections. This is on the one hand because the inner problem at O(ε2)
is inhomogeneous, and on the other hand because the second-order singular contribution
brought by the outer solution results from a double convolution product.

Our results for the second-order force and torque are summarized in (3.37) and (3.38).
However, it is only after the singular outer velocity correction U2(t) has been explicitly
computed that one can fully appreciate how the different contributions combine in the
second-order force, and of which physical effect they account for. This is especially
true regarding terms involving the relative acceleration between the particle and fluid.
In particular, the classical added-mass force in a uniform flow is found to result from
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the sum of an inner and an outer contribution evaluated in the short-time limit t 	 1,
and it is dominated by the latter. That the outer contribution dominates indicates that the
majority of the fluid instantaneously displaced when the particle or the fluid accelerates is
located far from the body, i.e. at distances larger than the Saffman length. The expression
(3.38) for the torque also comprises a contribution involving the instantaneous relative
angular acceleration, as if there were a non-zero rotational added-mass effect. This is of
course not the case given the point-symmetric geometry of the considered particle, and
this contribution is just due to the ‘remains’ of the exact history torque beyond the initial
stage that extends over a few viscous time units. Indeed, it is important to bear in mind
that the present theory is not designed to deal with very large levels of unsteadiness. For
this reason, it does not in general provide the exact form of the kernel at very short times,
i.e. t � ε2. Another example of this limitation is observed in the case of the force acting
on a spherical bubble, for which the total contribution proportional to the instantaneous
relative acceleration is found to be the sum of the added-mass force and of a (dominant)
term left by the early decay of the exact history kernel. In the present theory, history effects
appear at first and second orders through the far-field velocity corrections U1(t) and U2(t),
respectively. While these outer contributions are crucial in the inertial corrections to the
force, they do not affect the torque in the case of a spherical (or spheroidal) particle, for
symmetry reasons.

In (3.38) two quadratic contributions to the second-order inertial torque are identified.
We showed that the one proportional to S · Ω is identical to that computed by Candelier
et al. (2016) for a neutrally buoyant particle. It is non-zero only in three-dimensional linear
flows whose structure generates a uniform vortex stretching, which makes it relevant to
the motion of small particles in turbulence. The contribution proportional to S · ωs was
apparently not identified so far. It reveals that a spinning particle immersed in a linear flow
with a non-zero strain component aligned with the spin axis experiences an inertial torque.
This correction makes the total torque τ ′ = τ ′(0) + ε2τ ′(2) weaker (respectively stronger)
than the primary viscous torque if the particle spins about the elongational (respectively
compressional) axis of the straining flow. It induces a torque component orthogonal to the
primary spinning direction otherwise. For instance, the total torque on a particle spinning
with the angular velocity ωpe1 in the linear shear flow U∞ = x3e1 is τ ′ = −8πωp(e1 −
(ε2/16)e3).

The second-order force (3.37) involves three quadratic contributions. The one
corresponding to the spin-induced lift force originally computed by Rubinow & Keller
(1961) is well known. Our results show that this force subsists in a linear flow, provided
the slip rotation rate ωs = ωp − Ω is substituted for the particle spin rate ωp. The other
two contributions involve the kinematic structure of the background flow, through S and
Ω , and the particle slip velocity, us. The contribution proportional to Ω × us is a pure
lift force while that proportional to S · us may comprise drag and lift components. We
compared the prefactors of the corresponding terms with those found in inviscid flow in the
weak shear limit (as/uc 	 1). We also compared the prefactors of the S · us contribution
determined in an axisymmetric uniaxial flow for a rigid particle and a spherical bubble,
respectively. These comparisons shed light on the central role played by the dynamic
boundary condition at the particle surface. To a large extent, the relative magnitude of
these contributions is determined by the changes imposed to the vorticity distribution at
the particle surface by the strain and/or rotation component of the base flow. These changes
modify the spatial distribution of the fluid momentum in the region close to the particle,
i.e. at distances less than �s, which in turn results in a net force on it. The velocity gradients
S and Ω enter the kernel K in a subtle manner (this is what makes it flow dependent), and
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hence also the far-field velocity correction U2. For a given flow, the second-order force on
a rigid particle tends to (37π/12)S · us + (4π/3)Ω × us + 6πU2 in the long-term limit.
We found that, for a given slip velocity, the inner and outer contributions have opposite
signs, and the sign of their sum depends on the considered flow, as the examination of
several canonical configurations in § 4 revealed. Moreover, the total lift force is obtained
by summing the first- and second-order lift components. The two may have opposite signs,
especially in vortical flows. Although the first-order term is necessarily dominant from an
asymptotic point of view, we observed that in a solid-body rotation flow the prefactor of
the second-order component is significantly larger than that of the first-order one, making
the total lift force change sign beyond a modest value of the shear Reynolds number.

Having isolated the (37π/12)S · us contribution to the second-order force in straining
flows led us to re-examine the old yet still open question whether one should use
the Lagrangian derivative, DU∞/Dt|xp , or the time derivative following the particle,
dU∞/dt|xp , in the expression for the added-mass force in non-uniform flows. Indeed,
selecting the former, which is known to be the proper choice in the inviscid limit,
introduces a contribution −(2π/3)S · us in the second-order force in straining flows, while
no such contribution appears if the latter is chosen. However, the above question turned out
to be undecidable at the present order of approximation, owing to the dominant influence
of the dynamic boundary condition on the strength of the S · us term, as underlined by
the opposite signs of the above two prefactors. Indeed, the flow configurations examined
in § 4 did not bring any convincing clue that might allow us to conclude that the
37π/12 prefactor should rather be interpreted as −2π/3 + 15π/4, with the first and
second contributions corresponding respectively to the added-mass effect induced by the
no-penetration condition and the ‘vortical’ effect resulting from the dynamic boundary
condition. Higher-order expansions, or more likely DNS results covering a wide range
of Reynolds number, such as those of Magnaudet et al. (1995), may help to disentangle
the two types of contributions. At the moment, the latter reference provides the clearest
heuristic evidence that the inviscid form of the added-mass term remains valid at finite
Reynolds number.

In view of applications, it appears useful to summarize the complete expressions for the
force and torque resulting from the present theory in dimensional variables. We remind the
reader that this theory assumes that the background flow has the form U∞(x, t) = U0(t) +
S · x + Ω × x (hence, ∇ × U∞ = 2Ω), with S and Ω uniform and time independent.
Actually, the latter restriction applies to the results for the force, while those for the torque
remain valid even through S and Ω depend upon time. This restriction also implies that,
in three-dimensional flows, the results for the force are only valid in pure straining flows
(Ω = 0). With these restrictions in mind, using the definitions introduced in §§ 1 and 2,
the total force and torque, obtained by summing the creeping-flow result with the first- and
second-order inertial corrections and the force/torque resulting from the undisturbed flow,
read

f (t) = f b(t) − 6πμa

{
us +

(
a2s
ν

)1/2 ∫ t

0
6πK(s(t − τ)) · dus

dτ
dτ

}

+ mf

{
4

dus

dt
+ 37

16
S · us − 1

2
us × (∇ × U∞)− 3

4
us × ωs

− 9
2

∫ t

0
6πK(s(t − τ)) · d

dτ

(∫ τ

0
6πK(s(t − τ)) · dus

dτ ′ dτ ′
)

dτ

}
, (5.1)
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Second-order inertial forces and torques on a sphere

τ (t) = −8πμa3ωs − mf a2
(

2
dωs

dt
+ 6

5
S · (∇ × U∞) − 3

4
S · ωs

)
, (5.2)

with

f b(t) = (mp − mf )g + mf
DU∞

Dt

∣∣∣∣
xp(t)

= (mp − mf )g + mf

{
U̇0 + S · U∞|xp(t) + 1

2
(∇ × U∞) × U∞|xp(t)

}
. (5.3)

Since K(st) → (1/6π)(I/
√

πst) for st → 0, the dimensional force in the short-term limit
is

f (t 	 s−1) = f b(t) − 6πμa

{
us +

∫ t

0

1√
πν(t − τ)/a2

dus

dτ
dτ

}

+ mf

{
−1

2
dus

dt
+ 37

16
S · us − 1

2
us × (∇ × U∞) − 3

4
us × ωs

}
. (5.4)

This is the original BBO equation (1.1) enriched with the last three terms that account
for the interaction of the slip velocity with the background velocity gradients and the
particle rotation. Note that (5.4) remains valid for times of O(a2/ν) or even shorter,
since the short-time limit of the history kernel and that of the added-mass force coincide
with those found in the BBO approximation. This is a bonus specific to the case of the
force on a rigid spherical particle. The same does not hold for a bubble, nor for the
torque on a spherical particle, because in these cases the BBO kernel involves a term
proportional to exp[9ν(t − τ)/a2]erfc[9ν(t − τ)/a2]1/2 that is not captured by the present
theory. A similar term is known to exist for drops of arbitrary viscosity (Gorodtsov
1975; Yang & Leal 1991) and non-spherical particles (Lawrence & Weinbaum 1986).
Obtaining expressions for the loads that incorporate finite-Reynolds-number effects and
are uniformly valid in the limit t → 0 even when the exact kernel does not reduce to the
Basset–Boussinesq form [ν(t − τ)/a2]−1/2 requires a theory fundamentally different from
the one described here, the starting point of which is the unsteady Stokes equation. Since,
instead of the simple form (3.16), the solution to this equation is non-local in time, a good
part of the methodology outlined in § 3 no longer applies and it is doubtful that results
may be obtained in closed form in the time domain. Nevertheless, the problem is worthy
of consideration since in emerging fields, such as acoustofluidics, the particle motion is
driven by a high-frequency acoustic field, which corresponds to high levels of unsteadiness
with ResSl = O(1) in (2.2b), while small but finite advective effects may have a significant
influence (Agarwal et al. 2021).

For st → ∞, K(st) → K̄, so that in the long-term limit one has

f (t � s−1) = f b − 6πμa

{
us +

(
a2s
ν

)1/2

(6πK̄) · us

}

+ mf

{
37
16

S · us − 1
2

us × (∇ × U∞) − 3
4

us × ωs

− 9
2

s(6πK̄) · (6πK̄) · us

}
. (5.5)

In (5.1) and (5.5) the velocity-gradient scale s is defined as s = ((1/D!)A : A)1/2, with
D = 1, 2 or 3 depending on whether the base flow is one, two or three dimensional.
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Besides the fact that the background flow is assumed stationary and all Reynolds
numbers involved have to be small, the present theory suffers from two main limitations.
First, the condition Rep 	 Re1/2

s requires the slip velocity to be very small, making the
theory essentially suitable for weakly positively or negatively neutrally buoyant particles.
In particular, our second-order results do not comprise the classical Oseen correction
to the drag, which results from advective terms that are negligible in the outer region
under the above condition. Beyond the drag increase they induce (Kaplun & Lagerstrom
1957; Proudman & Pearson 1957), these terms are known to decrease the strength of the
Saffman lift force (Asmolov 1990; McLaughlin 1991). For instance, this force is reduced
by 25 % when Rep ≈ Re1/2

s , and the larger the ratio Rep/Re1/2
s the smaller the lift force.

Consequently, finite slip effects affect the kernel components involved in the first- and
second-order inertial corrections, and extending our theory to incorporate these effects is
crucial to make it applicable to situations involving large fluid-to-particle density ratios.

Second, the kernel is only known for the simplest linear flows. Since the problem
is nonlinear, one cannot just determine the general kernel by linearly superposing
the ‘elementary’ kernels for the canonical flows that were considered in § 4. To
make the present theory useful in applications involving arbitrary linear flows, it is
necessary to render the dependence of the kernel with respect to the components of the
velocity-gradient tensor A explicit. Closed-form expressions of K in a general linear flow
may presumably be obtained only in the short- and long-term limits, while semi-empirical
fits will certainly be required to obtain approximate expressions valid for arbitrary times.
This, we think, is the price to pay for making the results (5.1)–(5.5) applicable in practice to
a wide range of configurations of interest in sheared suspensions and possibly in turbulent
flows.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2022.1015.
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Appendix A. Second-order force on a spherical bubble

We complemented the results for a rigid sphere with those for a spherical bubble. Our
initial hope was that this might allow us to disentangle inertial effects resulting from the
particle shape (i.e. added-mass effects) from those resulting from the vorticity generated
at the particle surface. Indeed, comparing a spherical bubble to a rigid sphere leaves
the no-penetration condition unchanged, whereas the no-slip condition is changed into
a shear-free condition for the bubble, assuming that the viscosity of the gas that fills it is
negligibly small and the gas–liquid interface is free of any contamination. For technical
reasons related to the determination of the second-order inner solution, we did not succeed
to solve this problem for a general linear flow. Nevertheless, we managed to solve it
when the bubble moves, with a possibly time-dependent slip velocity, in the axisymmetric
straining flow considered in Appendix B.
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Second-order inertial forces and torques on a sphere

The steps involved in the calculation of the first- and second-order force disturbance on
a spherical bubble are similar to those described in § 3. Only the boundary condition at
the particle surface differs. In the O(ε) problem, the first boundary condition in (3.23) is
replaced by

v
(1)
in · n = −U (1)(t) · n, n × (σ (1) · n) = 0 at r = 1, (A1)

while at order ε2, instead of the first boundary condition in (3.29) one has

wh · n = −(wp + U2(t)) · n, n × (σ h · n) = −n × (σ p · n) at r = 1. (A2a,b)

In (A1), σ (1) · n denotes the first-order viscous traction resulting from the velocity
field v

(1)
in , while in (A2a,b), σ h · n and σ p · n denote the second-order viscous tractions

resulting from the velocity components wh and wp defined in (3.30a,b), respectively.
Carrying out the steps described in § 3, the total disturbance force acting on the bubble

is found to be

f ′ = f ′(0) + εf ′(1) + ε2f ′(2) = −4πus − 4πε

∫ t

0
K(t − τ)

df (0)

dτ
dτ

+ ε2

(
2π

dus

dt
+ 4π

3
S · us − 4π

∫ t

0
K(t − τ)

d
dτ

[∫ τ

0
4πK(τ − τ ′)

df (0)

dτ ′ dτ ′
]

dτ

)
.

(A3)

As for a rigid sphere, the different terms in (A3) may be split into pressure and viscous
contributions. The result is detailed in table 3. Note that the (4π/3)S · us contribution was
only determined for a bubble located on the symmetry axis of the axisymmetric straining
flow defined by (B1). However, whatever the bubble position and the velocity-gradient
tensor A characterizing the linear straining flow, the stationary second-order force resulting
from the inner solution must have the vector form S · us, similar to (3.37) for a rigid sphere.
This is why the particular result derived above remains valid for a bubble standing at an
arbitrary position in an arbitrary linear straining flow.

Apart from the fact that the prefactors 6π are replaced by 4π for a bubble, (A3) differs
from (3.37) through the prefactors of the second-order contributions dus/dt (2π instead
of 16π/3) and S · us (4π/3 instead of 37π/12). The significance of the latter difference
is discussed in § 4. In what follows we examine the origin of the former. Indeed, once the
inner solution and the short-time contribution of the kernel are combined, the dus/dt term
should provide the same added-mass force −(2π/3)ε2(dus/dt) as that found in (4.8) for a
rigid sphere, the added-mass force being independent of the dynamic boundary condition.

Since the kernel depends on the boundary condition at the particle surface only through
the prefactors 6π or 4π, one still has 6πK(t) = I/

√
πt at short times. Inserting this

asymptotic expression in (A3) yields

f ′(ε2 	 t 	 1) = −4πus − 8π

3
ε

∫ t

0

1√
π(t − τ)

dus

dτ
dτ + ε2

(
2π

9
dus

dt
+ 4π

3
S · us

)
.

(A4)

Surprisingly, the prefactor of the dus/dt term is 2π/9 instead of −2π/3 as expected.
To understand this difference, one has to compare (A4) (considering from now on S = 0)
with the exact solution obtained by Gorodtsov (1975) and Yang & Leal (1991) for a bubble
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Regular terms

∂tw
(0)
in S · w(0)

in + (S · r) · ∇w(0)
in −us · ∇w(0)

in w(0)
in · ∇w(0)

in

f ′(2)
ν

4
9

d f (0)

dt
803
3100 S · f (0) 113

4650 S · f (0) − 1
20 S · f (0)

f ′(2)
p

1
18

d f (0)

dt
1423
6200 S · f (0) − 169

3100 S · f (0) − 3
40 S · f (0)

f ′(2) 1
2

d f (0)

dt
3029
6200 S · f (0) − 281

9300 S · f (0) − 1
8 S · f (0)

Singular terms, with U 2(t) = − ∫ t
0 K(t − τ) · d

dτ
(
∫ τ

0 4πK(τ − τ ′) · d f (0)(τ ′)
dτ ′ dτ ′)dτ

Short-time behaviour: Long-time behaviour:
K(t) ∼ 1

6π
1√
πt

K(t) → K̄

f ′(2)
ν

8π
3 U 2(t) − 8

27
d f (0)

dt − 8π
3 K̄ · (4πK̄) · f (0)

f ′(2)
p

4π
3 U 2(t) − 4

27
d f (0)

dt − 4π
3 K̄ · (4πK̄) · f (0)

f ′(2) 4πU 2(t) − 4
9

d f (0)

dt −4πK̄ · (4πK̄) · f (0)

Table 3. Summary of all contributions to the second-order force on a bubble moving along the axis of
an axisymmetric elongational flow, expressed with respect to f (0) = 4πus. Terms arising from the regular
and singular parts of the solution are given in the upper and lower tables, respectively. In the last row of
the former, note that 3029

6200 − 281
9300 − 1

8 = 1
3 , which yields the (4π/3)S · us contribution in (A3). We also

distinguish between the contributions to the force induced by the viscous part of the stress tensor (e.g. f ′
ν )

and those induced by the pressure (e.g. f ′
p). The total second-order hydrodynamic force is the sum of these two

contributions.

translating unsteadily in a fluid at rest in the limit of negligibly small advective effects,
namely

f G = −4π

{
us + 2

∫ t

0
exp

(
9(t − τ)

ε2

)
erfc

(√
9(t − τ)

ε2

)
dus

dτ
dτ

}
− 2π

3
ε2 dus

dt
. (A5)

Similar to the BBO equation (2.8), the three terms on the right-hand side respectively
represent the quasi-steady drag, the visco-inertial history effect and the added-mass force,
the latter resulting exclusively from the pressure contribution to the total force. At first
glance, (A5) confirms that the second-order prediction (A4) differs from the exact result.
However, the present theory is designed to work up to large but ‘not too large’ levels of
unsteadiness. In particular, it is only supposed to work for times much larger than ε2. In
this limit, the kernel involved in (A5) is such that, at leading order,

exp
(

9t
ε2

)
erfc

(√
9t
ε2

)
∼ 1

3
ε√
πt

. (A6)

To find out the next term in the expansion of this kernel for large t/ε2, one may
start from the mathematical result

∫∞
0 {(1/

√
πx) − exp(x)erfc(

√
x)}dx = 1. Moreover, in

the sense of generalized functions, one knows that 1 = ∫ +∞
−∞ δ(t) dt, with δ(t) the Dirac

delta function. Then, setting x = t/ζ and defining the function Fζ (t) such that Fζ (t) ≡ 0
for t < 0 and Fζ (t) = (1/ζ ){(1/

√
πt/ζ ) − exp(t/ζ )erfc(

√
t/ζ )} for t > 0, one finds that
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Second-order inertial forces and torques on a sphere

(Boccara 1997, pp. 53–54)
lim
ζ→0

Fζ (t) = δ(t). (A7)

Finally, setting ζ = ε2/9, one obtains

lim
t/ε2�1

exp
(

9t
ε2

)
erfc

(√
9t
ε2

)
= 1

3
ε

1√
πt

− 1
9
ε2δ(t) + O(ε3). (A8)

Inserting this result into (A5), one recovers (A4). Therefore, in contrast to the case of
a rigid sphere, the history force acting on a bubble contains a term of O(ε2). For this
reason, after a very short transient, the O(ε2) correction to the force acting on the bubble
results from a combination of added-mass and visco-inertial history effects. The latter
is even dominant since the resulting prefactor, 2π/9, has an opposite sign to that of
the added-mass force, −2π/3. Similar to the problem encountered with the terms S · us
and Ω × us in § 4, one faces a situation in which, under a certain asymptotic condition,
a term with a given mathematical structure encapsulates two effects produced by two
distinct physical mechanisms. A similar situation was identified by Magnaudet (2003)
for a rigid particle moving unsteadily close to a wall: also in this case, the contribution
proportional to the instantaneous relative acceleration between the particle and fluid results
from a combination of added-mass and history effects (see (14) of this reference and the
discussion that follows this equation).

Appendix B. Kernel in an axisymmetric straining flow

In CMM only planar linear flows were considered. However, another configuration
of fundamental interest is the so-called uniaxial straining flow corresponding to the
velocity-gradient tensor

A =
⎛⎝−1 0 0

0 −1 0
0 0 2

⎞⎠ . (B1)

The forces experienced by a spherical rigid sphere or a bubble held fixed in this
flow were considered numerically by Magnaudet et al. (1995). We computed the kernel
corresponding to this flow using the techniques described by CMM. Figure 2 shows
how the non-zero components of K reach their stationary value. At short times, these
components behave as

6πK(t) ∼ 1√
πt

⎛⎜⎜⎜⎜⎜⎜⎝
1 − 7

10
t + 2

21
t2 · · · 0 0

0 1 − 7
10

t + 2
21

t2 · · · 0

0 0 1 + 7
5

t − 19
210

t2 · · ·

⎞⎟⎟⎟⎟⎟⎟⎠ .

(B2)

That is, deviations from the Basset–Boussinesq limit grow initially as t1/2. Up to terms of
O(t1/2), the short-time evolution of the kernel may be written in the simple form 6πK(t) ∼
(1/

√
πt)(I + 7

10St + · · · ). This form was shown to be universal, i.e. independent of the
specific linear flow considered, by Bedeaux & Rubi (1987) and Miyazaki et al. (1995).
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Figure 2. Evolution of the kernel K(t) in a uniaxial straining flow. Solid line: axial component K
3
3; dotted

line: radial components K1
1 = K2

2.

According to figure 2, the axial and radial components reach their long-term asymptote
at t ≈ 1 and t ≈ 4, respectively. Interestingly, the radial component changes sign beyond
t ≈ 2.2. This means that the long-time O(ε) correction to the drag is negative, so that
the drag of a particle translating in the radial direction (along which fluid elements are
compressed) is decreased compared with its creeping-flow value. In the stationary regime
one has

6πK̄ ≈
⎛⎝ −0.097 0 0

0 −0.097 0
0 0 1.260

⎞⎠ . (B3)

Since the O(ε2) correction to the drag is proportional to K̄ · K̄, this correction is found to
be significant along the flow axis but negligibly small in the radial direction.

We also computed the kernel associated with the so-called biaxial straining flow
associated with the velocity-gradient tensor

A =
⎛⎝1 0 0

0 1 0
0 0 −2

⎞⎠ . (B4)

At short times, the components of this kernel behave as

6πK(t) ∼ 1√
πt

⎛⎜⎜⎜⎜⎜⎜⎝
1 + 7

10
t + 2

21
t2 · · · 0 0

0 1 + 7
10

t + 2
21

t2 · · · 0

0 0 1 − 7
5

t − 19
210

t2 · · ·

⎞⎟⎟⎟⎟⎟⎟⎠ .

(B5)
Comparing (B2) and (B5) indicates that even-order terms are identical while odd-order
terms have the same magnitude but opposite signs, as expected from the universal
short-time form of K(t) mentioned above.
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0 2 4 6 8 10
t

0

1

2

3

–1

Figure 3. Evolution of the kernel K(t) in a biaxial straining flow. Solid line: axial component K
3
3; dotted line:

radial components K1
1 = K2

2.

The corresponding steady-state kernel is found to be

6πK̄ ≈
⎛⎝0.9544 0 0

0 0.9544 0
0 0 −0.8622

⎞⎠ . (B6)

Here, according to figure 3, the axial component changes sign for t ≈ 0.7, so that inertial
effects decrease the axial drag at longer times. Comparing (B6) and (B3) makes it clear
that the steady-state value of each component is totally different in the two flows, which
underlines the nonlinear nature of advective effects.
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