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ON THE RESIDUAL FINITENESS OF CERTAIN 
POLYGONAL PRODUCTS 

BY 

R. B. J. T. ALLENBY AND C. Y. TANG 

ABSTRACT. We give examples to show that unlike generalized 
free products of groups (g.f.p.) polygonal products of finitely 
generated (f.g.) nilpotent groups with cyclic amalgamations need not 
be residually finite (R^) and polygonal products of finite p-groups 
with cyclic amalgamations need not be residually nilpotent. How
ever, polygonal products f.g. abelian groups are R^, and under 
certain conditions polygonal products of finite /^-groups with cyclic 
amalgamations are R^. 

1. Introduction. Polygonal products of groups were introduced by 
A. Karrass, A. Pietrowski and D. Solitar [6]. They studied the subgroups 
of these products and applied their results to the study of the Picard group 
PSL(2, Z(i) ). Brunner, Frame, Lee and Wielenberg [2] made use of their results 
to determine all the torsion-free subgroups of finite index in the Picard group. 
These products are defined as follows. Let P be a polygon. Let there be given, to 
each vertex v of P a vertex group Gv and to each edge e an edge group Ge 

together with monomorphisms Xe and pe embedding Ge as a subgroup of the two 
vertex groups at the ends of the edge e. The polygonal product of this system is 
the group G with generators and relations those of the vertex groups together 
with the extra relations obtained by identifying geXe and gepe for each ge e Ge. 
The case where the embedded subgroups at each vertex are permitted to have 
non-trivial intersections can be quite unpleasant (see B. H. Neumann [7], p. 525, 
also [8] ). So we restrict ourselves to the case where at each vertex the pair of 
embedded subgroups has trivial intersection. Even with this restriction, the case 
when the polygon is a triangle can be troublesome since the polygonal product 
so formed may not contain the vertex groups isomorphically ( [7], 
p. 525). Thus we deal with polygons with four or more vertices. In this case it is 
not difficult to see that a polygonal product may be regarded as a generalized 
free product. In particular, such a free product embeds the original polygon of 
groups isomorphically. In this paper we study the residual finiteness ( ^ ^ ) of 
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certain polygonal products. For simplicity of presentation we restrict ourselves 
to the case where the polygon is a square and the embedded subgroups are 
cyclic with trivial intersections. 

In Section 3, we prove that the polygonal products of free abelian groups of 
finite ranks with disjoint, cyclic embedded subgroups are R IF. We also give an 
example of a polygonal product of four finitely generated torsion-free nilpotent 
groups embedding disjoint cyclic subgroups that is not RfF. Similar examples 
can be constructed for polygonal products of free groups. This contrasts with 
the results of G. Baumslag [1] who proved that the generalized free products of 
finitely generated torsion-free nilpotent groups (and also free groups) with 
cyclic amalgamations are always R !F. 

In Section 4, we prove that polygonal products of four finite ^-groups embed
ding dispoint cyclic groups such that a pair of the opposite edge groups are of 
order p, are R^. In particular, polygonal products of finite /?-groups embedding 
disjoint subgroups of order p are RIF. In fact we conjecture that polygonal prod
ucts of finite /7-groups embedding disjoint cyclic groups are RIF. So far we have 
been unable to prove this. Unlike generalized free products of finite /7-groups 
amalgamating a cyclic subgroup, which are residually finite ^-groups [5], 
whence residually nilpotent, we construct an example of a polygonal product of 
four dihedral groups of order 8 embedding disjoint cyclic groups which is not 
even residually nilpotent. This is Example 4.1. The question whether polygonal 
products of four finite groups embedding disjoint subgroups necessarily have a 
proper subgroup of finite index seems quite hard to resolve. 

2. Preliminaries. Let P be the polygonal product of the groups Al9 

A2, . . . 9An (vertex groups) with amalgamated subgroups Aii+X = At+Xi (edge 
groups). Then P is said to have disjoint amalgamations if Aii_l n Aii+X = 1 
where / = 1, . . . , n with Ann+X = AnV 

We write g.f.p. to denote generalized free product and use the usual notation 
A *v B to denote the g.f.p. of A and B amalgamating the subgroup U. 

If G = A *u B and x e g, then ||JC|| denotes the free product length of JC 

in G. 
We let N <j-G denote that N is a normal subgroup of finite index in G. 
If G is a homomorphic image of G then we use x to denote the image of 

x G G i n G . 
Let G be a group and S be a subgroup of G. Then we say that G is ^-separable 

if to each x e G\S there exists N </G such that x <£ SN, where G\S denotes 
the set of elements of G deleting the elements of S. 

The following theorem, which was proved implicitly by M. Hall [4], see also 
Burns [3], will be needed. 

THEOREM 2.1. Let G be a finite extension of a free group of finite rank and let 
S be a finitely generated subgroup of G. Then G is S-separable. In particular, by 
[1], this holds for the g.f.p. of finite groups. 
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3. Abelian and nilpotent groups. In this section we shall study the residual 
finiteness of polygonal products of finitely generated torsion free abelian groups 
and nilpotent groups. We show that if P is a polygonal product of four or more 
free abelian groups amalgamating disjoint cyclic subgroups then P is R& On 
the other hand this is not true for finitely generated torsion-free nilpotent 
groups. Example 3.1 illustrates this. 

LEMMA 3.1. Let A be a finitely generated free abelian group and U be a 
subgroup of a group B, where B is U-separable. Let G = A *v B. If 5 is a finitely 
generated subgroup of B such that B is S-separable then G is S-separable. 

PROOF. It is well-known that we can choose a basis {ax, a2, . . . , as} for A 
such that there exist integers al9 a2,. . . , ar such that {a"\ a"2, . . . , a"r} is a 
basis for U. Choose a\]a% . . . a*;cf;X\ • • • a*£> 0 = U < ai for 1 ^ / < r and 
tx: e Z for r + 1 â i ^ s, as coset representatives of U in A. Let x e G\S. 

CASE 1. ||x|| = 0. Then x e U\S. Since B is 5-separable there exists M<fB 
such that x £ SM. Let L = M n UmdN = (M D U) X (ar+x,.. . , as). Then 
G can be mapped onto G = A/N *U/L BIM. Clearly x £ S = SM/M. Since 
G is a g.f.p. of finite groups, G is 5-separable by Theorem 2.1. It follows 
immediately that there exists a finite image G* of G in which JC* £ 5*. Hence 
G is 5-separable. 

CASE 2. ||JC|| = 1. If x e A\U, then consider G = G/BG. Clearly 3c ^ 1 and 
5 = 1. Since G is finitely generated abelian it follows that G is R&. Thus G 
is 5-separable. Hence, as in Case 1, G is 5-separable. If x e B\Uwe proceed as 
in Case 1. 

CASE 3. ||JC|| > 1. Suppose x = yxbx . . . ynbn (other cases being almost 
identical) where yi e A\U, bt e B\U. Let yt = ciui where ct is one of the chosen 
coset representatives of U in A and ut e £/. For each ct choose Nt <j-
(tfr+i, . . . , as) such that c,- £ NtU. Let TV = n " = 1 Â -. Since 5 is ^/-separable, 
there exists Mi <jB such that bt £ MtU for each /. Let M = C\n

i=x Mt. Let 
L = M n U. Then G can be mapped onto G = A/(N X L) *U/L BIM. Now G 
is a g.f.p. of finite groups in which ||3c|| = ||x|| > 1. This implies x £ 5 . Since 
G is 5-separable, it follows, as in Case 1, that G is 5-separable. 

Now a group G is R^ if and only if G is 5-separable for 5 = 1. Thus 
we have: 

COROLLARY 3.2. Let G = A *a B as given in Lemma 3.1. If B is R^ then G 
isR&. 

LEMMA 3.3. Let A = (a, b) and B = (c, d) be free groups of rank 2. Let 
G = A X B and 5 = (a) X (c). Then G is S-separable. 
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PROOF. Let g e G. Then g = wxw2 where wx is a word on a9 b and w2 is a 
word on c, d. Let ^ e ^ . Then s = dcK Thus if g £ S then we must have one of 
the followings: (i) wx <£ (a)9 or (ii) w2 £ (c). Suppose we have Case (i). Since A 
is free, by Theorem 2.1, A is (a)-separable. Therefore there exists a finite image 
A of A such that wx £ (â). Extend this map to G by mapping B onto 1. Then 
clearly g £ S. Since G is finite, it follows that G is ^-separable. Case (ii) is 
similar. 

THEOREM 3.4. Let P be the polygonal product of the free abelian groups of finite 
ranks A, B, C, D with A n B = U9 B n C = K9 C n D = V, D n A = H9 

where U9 K9 V, H are cyclic and such that H n U = U n K = K n V = 
V n H = 1. Then P is R& 

PROOF. Let PQ be the "reduced" polygonal product of A0, B0, C0, D0 

amalgamating the subgroups U = (w), K = (k), V = (v) and H = (h), where 
A0 = (h9u) = H X U, B0 = (u, k) = U X K, C0 = (k, v> = K X V and 
D0 = (v, h) = V X # . Clearly P0 = (u9 v) X (A, A:>, where (u, v> and (A, k) 
are both free of rank 2. Since direct products of residually finite groups are 
again residually finite, it follows P0 is R!F. Moreover, by Lemma 3.3, P0 is 
(/z, u)-separable. Now consider the polygonal product Px of A, Z?0, C0, D0 

amalgamating [/, K, V, H. Then Px = A */h,u) ^o- Since P0 G RJF, by Corollary 
3.2, Pj G ^J^ Also, by Lemma 3.3, P0 is (w, k)-, (k, v)-, and (v, A)-separ-
able. Thus, by Lemma 3.1, Px is (u9 k)-9 (k9 v>-, and (v, h)-separable. Let 
P2 = B */u^\ P\. Applying a similar argument as in the case of Pl9 we have 
P2 G RJ^ and (k9 v)- and (v, /z)-separable. In the same way, P3 = C *nv) ?2 ^s 

R& and (v, /z)-separable. Finally P4 = D *(vh) P3 is R&. But P4 = P. This 
proves the theorem. 

It is quite easy to extend Theorem 3.4 to the case where U9 K9 V9 H are finitely 
generated free abelian subgroups of A9 B9 C, D provided H C\ U = U Pi K = 

The proof for extension to five or more groups is omitted as the details are 
more tedious. In the case of three abelian groups A, B9 C with disjoint cyclic 
amalgamated subgroups, say, U, V9 L9 the "reduced" polygonal product P0 

given by the subgroups U9 V9 L turns out to be a free abelian group of rank 3 
whence it is R ?F. Then, as above, one easily proves that the polygonal product of 
A, B9 C with disjoint amalgamations is R^. 

In [1] Baumslag showed that the g.f.p. of two finitely generated torsion-free 
nilpotent groups amalgamating a cyclic subgroup is R!F. That Theorem 3.4 
cannot be extended even to polygonal products of finitely generated 
torsion-free nilpotent groups of class 2 with disjoint cyclic amalgamated 
subgroups is surprising. This is shown by the following example. 
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EXAMPLE 3.1. Let ^4, = (ai9 b{9 [ai9 bi9 at] = [ai9 bi9 bt] = 1) for i = 1, 2, 3, 4. 

Clearly At is a free nilpotent group of class 2. Form the polygonal product P 
by letting aj+x = b~ Xa]bt for / = 1, 2, 3, 4 with a5 = ax. Let JC ~ >> denote JC be-

"\ 1 \ 9 ^ 9 ^ 9 
ing conjugate to y. Then a\ ~ a\, a\ ~ a3, a3 ~ «4, a4 ~ ax. This implies 

O i l / -

a\ — a\ - ^ t P be a finite homomorphic image of P. If ax is of even order, 
say In exactly, then ax

n — ax = 1. But this implies that 2n\8\n which 
is clearly impossible. Thus â~x must be of odd order in P. Now P contains 
A\ V=03 A4. This implies [ax, b4

la4b4] ¥- 1. So, if P were RfF then there 
would exist a finite homomorphic image P in which [a]9 b4 a4b4] ¥= 1. Since 
ax must be of odd order in P , we must have âx G (5^) = (Z?^1 «4^4). But this 
implies [âl9 b4

lâ4b4] = 1, a contradiction. Hence P cannot be ^J^ 
We note that the above example can be modified to form a triangular product 

T of three isomorphic groups At so that T is not R J*T The interesting thing here 
is that the unpleasantness mentioned in Section 1 is absent — namely the 
triangular amalgam underlying the product is at least isomorphically embedda-
ble in some group — albeit not a residually finite one. Example 3.1 can also be 
modified to give an example of a polygonal product of four free groups with 
disjoint cyclic amalgamations which is not R!F. We omit the details. 

4. Polygonal products of /7-groups. Polygonal products of finite /7-groups 
could be quite unpleasant. Unlike g.f.p. of finite ^-groups amalgamating a 
cyclic subgroup, which is a residually finite /?-group [5], whence residually 
nilpotent, polygonal products of finite /7-groups amalgamating disjoint cyclic 
subgroups may not even be residually nilpotent. The following is an example to 
illustrate this. 

EXAMPLE 4.1. Let^ z = (afc aj = b] = (a^)2 = 1), 1 = 1, 2, 3, 4. Form 
the polygonal product P by identifying [at, bt] with bt+x for / = 1, 2, 3, 4 with 
b5 = bx. Now, 

[bl9 aX9 a2, a39 a4] = [bl9 al9 a3, a4] = [b3, a39 a4] = [b49 a4] = bx. 

This implies bx G Tt(P) for each /, whence P is not residually nilpotent. We note 
that P is R JE" by Theorem 4.4 below. We also note that the ^4/s need not 
be 2-groups. Indeed nilpotent groups generated by at, bt such that ord[az, bt] = 
ord bt and ( [ai9 bt]) Pi (bt) = 1 can be used. The resulting P will not be 
residually nilpotent. 

We now show that the square product of finite /7-groups in which one pair of 
the opposite edges consists of cyclic /7-groups while the other pair consists 
of groups of order p9 is R J*T We first prove the following lemma. 

LEMMA 4.2. Let G = A *u B where A9 B are finite p-groups and U is cyclic. 
Let H9 K be subgroups of order p in A and B respectively such that H D U = 
K n U = 1. Let W<f G such that G/W embeds the amalgam A = (A9 B\ U). 
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IfN is any normal subgroup of finite index in H * K such that N Q W n (H * K), 
then there exists NG <r G such that NG Pi (H * K) = N. 

PROOF. Let H = (h), K = (k) and U = (u). Let L = (h, u) and M = 

(k, u). Let 0(L) be the Frattini subgroup of L. Let 0 be the canonical map L to 
L = L/$(L). Since L is a finite /?-group, by the Burnside basis theorem, L is an 
elementary abelian p-group. Indeed L = (h) X (w) where h = hO and w = uO. 
Let L0 be the preimage of (w) in L under 0. Since i / is of order /?, it follows that 
L0 < L is of index p. Moreover L0 n / / = 1. In the same way there exists 
M0 < M of index /? such that M0 n i^ = 1. Let F = (L, M). Then F = L*aM. 
Let <p: F —> F = F / F where F is the normal closure of (L0, M0) in F. Clearly 

A A A A A 

F = H * K where 7/ = H<p and K = K<p are isomorphic copies of / / and 
A A A A 

K respectively. Consider N = N<p clearly N < H * K. Let N{ be the preimage 
of Nin F under <p. Then Nx <fF. Moreover Nx n (H * K) = N. Now let N2 = 
W n Nx. Since W <f G, it follows that W n F <f F whence 7V2 <y F It is 
easy to check that N2 n (H * K) = N. Now G/fiT embeds A. This implies 
WnA = WnB=l. Thus N2 n L = N2 n M = \. Let X = A *u M. 
Then 

X = ,4 *L (L *^ M) = A *L F 

Since N2 Pi L = 1 and 7V2 ^ ^» t m s i m P n e s there is a natural homomorphism 
$ of X to X = A *L F/7V2. Now A and F/7V2 are both finite. Thus there exists 
7r: x —» X where X is finite and X embeds the amalgam (A, F/N2\ L). Let 
N3 = ker ifa. Then N3 <fX. Moreover N3 n F = N2 whence N3 n (H * K) = N. 
Furthermore N3 n M = I. 

We now consider the group Y = X *MB. Since N3 </X9 as in the case of N2 in 
F, we can find N4 <f Y such that N4 n (H * K) = N. But, 

Y = X *M B = (A *L F) *M B = (A *L (L *„ M))*MB 

= (A *a M) *M B = A *a B. 

Hence let NG = N4 then NG n (H * K) = N as required. 

LEMMA 4.3. Let G = A *v B as in Lemma 4.2. Then G is H * K-separable. 

PROOF. Immediate from Theorem 2.1. 
We are now ready to prove our main result, verifying, in particular, the 

residual finiteness of Example 4.1. 

THEOREM 4.4 Let P be the polygonal product of the finite p-groups A, B, C, D 
amalgamating the cyclic subgroups H, U, K, V, where A n B = U, B n C= Ky 

CnD=V,DHA=H with \H\ = \K\ = p and U n K = K n V = V n 
H = H n U = 1. Then P is R& 

PROOF. Let F = A *u B and F = C *v D. Then P = E *Q F where Q = H * 
AT. Thus a typical element x of F of length ^ 1 is of the form x = 

https://doi.org/10.4153/CMB-1989-002-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1989-002-8


1989] RESIDUAL FINITENESS 17 

e]fl... enfn where et e E\Q a n d ^ e F\Q except possibly ex = 1 or fn = 1. 
By Lemma 4.3, £ and Fare Q-separable. Therefore, for each ei and fi9 there exist 
Nt <f E and Mi <f F such that et £ <g, Â > and ^ € ( g , M,>. Let N = 
n ? = 1 iv;. and M = n " = 1 M,-. Then M <fE and # < y F such that ez « ( g , M) 
and 7; € (Q, N) for each /. Since ^4, 5 are finite, there exists Wx <j-E such that 
E/Wx embeds the amalgam (A, B; U). In the same way, there exists W2 <f F 
such that F/W2 embeds (C, D\ V). Let J = Wx n W2 D M D N. Then J <f Q. 
Thus, by Lemma 4.2, there exists NE <r F, NF <y F such that NE n Q = J = 
NF n Q. Now let R = NE n ^ n JV and S = NF n J^2 n M. Then clearly 
# <y £ and S <y F, and /* n g = / = 5 n g. Furthermore, ei £ ( g , F> and 
^ £ ( a S ) for each /'. Let E = E/R, F = FIS and Q = Q/J. Then we can form 
P = E *Q F. Since E and F are finite, it follows that F e R& Let 0 be the 
natural homomorphism of F onto P. Then, because of the choice of R and S, we 
have efl £ Q and ffi^Q for each /, whence xO ¥= 1 in P. This implies that 
there exists T <rP such that xO <£ T. Let F be the preimage of F in F under 0. 
Then F <y F and x £ F 

If x <E g then there exists J </Q such that x <£ J. Applying Lemma 4.2, we 
can again find NE <y E and NF <f F such that NE: n Q = J = NF n g. By a 
similar argument as above we can then show that there exists T <f P such that 
x £ F. This completes our proof that P is R^F. 
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