
15 Theories with more than four conserved
supercharges

In theories with more than four conserved supercharges (extended supersymmetry), the
supersymmetry generators obey the relations

{
QI
α , QJ

α̇

} =�pδIJ,
{
QI
α , QJ

β

} = ZIJεα,β . (15.1)

The quantities ZIJ are known as central charges. We will see that these can arise in a number
of physically interesting ways.

In theories with four supersymmetries, we saw in Chapters 13 and 14 supersymmetry
provides powerful constraints on the possible dynamics. Theories with more than four
supercharges (N > 1 in four dimensions) are not plausible as models of the real
world but they do have a number of remarkable features. As in some of our N = 1
examples, these theories typically have exact moduli spaces. Gauge theories with N = 4
supersymmetry exhibit an exact duality between electricity and magnetism. Theories with
N = 2 supersymmetry have a rich – and tractable – dynamics, closely related to important
problems in mathematics. In all these cases supersymmetry provides remarkable control
over the dynamics, allowing one to address questions which are inaccessible in theories
without supersymmetry. Supersymmetric theories in higher dimensions generally have
more than four supersymmetries, and a number of the features of the theories we study
in this chapter will reappear when we come to higher-dimensional field theories and string
theory.

15.1 N = 2 theories: exact moduli spaces

Theories with N = 1 supersymmetry are tightly constrained, but theories with more
supersymmetry are even more highly constrained. We have seen that often, in perturbation
theory, N = 1 theories have moduli; non-perturbatively, sometimes, these moduli are
lifted. In theories with N = 1 supersymmetry, a detailed analysis is usually required to
determine whether the moduli acquire potentials at the quantum level. For theories with
more supersymmetries (N > 1 in four dimensions; N ≥ 1 in five or more dimensions), one
can show rather easily that the moduli space is exact. Here we consider the case of N = 2
supersymmetry in four dimensions. These theories can also be described by a superspace,
in this one case built from two Grassmann spinors, θ and θ̃ . There are two basic types of
superfields: vectors and hypermultiplets. The vectors are chiral with respect to both Dα and
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212 Theories with more than four conserved supercharges

D̃α and have an expansion, in the case of a U(1) field,

ψ = φ + θ̃ αWα + θ̃2D̄2φ†, (15.2)

where φ is an N = 1 chiral multiplet and Wα is an N = 1 vector multiplet. The fact that
φ† appears as the coefficient of the θ̃2 term is related to an additional constraint satisfied
by ψ . This expression can be generalized to non-Abelian symmetries; the expression for
the highest component of ψ is then somewhat more complicated but we will not need it
here.

The theory possesses an SU(2) R-symmetry under which θ and θ̃ form a doublet. Under
this symmetry, the scalar component of φ and the gauge field are singlets, while ψ and λ
form a doublet.

We will not describe the hypermultiplets in detail except to note that, from the
perspective of N = 1, they consist of two chiral multiplets. The two chiral multiplets
transform as a doublet of the SU(2) group. The superspace description of these multiplets
is more complicated.

In the case of a non-Abelian theory, the vector field ψa is in the adjoint representation
of the gauge group. For these fields the Lagrangian has a very simple expression as an
integral over half the superspace:

L =
∫

d2θd2θ̃ ψaψa, (15.3)

or, in terms of N = 1 components,

L =
∫

d2θ W2
α +

∫
d4 θφ†eVφ. (15.4)

The theory with vector fields alone has a classical moduli space, given by the values of the
fields for which the scalar potential vanishes. Here this just means that the D fields vanish.
Written as a matrix we have

D = [φ,φ†], (15.5)

which vanishes for diagonal φ, i.e. for

φ = a
2

(
1 0
0 −1

)
. (15.6)

For many physically interesting questions one can focus on the effective theory for the
light fields. In the present case the light field is the vector multiplet ψ . Roughly,

ψ ≈ ψaψa = a2 + aδψ3 + · · · . (15.7)

What kind of effective action can we write for ψ? At the level of terms with up to four
derivatives, the most general effective Lagrangian has the form1

L =
∫

d2θd2θ̃ f(ψ)+
∫

d8θ H(ψ ,ψ†). (15.8)

1 This, and essentially all the effective actions we will discuss, should be thought of as Wilsonian effective
actions, obtained by integrating out heavy fields and high-momentum modes.
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213 15.2 A still simpler theory: N = 4 Yang–Mills

Terms with covariant derivatives correspond to terms with more than four derivatives when
written in terms of ordinary component fields.

The first striking result we can read off from this Lagrangian, with no knowledge of
H and f, is that there is no potential for φ, i.e. the moduli space is exact. This statement is
true both perturbatively and non-perturbatively.

One can next ask about the function f. This function determines the effective coupling
in the low-energy theory and is an object studied by Seiberg and Witten, which we will
discuss in Section 15.4.

15.2 A still simpler theory: N = 4 Yang–Mills

The N = 4 Yang–Mills theory is interesting in its own right: it is finite and conformally
invariant. It also plays an important role in our current understanding of non-perturbative
aspects of string theory. The N = 4 Yang–Mills has 16 supercharges and is even more
tightly constrained than the N = 2 theories. First, we will describe the theory. In the lan-
guage of N = 2 supersymmetry, it consists of one vector multiplet and one hypermultiplet.
In terms of N = 1 superfields, it contains three chiral superfields, φi and a vector multiplet.
The Lagrangian is

L =
∫

d2 θW2
α +

∫
d 4θ φ†

i eVφi +
∫

d2θ φa
i φ

b
j φ

c
kεijkε

abc. (15.9)

In the above description there is a manifest SU(3)×U(1) R-symmetry. Under this symmetry
the φis have U(1)R charge 2/3 and form a triplet of SU(3). But the real symmetry is
larger – it is SU(4). Under this symmetry, the four Weyl fermions form a 4-dimensional
representation, while the six scalars transform in the 6-dimensional representation. Later,
our studies of the toroidal compactifications of the heterotic string (Chapter 25) will
later give us an heuristic understanding of this SU(4) symmetry: it reflects the O(6)
symmetry of the compactified six dimensions. In string theory this symmetry is broken by
the compactification manifold; this reflects itself in higher-derivative, symmetry-breaking,
operators.

In the N = 4 theory there is, again, no modification of the moduli space, perturbatively
or non-perturbatively. This can be understood in a variety of ways. We can use the N = 2
description of the theory, defining the vector multiplet to contain the N = 1 vector and
one (arbitrarily chosen) chiral multiplet. Then an identical argument to that given above
ensures that there is no superpotential for the chiral multiplet alone. The SU(3) symmetry
then ensures that there is no superpotential for any chiral multiplet. Indeed, we can make
an argument directly in the language of N = 1 supersymmetry. If we tried to construct
a superpotential for the low-energy theory in the flat directions, it would have to be an
SU(3)-invariant holomorphic function of the φis. But there is no such object.

Similarly, it is easy to see that there are no corrections to the gauge couplings. For
example, in the N = 2 language, we want to ask what sort of function f is allowed in
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214 Theories with more than four conserved supercharges

L =
∫

d2θd2θ̃ f(ψ). (15.10)

The theory has a U(1) R-invariance under which

ψ → e2/3iαψ , θ → eiαθ , θ̃ → e−iαθ̃ . (15.11)

Already, then, ∫
d2θd2θ̃ ψψ (15.12)

is the unique structure which respects these symmetries. Now we can introduce a
background dilaton field, τ . Classically the theory is invariant under shifts in the real part of
τ , τ → τ+β. This ensures that there are no perturbative corrections to the gauge couplings.
With a little more work one can show that there are no non-perturbative corrections either.

One can also show that the quantity H in Eq. (15.8) is unique in this theory, again using
the symmetries. The expression

H = c lnψ lnψ† (15.13)

respects all the symmetries. At first sight it might appear to violate scale invariance; given
that ψ is dimensionful one would expect a scale � sitting in the logarithm. However, it is
easy to see that if one integrates over the full superspace, any �-dependence disappears
since ψ is chiral. Similarly, if one considers the U(1) R-transformation, the shift in the
Lagrangian vanishes after the integration over superspace. To see that this expression is
not renormalized, one merely needs to note that any non-trivial τ -dependence spoils these
two properties. As a result, in the case of SU(2) the four derivative terms in the Lagrangian
are not renormalized. Note that this argument is non-perturbative. It can be generalized to
an even larger class of higher-dimensional operators.

15.3 A deeper understanding of the BPS condition

In our study of monopoles we saw that, under certain circumstances, the complicated
second-order non-linear differential equations reduce to first-order differential equations.
The main condition is that the potential should vanish. We are now quite used to the idea
that supersymmetric theories often have moduli, and we have seen that this is an exact
feature of N = 4 and many N = 2 theories. In the case of an N = 2 supersymmetric gauge
theory the potential is just that arising from the D term, and one can construct a Prasad–
Sommerfield solution. We will now see that the Bogomol’nyi–Prasad–Sommerfield (BPS)
condition is not simply magic but is a consequence of the extended supersymmetry of the
theory. The resulting mass formula, as a consequence, is exact; it is not simply a feature of
the classical theory but a property of the full quantum theory. This sort of BPS condition is
relevant not only to the study of magnetic monopoles but to topological objects in various
dimensions and contexts, particularly in string theory. Here we will give the flavor of the
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215 15.3 A deeper understanding of the BPS condition

argument without worrying about factors of two. More details can be worked out in the
exercises; see also the references.

First, we show that the electric and magnetic charges enter in the supersymmetry algebra
of this theory as central charges. Thinking of this as an N = 1 theory, we have seen that
the supercurrents take the form

Sμα = σ
μ

αβ̇
(σ ρσ )β̇γ̇Fρσ λγ̇ + ∂ρφiσ

ρ

αβ̇
(σμ)β̇γ ψ i

γ + F-term contributions. (15.14)

In this theory, however, there is an SU(4) symmetry and the supercurrents should transform
as a 4 representation. It is not hard to guess the other three currents

Si
μα = (σμ)αβ̇(σ

ρσ )β̇γ̇Fρσψ i
γ̇ + εijk∂ρφ

jσ
ρ

αβ̇
(σμ)

β̇γ ψk
γ + F-term contributions. (15.15)

We are interested in proving bounds on the mass. It is useful to define Hermitian
combinations of the charges Qαi = ∫

d3×Sαi, since we want to study positivity constraints.
In this case, it is more convenient to write a four-component expression, using a Majorana
(real) basis for the γ matrices. Taking an N = 2 subgroup and carefully computing the
commutators of the charges, we obtain

{Qαi, Qβj} = δijγ
μ
αβPμ + εij(δαβUk + (γ5)αβVk). (15.16)

Here

Uk =
∫

d3x∂i
(
φa

re kEa
i + φa

im kBa
i
)
,

Vk =
∫

d3x∂i
(
φa

im kEa
i + φa

re kBa
i
)
.

(15.17)

In the Higgs phase the integrals are, by Gauss’s theorem, of electric and magnetic charges
multiplied by the Higgs expectation value. From these relations we can derive bounds on
masses, using the fact that Q2

α is a positive operator. Taking the expectations of both sides
we have, for an electrically neutral system of mass M in its rest frame,

M ± Qmv ≥ 0. (15.18)

This bound is saturated when Q annihilates the state. Examining the form of Qα , this is just
the BPS condition.

15.3.1 N = 4 Yang–Mills theories and electric–magnetic duality

The N = 4 theory contains, from the point of view of N = 1 supersymmetry, a gauge
multiplet and three chiral multiplets in the adjoint representation. In addition to the
interactions implied by the gauge symmetry, there is a superpotential

W = 1
6

fabcεijk�
a
i�

b
j�

c
k. (15.19)

We have normalized the kinetic terms for the fields�with a 1/g2 factor. So, this interaction
has a strength related to the strength of the gauge interactions. This theory has a global
SU(4) symmetry. Under this symmetry, the four adjoint fermions transform as a 4, the
scalars transform as a 6 and the gauge bosons are invariant. The theory has a large set of
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216 Theories with more than four conserved supercharges

flat directions. If we simply take all the � fields, regarded as matrices, to be diagonal then
the potential vanishes. As a result, this theory has monopoles of the BPS type.

This theory has a symmetry even larger than the Z2 duality symmetry that we
contemplated when we examined Maxwell’s equations; the full symmetry is SL(2, Z).
We might have guessed this by remembering that the coupling constant is part of the
holomorphic variable

τ = θ

2π
+ 4π i

e2 . (15.20)

Thus in addition to our conjectured e → 1/e symmetry there is a symmetry θ → θ + 2π .
So, in terms of τ we have the two symmetry transformations

τ → − 1
τ

, τ → τ + 1. (15.21)

Together, these transformations generate the group SL(2, Z):

τ → aτ + b
cτ + d

, ad − bc = 1. (15.22)

Now we can look at our BPS formula. To understand whether it respects the SL(2, Z)
symmetry we need to understand how this symmetry acts on the states. Writing

M = eQev + Qmv
e

, (15.23)

with

Qe = ne − nm
θ

2π
, Qm = 4π

nm

e
, (15.24)

the spectrum is invariant under the SL(2, Z) transformation of τ accompanied by(
ne
nm

)
→

(
d −b
c −d

)(
ne
nm

)
. (15.25)

Because it follows from the underlying supersymmetry the mass formula is exact, so this
duality of the spectrum of BPS objects is a non-perturbative statement about the theory.

15.4 Seiberg–Witten theory

We have seen that N = 4 theories are remarkably constrained, and this allowed us, for
example, to explore an exact duality between electricity and magnetism. Still, these
theories are not nearly as rich as field theories with N ≤ 1 supersymmetry. The N = 2
theories are still quite constrained, but exhibit a much more interesting array of phenomena.
They illustrate the power provided by supersymmetry over non-perturbative dynamics.
They will also allow us to study phenomena associated with magnetic monopoles in a
quite non-trivial way. In this section, we will provide a brief introduction to Seiberg–Witten
theory. This subject has applications not only in quantum field theory but also for our
understanding of string theory and, perhaps most dramatically, in mathematics.
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217 15.4 Seiberg–Witten theory

It is convenient to describe the N = 2 theories in N = 1 language. The basic N = 2
multiplets are the vector multiplet and the tensor (or hyper) multiplet. From the point of
view of N = 1 supersymmetry, the N = 2 vector contains an N = 1 a vector multiplet and
a chiral multiplet. The tensor contains two chiral fields. We will focus mainly on theories
with only vector multiplets, with gauge group SU(2). In the N = 1 description the fields
are a vector multiplet V and a chiral multiplet φ, both in the adjoint representation. The
Lagrangian density is

L =
∫

d4θ
1
g2φ

†eVφ − i
16π

∫
d2θ τWaαWa

α + h.c. (15.26)

Here

τ = θ

2π
+ i

4π
g2 . (15.27)

The 1/g2 in front of the chiral field kinetic term is somewhat unconventional, but it makes
the N = 2 supersymmetry more obvious. As we indicated earlier, one way to understand
the N = 2 supersymmetry is to note that the Lagrangian we have written down has a
global SU(2) symmetry. Under this symmetry the scalar fields φa and the gauge fields Aa

μ

are singlets, while the gauginos λa and the fermionic components ψa of φ transform as a
doublet. Acting on the conventional N = 1 generators, the SU(2) symmetry produces four
new generators. So, we have generators QA

α , with A = 1, 2.
As it stands, the model has flat directions, with

φ = a
2

(
1 0
0 −1

)
. (15.28)

In these directions the spectrum consists of two massive gange bosons and one massless
gauge boson, a massive complex scalar that is degenerate with the gauge bosons and a
massive Dirac fermion as well as a massless vector and a massless chiral multiplet. The
masses of all these particles are

MW = √
2a. (15.29)

This is precisely the right number of states to fill an N = 2 multiplet. Actually, it is a
BPS multiplet. It is annihilated by half the supersymmetry generators. The classical theory
possesses, in addition to the global SU(2) symmetry, an anomalous U(1) symmetry,

φ → eiαφ , ψ → eiαψ . (15.30)

Under this symmetry, we have

θ → θ − 4α (15.31)

or

τ → τ − 2πα. (15.32)

Because the physics is periodic in θ with period 2π , α = π/2 is a symmetry, i.e. the theory
has a Z4 symmetry,

φ → eiπ/2φ. (15.33)
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218 Theories with more than four conserved supercharges

Note that φ is not gauge invariant. A suitable gauge-invariant variable for the analysis of
this theory is

u = 〈Tr φ2〉. (15.34)

Under the discrete symmetry, we have u → −u; at weak coupling

u ≈ a2. (15.35)

The spectrum of this theory includes magnetic monopoles, in general with electric
charges. At the classical level the monopole solutions in this theory are precisely those
of Prasad and Sommerfield, with mass

MM = 4π
√

2
a
g2 . (15.36)

As in the N = 4 theory, there is a BPS formula for the masses:

m = √
2 |aQe + aDQM|. (15.37)

At tree level,

aD = 4π
g2 ia = τa, (15.38)

where the last equation holds if θ = 0. The appearance of i in this formula is not
immediately obvious. To see that it must be present, consider the case of dyonic excitations
of monopoles. These should have energy of order the charge, with no factors of 1/g2. This
is ensured by the relative phase between a and aD. These formulas will receive corrections
in perturbation theory and beyond; our goal is to understand the form of these corrections
and their (dramatic) physical implications.

Equation (15.38) is not meaningful as it stands; τ is a function of scale. Instead, Seiberg
and Witten suggested that

τ = daD

da
. (15.39)

They also proposed the existence of a duality symmetry, under which

aD ↔ a, τ → − 1
τ

. (15.40)

To formulate our questions more precisely and to investigate this proposal, it is helpful,
as always, to consider a low-energy effective action. This action should respect the N = 2
supersymmetry; in N = 1 language this means that the Lagrangian should take the form

L =
∫

d4θ K(a, ā)− i
16π2

∫
d2θ τ(a)WαWα . (15.41)

The N = 2 supersymmetry implies a relation between K and τ ; without it these would
be independent quantities. Both quantities can be obtained from a holomorphic function
called the prepotential, F(a):

τ = d2F
da2 , K = 1

4π
dF
da

a∗. (15.42)
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219 15.4 Seiberg–Witten theory

From

τ = daD

da
= d

da

(
dF
da

)
(15.43)

we have
dF
da

= iaD, (15.44)

so that

K = 1
4π

Im aDa∗. (15.45)

Our goal will be to obtain a non-perturbative description of F . At weak coupling the
beta function of this theory is obtained from b0 = 3N − N = 2N = 4, so

τ = i
π

ln
u
�2 . (15.46)

As a check on this formula note that, under u → e2iαu, θ → θ − 4α, we have

τ = θ

2π
+ 4π ig−2 → τ − 2iα

π
, (15.47)

and this is precisely the behavior of the formula Eq. (15.46).
This is similar to phenomena we have seen in N = 1 theories. But, when we consider

the monopoles of the theory, the situation becomes more interesting. First note that, using
the leading-order result for τ ,

aD = 2i
π

(
a ln

a
�

− a
)

. (15.48)

So, under the transformation u → eiαu of u,

aD → eiα/4
(

aD − α

2π
a
)

. (15.49)

Our BPS mass formula transforms to

m → √
2
∣∣∣∣a(

Qe − 4α
2π

Qm

)
+ aDQM

∣∣∣∣. (15.50)

This is the Witten effect, which we discussed earlier: in the presence of θ , the coefficient
of FF̃, of (7.39), a magnetic monopole acquires an electric charge. More generally, the
spectrum of dyons is altered.

Consider now what happens when we do a full 2π change of θ (u → −u); it should be
a symmetry. It is in this case, but in a subtle way: the spectrum of the dyonic excitations
of the theory is unchanged but the charges of the dyons have shifted by one fundamental
unit. This, in turn, is related to the branched structure of τ .

At the non-perturbative level the structure is even richer. We might expect that

τ(u) = i
π

ln
u
�2 + α exp

(
−8π2

g2

)
+ β exp

(
−8π2

g2

)
+ · · · . (15.51)
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Note that, interpreting exp(−8π2/g2) as exp(2π iτ), each term in this series has the correct
periodicity in θ . Moreover,

exp(2π iτ) = �2

u2 . (15.52)

These corrections have precisely the structure required for them to be instanton
corrections, and these instanton corrections have been computed. But, following Seiberg
and Witten, we can be bolder and consider what happens when g becomes large. Naively,
we might expect that some monopoles become light. Associated with this, τ may have a
singularity at some point u0 = γ�2, where � is the renormalization-group-invariant mass
of the theory. In light of the Z2 symmetry there must also be a singularity at −u0. Such
a singularity arises because a particle is becoming massless. If we think of τD as the dual
of τ then there is an electrically charged light field of unit charge; more precisely, there
must be two particles of opposite charge in order that they can gain mass. So τD has the
following structure:

τD = − 2i
2π

ln mM. (15.53)

Assuming that aD has a simple zero,

aD ≈ b(u − u0), mM = √
2aD, (15.54)

then

τD = − i
π

ln(u − u0) = − 1
τ(u)

. (15.55)

Starting with the relation
da

daD
= −τD = − i

π
ln aD, (15.56)

we have

a = i
π
(aD ln aD − aD). (15.57)

Similarly, we can consider the behavior at the point −u0. This is the mirror image of the
previous case, but we must be careful about the relation of a and aD. They are connected
by the symmetry transformation

ã = ia, ãD = i(aD − a). (15.58)

Now,

τD = − 1
τ(u)

= − i
π

ln(u + u0) (15.59)

and

ã = 1
π
(ãD ln ãD − ãD). (15.60)

Going around the singularities, at u0 we have

a → a − 2aD, aD → aD, (15.61)
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while at −u0

a → 3a − 2aD, aD → 2a − aD. (15.62)

This should be compared with the effect of going around 2π at large u, when a → −a
and aD → −(aD − a). Assuming that these are the only singularities, we can, from this
information, reconstruct τ . We will not give the full solution of Seiberg and Witten here,
but the basic idea is to note that τ(u) is the modular parameter of a two-dimensional torus
and to reconstruct the torus.

This analysis has allowed us to study the theory deep in the non-perturbative region.
Seiberg and Witten uncovered a non-trivial duality, a limit in which monopoles become
massless, and they provided insight into confinement. These sorts of ideas have been
extended to other theories and to theories in higher dimensions and have provided insight
into many phenomena in string theory, quantum gravity and pure mathematics.

Suggested reading

The lectures by Lykken (1996) provide a brief introduction to aspects of N > 1
supersymmetry. Olive and Witten (1978) first clarified the connection between the BPS
condition and extended supersymmetry, in a short and quite readable paper. Harvey (1996)
provides a more extensive introduction to monopoles and the BPS condition. The original
paper of Seiberg and Witten (1994) is quite clear; Peskin’s lectures, from which we have
borrowed extensively here, provide a brief and very clear introduction to the subject.

Exercises

(1) Check the supersymmetry commutators in extended supersymmetry, Eq. (15.16).
(2) Rewrite these supersymmetry commutators in a real basis for the Dirac matrices. Using

this, verify the BPS inequality.
(3) Check that the spectrum of monopoles and dyons in Eq. (15.23) is invariant under

SL(2, Z) transformations.
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