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Abstract

In this short paper, it is shown that the geodesic deviation equation admits a
"constant of the motion" and so can be solved exactly. We also derive an
expression for the energy E of relative motion between two freely falling test
particles. We can infer that, in general, E will not be a linear superposition of
kinetic and potential energies.

1. Introduction

It is well known that the geodesic deviation equation in general relativity is a
physical equation, because it relates the relative acceleration between two test
particles to certain physical components of the Riemann-curvature tensor.

In Section 2 we derive an unfamiliar form of the geodesic deviation equation.
A first integral or "constant of the motion" is derived in Section 3. We relate this
first integral to the existence of an energy E for the relative motion of the two test
particles in Section 4.

2. Synge-Jacobi equation

The standard form of the geodesic deviation equation gives an equation of
motion of the space-like part of the deviation vector between two test particles in
a gravitational field, namely,

|^0/)+KWu' = O, (1)
OS

where ritu
l = 0 and M'M, = — 1, with M' being the unit time-like tangent vector to
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a geodesic as shown in Fig. 1 and covariant differentiation along the vector field
u' being indicated by 5/ds (see [11, 12, 13, 14]).

Fig. 1. Deviation vector r\l in the rest space of P.

The form of the equation as given in (1) is extremely difficult to solve exactly
except for simple cases. The standard approach is to introduce a tetrad

where el
w is parallelly propagated,

and is space-like orthonormal, that is,

In this frame equation (1) becomes of the form

as (2)

= «(

However, in general, the matrix Kxfi is not diagonal and so the resulting equations
cannot be written in the one-dimensional forms

— ~ + L a nix) — 0, no sum over a.
ds

https://doi.org/10.1017/S0334270000002526 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002526


30 P. Dolan, P. Choudhury and J. L. Safko [3]

We adopt an alternative which is as follows:
(a) The deviation vector is resolved as

n% = w\ 0)
where Hin1 = + 1 . Hence n' =(0,(1*) are the direction cosines of the deviation
vector in the rest space of P and will depend on the frame of reference chosen.

(b) On substitution of (3) in (1) we obtain

iJif+2nft+tifi?+riR!.jtlu
Ji£ul = 0, (4)

where r\ = drj/ds, /i' = S/x'/ds, /if/i' = 0 and /j./i'+zi./ij = 0. As {i-t is space-like, that
is, /i,/i* = Q2 ^ 0, we have /i,/if = - O 2 s$ 0.

(c) On transvecting (4) with nt we obtain

0, (5)
where

K = RiJkln
iu>nkul, ' (6)

and the form of the geodesic deviation equation used in this paper,
20, (7)

is obtained [11, 12, 13], which we shall call the Synge-Jacobi equation as Synge
was first to recognize that the n-dimensional geodesic deviation equation can be
reduced to the Jacobi equation of two dimensions [11, 12, 13].

It is noteworthy that (7) is similar to the equation of a time-dependent harmonic
oscillator

i}+o>2(s)n =0 (8)

for K-Sl2 ^ 0, and similar to equation (8a) for K-Q,2 < 0:

J7-eo2(5)j;=0. (8a)

The coefficient K—Q2 in (7) can be expected to change its sign in finite intervals
of proper time. We need study only (8) in Section 3 because our results hold also
for (8a).

3. The Lewis invariant

In this section we state certain mathematical properties of equation (8):
(i) it possesses a constant of motion which is called the Lewis invariant, L, and

(ii) it has an associated differential equation

(9)
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which is known as Pinney's differential equation. It can be shown that properties
(i) and (ii) are equivalent [6, 7, 8].

If p is some particular integral of (9), then we can define the Lewis invariant as
follows:

L =%\Xn/p)2+(iP — P»/)2]- (10)

It is easy to verify that L is indeed a constant of motion of (8). Also L is unaffected
by the changes of sign of + a>2 (or, in the terms of equation (7), L remains unaffected
by changes in the sign of K). Further, we can now formally solve (8).

If a = y/(2L) or L = \a2, and if also z = q/p and O = §(ds/p2), then equation (10)
can be transformed to

a2 = :

which has for solution z = a cos (<!>+£) or

»7=apcos ~TH:+E\- (11)

Hence we see that A(s) =ap is the amplitude, and ®(y) =$'(ds'/p2(s1)) is the
phase [2, 3].

Now we can invert (11) to obtain

Thus we know the phase <I> in terms of p and so in terms of n [15], that is, in
principle, the observable quantity n determines the phase O and the amplitude

ap=PJ(2L). (13)

For equation (8a) the solution (11) will have the circular function replaced by
the hyperbolic. There is a corresponding adjustment to equation (12).

We shall, in general, call W = l/(p2) the analogue of frequency.

4. Energy received by test particles

Since we have established the concept of an amplitude and a phase for the
magnitude of the space-like part of the deviation vector between two test particles
in a gravitational field, we introduce the concept of the "energy" E of the relative
motion.

We shall adapt a discussion of (11) by Lorentz and Einstein at the 1911 Solvay
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Conference: to Lorentz' question as to how the amplitude of a simple pendulum
would vary if its period were slowly altered by shortening its string, Einstein
replied that the Action = E/v, where E is the energy and v the frequency, would
remain constant if v/v were small enough (adiabatic invariance). Lewis showed
that the hypothesis of adiabatic invariance is unnecessaiy [1, 4, 5, 7].

Assuming L has the dimensions of

Action = Energy I Frequency (14)

we can use this to define the energy E. The analogue of frequency in this context
is W. Hence

(15)

We note that E is not a linear superposition of kinetic and potential energies.
In de Sitter space-time K=a>2,, a constant [14], and it is possible to choose

/i' = 0, thus giving

E = tta>W+i2l (18)
As K-*0 we get Minkowski space-time: E-+%r\2 in the absence of gravitation.

Note added in proof. The energy expression E will be shown to remain positive
definite in the case of equation (8a) in a later paper.
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