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GROUP C*-ALGEBRAS AND THE SPECTRUM 
OF A PERIODIC SCHRÔDINGER OPERATOR 

ON A MANIFOLD 

TOSHIKAZU SUNADA 

0. Introduction. The spectrum of the Laplacian or more generally of a Schrodinger 
operator on an open manifold may have possibly a complicated aspect. For example, a 
Cantor set in the real axis may appear as the spectrum even for an innocent looking 
potential on a standard Riemannian manifold (see J. Moser [10]). The fundamental result 
of the spectral theory of periodic Schrodinger operators, however, says that the picture of 
the spectrum of a Schrodinger operator onR" with a periodic potential is simple; indeed 
the spectrum consists of a series of closed intervals of the real axis without accumulation, 
separated in general by gaps outside the spectrum (see M. Reed and B. Simon [13] or 
M. M. Skriganov [15] for instance). For brevity, such a spectrum will be said to have the 
band structure. It turns out that the action of a lattice (i.e., a finitely generated subgroup of 
rankn)onR" by translation imposes such a restriction on the structure of the spectrum. 
It seems likely that the same is true for a general periodic Schrodinger operator defined 
on a manifold with a co-compact action of a discontinuous group. For instance, if the 
group acting on a manifold is abelian, the situation is much the same as in the classical 
case (except for eigenvalues possibly existing, [8]). In this paper, we shall observe that 
the spectrum of a period Schrodinger operator on a manifold has band structure in the 
presence of a certain property of orthogonal projections in (matrix algebras over) the 
reduced C*-algebra of the transformation group. 

Let r be a finitely generated discrete group. We denote by C*ed(r, 9Q the tensor prod
uct of the reduced group C*-algebra of T with the algebra of compact operators on a 
separable Hilbert space, and by trp the canonical trace on C*ed(r, %) (see § 1 for the 
definitions). Let X be a Riemannian manifold with an isometric, properly discontinuous 
T-action with compact quotient T\ X. Let q be a potential function on X which is smooth 
and periodic under the T-action. 

THEOREM 1. Suppose that there exists a positive constant C such that tv^P > C 
for every non-trivial orthogonal projection P in C*ed(r, 9Ç). Then the spectrum of the 
Schrodinger operator —Ax + q acting in L2(X) has the band structure (possibly with de
generate intervals, corresponding to isolated eigenvalues). Furthermore if the T-action 

Received by the editors May 25, 1990 . 
AMS subject classification: 58G25,47C15. 
© Canadian Mathematical Society 1992. 

180 

https://doi.org/10.4153/CJM-1992-011-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-011-3


GROUP C*-ALGEBRAS 181 

on X is free, then N(\\ the number of components of the spectrum of —Ax + q which 
intersects the interval (—00, À ], has the following asymptotic estimate: 

hm sup — ^ 1, 
A-00 ^ (2TT)-nUn VO\(T\X)\n/2 

where un denotes the volume of the unit ball in Kn. 

A large number of discrete groups seem to satisfy the condition in Theorem 1 (cf. 
M. V. Pimsner [12]). An example of such a discrete group is the free product of a finite 
number of finite groups and infinite cyclic groups (in this case, a proof using the AT-theory 
was given by C. Lance in [9]). It should be noted that, in the case of free groups, this is 
just a consequence of the ^-theoretic formulation of the Kadison conjecture established 
by M. Pimsner and D. Voiculescu in [11]. For convenience of the reader (particularly, of 
geometers), we shall give an elementary proof of this fact in the appendix, by modifying 
slightly the elegant proof of the Kadison conjecture due to A. Connes and J. Cuntz, 
outlined skillfully by E. Effros in [7]. 

In the proof of Theorem 1, we shall observe that, for a general discrete group T, the 
operator semigroup exp(—t{—Ax + g)), as well as the spectral projection of —Ax + q 
corresponding to a closed interval with end points in the resolvent set, lies in C*ed(r, 9Q. 
It is interesting to note that this is derived from the finite propagation property for the 
wave equation (see § 2). 

Throughout we shall follow the convention that the sign of the Laplacian, Ax, is such 
that the spectrum of —Ax is in the interval [0,00). The spectrum of an operator T will 
be denoted by a (T). We shall write Hx for the self-adjoint extension of the Schrôdinger 
operator —Ax + q on L2(X). 

It should be noted that the theory of C*-algebras has also been employed in the study 
of almost periodic Schrôdinger operators in a somewhat different way (cf. J. Bellissard, 
P. Lima and D. Testard [3]). 

A discrete (graph-theoretical) analogue of periodic Schrôdinger operators can be 
treated in much the same way. Actually, the proof of an analogue of Theorem 1 is al
most self-evident since the discrete Schrôdinger operator itself lies in C*ed(r, %). 

ACKNOWLEDGEMENTS. The author has benefitted from conversation with Profes
sor K. Aomoto and Professor M. Takesaki during the development of this work. He also 
wishes to acknowledge his debt to Professor G. A. Elliott and the referee whose com
ments added to the clarity of this account. 

1. Reduced group C*-algebras. In this section we present the rudiments of the 
theory of group C*-algebras, which are needed in the next section (see J. Diximier [3], 
M. Atiyah [2] and W. Arveson [1]). 

Let T be a discrete group and let C*eâ(T) be the reduced group C*-algebra of T. We set 
C*ed(r, %) — C*ed(r) 0 !?C, where Ĉ is the algebra of compact operators of a separable 
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Hilbert space, say V. To give a concrete description of C*ed(r, %), we put 

L — the algebra of all bounded linear operators on V, 

7Ç — the set of compact operators in L 

7 — the set of operators with finite rank, 

L2(r, V) = L2(T) <g> V = { V-valued square summable functions}. 

We regard L2(T, V) as a T-module by the left regular representation of T on L2(T) ex
tended by the identity on V. It is known that the set 

W*(T, L) = {A: L2(T, V) —>L2(r, V); A a bounded linear operator with 

Aa = a A for all a G T} 

forms a semifinite von Neumann algebra of type lloo (not necessarily a factor). We denote 
by 7T the natural action of W*(T, L) on L2(T, V). 

We set 
KV, x _ / v if a = /i 
0 f f W ~ 10 otherwise. 

If { Vi}™x is a complete orthonormal basis, then {6^ : / G N, a G T} forms a complete 
orthonormal basis of L2(T, V). 

Let A G W*(T, L). We define the Fourier coefficient Â(a) G il at a by 

A(a)v - (A6?)(a). 

If A(cr) - 0 for all a G T, then A = 0. 
Let C*(r, 7) be the set of A G W*(I\ X) with A(a) G ^ and A(a) = 0 for all but 

finitely many a G I\ We may identify C*ed(r, ^C) with the completion of CQ(T, ^F) with 
respect to the operator norm. Since J is dense in Ĉ in the uniform operator topology, it 
follows that C*ed(T, TO coincides with the completion of the subalgebra 

qj(I\ 7Q = { A G W*(T, L) : Â(a) G !̂C and A(cr) = 0 

for all but finitely many a }. 

An operator A G W*(T, X) is said to be of T-Hilbert-Schmidt class, or THS class, if 

£ ||Â(a)||às < oo, 
crer 

where || • ||HS denotes the Hilbert-Schmidt norm. If there are operators B and C of THS 
class such that A = #C, then A is said to be ofY-trace class. If A is of T-trace class, then 
A((j) is of trace class for all cr. We define the T-trace of A to be trp A = trA(l). If A < B 
and B is of T-trace class, then so is A. If P G C*cd(T, 70 is an orthogonal projection, then 
P is of T-trace class. 

Let X be a Riemannian manifold with an isometric discontinuous T-action with com
pact quotient. To define a representation of C*ed(r, 3Q on L2(X), fix a compact fundamen
tal domain 7) in X for the T-action, and identify L2((D) with V. Then the correspondence 

L2{X) - • L2(T, V) 
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given by f *—* (p with (f(cr)(x) = f(ox), x G 2), is a r-isomorphism. From now on, 
identifyingL2(X) with L2(T, V), we regard L2(X) as a Hilbert space on which the algebra 
Cr*ed(r, 70 acts. 

Consider a T-equivariant operator A acting in L2(X) with a smooth kernel /:(JC, y) such 
that k(x, y) = 0 for x, y G X with J(JC, v) > C > 0 for some constant C. Then A G 
CJ(r, 3Q. In fact, for x 6 X, 

(A/)(ax) = jT/ :(ax,>;)/(J)J}; 

= E Lk(°x,iiy)f(iiy)dy 

= E Lk(ax^y)ip(fi)(y)dy 

= Z) fk(^~iax,y)(f(fi)(y)dy. 

Thus, the operator A(a) acting on L2(2>) has the kernel function /:(ajc,y). Since the set 
{ a G r : d(cr©, <D) < C} is finite, we find that A is in Q r , 3Q. Moreover, A is of 
T-trace class, and 

trpA = / k(x,x)dx. 

REMARK. It is a classical fact that, if T is abelian, then the correspondence 

AGC*(r ,^C)- ,FGC°(f ,^C) 

given by F(\) = E x(^M(^) is extended to an isomorphism of C*-algebras onto the 
space of continuous functions on the character group T of T with values in %^. Further
more, we have 

trrA = ^trF(x)</x 

where d\ is the normalized Haar density on f. Therefore, if P is an orthogonal projection 
in C*ed(r, 30, then t r r P is an integral multiple of (#r o r) _ 1 where P o r is the torsion 
subgroup of T. 

2. Heat kernels. We keep the situation of § 1. Let q G C°°(X) with q(ax) = q(x) 
for all x G X and a G T. Without loss of generality, we may assume that Hx is positive. 
Consider the spectral resolution 

Hx = J\dE(\). 

Then 
expC-V^T^V^x) = J Qxp(-y/^ÎV\t)dE(X) 

is a unitary transformation of L2(X). For an evenf G Co°(R ), we find 

f{y/H~x) = Jf(VX)dE(X) 

= Hexp(-y/^ïV^t)f(t)dtdE(\) 
TOO . 

= 2 J f(t)cos(tVfh)dt. 
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It is a standard fact that f(^/Hx) has a smooth kernel, which we denote by k/(x,y). We 
let U(t,x,y) be the fundamental solution of the wave equation: 

(^+HxJU(t9x9y) = 0, 

U(0,x,y) = 6y(x), 

Ut(09x9y) = 0. 

Then the support of U(t, -, •) is contained in the set {(x,y) : d(x9y) < t} (a consequence 
of finite propagation speed for hyperbolic partial differential equations; see, for instance, 
M. E. Taylor [18]). Since kf(x,y) = Jf(t)U(t,x9y)dt, we find that kf(x,y) = 0 if d(x,y) 
is large enough. Therefore, fiV^h) € Q ( r , 9Q. 

Note that/(\///x) makes sense for a rapidly decreasing function/ € 5(R). For in
stance, if 

/(f) = 77-Wexp(- f2/4* )' 
then f(yfîïx) = exp(—sHx), so that k/(x9y) equals the heat kernel function kx(s,x,y). 
Furthermore, exp(—sHx) is of T-trace class and 

trr exp(—sHx) = / kx(s, x, x) dx. 

LEMMA 1. For an evenf G S(R),f(y/Hx) G C*ed(r, QQ. In particular, exp(-tHx) 

e cr*ed(r, <K). 

PROOF. Let {fn} e C™(R ) a sequence of even functions with \\fn -f\\ i —> 0. Then 

s u p | / n - / | < | | / „ - / | | i - 0 . 

Note that if HgH^ < e, then ||g(v/#x)|| < e. Indeed, 

|| Jg(y/X)dE(X)x\\2 = J \g(y/\)\2d\\E(X)x\\2 

<e2 J d\\E(X)x\\2 

2| | | |2 
= £ ||Jt|| . 

This implies that 
UVÏh) ^f(y/H~x) 

in the uniform operator topology. Since fn(\/Hx) G C*ed(r, %), the assertion follows. 

LEMMA 2. L^ //* = J A dE(X) be the spectral resolution. Then each E(X) is of 
T-trace class. 

PROOF. We have 

E(n) = ̂  dE(X) < <?' J* e~XtdE(X) 
roo , 

< e^ J e~Xt dE(X ) = e^ exp(-tHx). 

Since exp(—tHx) is of T-trace class, so is E(fi). 
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LEMMA 3. Let a< b, and a,b <j£ a(Hx). Then E(b) - E(a) G Cr*ed(r, 3Q. 

PROOF. Choose/ e C0(R ) with 

f = [ l on / = \e-b\ e~at], 
\ 0 outside a sufficiently small neighborhood of /. 

Then 

E(b) - E(a) = J' dE(X) = Jf(e-tX)dE(\) =f(exp(-tHx)). 

Given a positive e, we may choose a polynomial/? on R with 

sup \p -f\ < e. 
[0,1] 

Then 

\\p(exp(-tHx)) -f(cxp(-tHx))\\ < e. 

Since p(exp(-tHx)) G Q d ( r , 30, this means that E(b) - E(a) G Cr*ed(r, 3Q. 

PROOF OF THEOREM 1. Let A > 0. Let ax < a2 < -- < an be a sequence in the 

resolvent set such that at < A and E(ai+\ ) — E(at) is a nontrivial projection for all /. Since 
T:(E(ai+i) - E(cn)) < £(A), one has 

(n- l )C<t r r £(A) . 

This means that (—oo, À ] intersects only finitely many components of the resolvent set. 
The rest of the statements in Theorem 1 are consequences of the following proposition. 

PROPOSITION 1. If F acts freely on X, then 

t r r £(A)~ J \n'las\ ] oo. 
(27T)n 

PROOF. We set M = r \ X and y?(A) = trrE(\). The manifold M has a metric 
induced from the metric on X. Since 

exp(-tHx) = Je~tX dE(\), 

by taking the T-trace of both sides, we obtain, 

tr rexp(-///x) = | ^ A ^ ( A ) . 

Note the following relation between the kernel function kM(t,x,y) of exp(—tHĵ ) and 
kx(t,x,y) of exp(-tHx): 

kM(t,x,y) = XI kx(t9x,ay). 
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It follows that 

tr(exp(—tHM)) — I kM(t,x,x)dx — ^ / kx(t,x,ax)dx 

= tr r(exp(-tf/x)) + £ f kx(t,x,(jx)dx. 
*&' 

Since in the asymptotic expansion as t { 0, all terms in the righthand side except for 
a — 1 are exponentially small, tr(exp(—tHM)) and trp exp(—tHx) {— J<£)kx(t,x,x)dx) 
have the same asymptotic expansions. In particular, one has 

Je~x'dp(A) - (4TTtynl2 vol(M) as t [ 0. 

The Tauberian theorem (W. Feller [21, p. 446]) leads us to the assertion. 

REMARK. Let P be the projection onto an eigenspace of Hx. From Lemma 3, it fol
lows that, if the eigenvalue is isolated, then P G C*ed(r, %). One may ask if the same is 
true for embedded eigenvalues. Probably this is false in general, but it is still likely that 
trp P > C for some positive constant C not depending on the choice of eigenvalues (this 
is actually true for abelian covering spaces; see H. Donnelly [4]). 

APPENDIX. We shall prove, in an elementary way, that, if T is a free product of finite 
groups and infinite cyclic groups, then trr P is an integral multiple of a rational number 
for all projections P in C*ed(r, %). 

LetT = Z*---*Z*Gi*---*G„ = Go*Gi *• • *Gn, where Go = F* = (cx\,..., or*) 
is a free group on ^-generators and G/ is a finite group for each / = 1, . . . , n. We shall 
identify each G, with a subgroup of T. By adding generators of each G, to { a\,..., o^}, 
we construct the Cayley graph associated to T. Given a, /i G T, we denote by d(o\ /x) 
the distance between a and /x in the graph; that is, d(cr,n) is the minimum of the number 
of symbols in words expressing a"1 /i in the generators and their inverses. 

A special feature of the free product is that each element in F is expressed in a unique 
way as a reduced word, i.e., as 

G\G2 • • -GN 

with G[ G Gjd)\ { 1} andj'O) ^ j(i+ 1) (see, for instance, J. P. Serre [12]). From this fact, 
it follows that 

N 

i=\ 

provided that G\ • • • GN is a reduced word. 
We let 17 (resp. Tf) (/ > 1) be the set of elements a represented by reduced words 

of the form G\G2 • • • G^ with G\ G Fk and G\ being expressed in F* by a reduced word 
a^ajf1 • • • a^1 (resp. GX = arna±l • • • a±l) (/1 ^ Un > 0). We put r* = r t U 17 
andrô = {l}. 

Given a G G, (^ 1), we define r£ as the set of elements represented by reduced 
words of the form 

G\ • • • Gjy, G\ = G. 
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WeputTG( =UaeG I - \{ i}n» a n d r 7 = r c A H - Wethenobtain 

r = r0 u r{ u • • • u r* u rGl u • • • u rGn (disjoint). 

The following lemma is easy to check. 

LEMMA 4. r = a,-I7" U 17 (disjoint), and T = aTGi U T^ (disjoint)for a G G,-. 

A key point in our proof is the following lemma. 

LEMMA 5. (1) If a G r t and \i G Tj, then 

</(<7,/x) = d(/i,l) + d(a, l) . 

If a ET* and /x G (XiTy, then 

rf(cr,/z) = </0z,l) + d(<7,l). 

(2) Let a G Gt. If 9 G T+ and /1 G r~, r/ie/i 

d(09 p) > d(6,1) + d(l, p) - 2d» 

where di is the diameter ofG[. 

If 6 G rG|. and /x G T0 U • • • U r* U ((J,y,- rG.Y then 

£/(0,/l) = </(0,l) + rf(/l,l). 

PROOF. (1) Let a = a*<7i • • • as G r t and /x = a p V i • • • M* € IT be the shortest 
expressions by words in the generators and their inverses, so that d(a, 1) = x + s and 
d(/x, 1) = y + t. Then 

-1 -1 -x-y 

is the shortest expression for a~lfi. Therefore, we have 

d(a,ii) = d(a~lii, l) = x + y + s + t= d(a, l) + d(fj,, 1). 

If y, G of|Tj~ is not the identity element, then /x has the shortest expression by a word 
of the form 

\i = /ii ••• /x , 

where /xi G UjLi G{0>x \i\ — a power of 0 ,̂7 ^ /, or /xi = o^-1. Hence if arfcri ••• or̂  is 
the shortest expression of a, then 

a5
_1 •-.erf1 a^Mi •••/*/ 

is the shortest expression for a"1 /x. We thus have 

d(a,jj,) = d(a, l) + d(/x, 1). 
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(2) Let 0 — a9\ • • • ^ E T J and /i = cr'/ii • • - \xt G Ya be the reduced expressions 
where a, a' G G, and o' ^ a. If we put a" = cr^cr', then 

0,_1 • • • 0 f V / i i -"Mr 

is the reduced expression of 0 _1/i- Therefore we have 

d(0,/x) = d(0~V> 1) = d(091) + rf(/x, 1) + d(a V ) - d(a, 1) - d(a\ 1). 

Since d{a,a') — d(a, 1) — diV, 1) > —2J/, we obtain the desired inequality. 

If 0 = <70i • • • 0, G rG, and \i = o'nx • • • Mr G H U • • • U Tk U f U,y/ rGy) are the 
reduced expressions, then 

0 - l . - -0 r , <7-V/z i •••/*, 

is the reduced expression of 0 - 1 / i - Thus we have the equality 

d(0,/z) = </(0,l) + rf(/i,l). 

We denote by gt the order of G;, and by /z the least common multiple of { g\,..., gn } . 
We now take /i copies of V, which we denote by 

r(i),r(2),...,r(A). 

We also take a copy T(a, m) of T for each a G G/\ { 1} and m G { 0 , 1 , . . . , (h/ g,-) — 1} . 
To each r(£ ), we denote by r,(£ ), i f (£ ), rG|.(£ ), r j ( ^ ) the subsets in T(l ) correspond
ing to T/, Vf, rG(, r j , respectively. 

Consider the disjoint union 

r ( i )u-ur(A) = r 0( i )u-ur 0( / i ) 
u ri(i)u ---u r{(h)u •••ur^(i)u ..-u rk(h) 
u rG)(i)u • • • u rGl(h)u • • • u rG„(i) u • • • u rGn(h). 

We put 
Hi = L\ri(i))®'..®L2(ri(hj), 

HGI = L2(rG;(i)) © . . . © L2(rG/(/z)), 

so that 

L 2 ( r ( i ) )©- . .©L 2 ( r ( /o ) = H0®HX ©•••©// / ,©/ /G l ©. - .©/ / G „ . 

For / > 1, we define the map r,(£) —• T(£) = T which agrees with the inclusion 
r t ( -0 C V(l) on I7(^), and agrees with the map a H-> a/cr on T^(£). It is clear (see 
Lemma 4) that this map is a bijection. Using this map, we have an identification Ht — 
®h • L2(H. 

Let m G { 0 , 1 , . . . , (h/ gt) — 1} . We define a bijection 

O: rGl.(*iS/ + 1) U rG|.(m^ + 2) • • • U TGi(mgl + #) - | J I > , m) 
oeGi\{\} 
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in the following way. On T^(mgi + 1), O is defined to be the inclusion: 

I > n # + l ) ~ n c r ~ r ( < r , 7 f i ) . 

On TGi(mgi +y), 2 <j < gt, we define O by setting 

0>(/i) = Gj\i e (JjTGi{mgi +j) ~ GjTG. C T ~ T((Tj,m), 

where G/\ { 1} = { ^2 , . . . , agi}. In view of Lemma 4, we find that O is bijection. Thus 
we have a bijection 

h (h/gi)-\ 

u w ^ u u r\ 
which gives rise to an identification 

HGi = ®{(h/gi)-l}(gi-l)'L
2(r). 

We shall define two representations po and p\ of W*(T, L) on the Hilbert space 

(L2(r(i))®---eL2(r(/i)))^v 

in the following way. The first one, po, is defined as the direct sum of the natural repre
sentation 7T of W*(r, L) on L2(r, V). The second one, pi, is defined by 

[0 o n / / o ® V - C ^ V , 
p\ = I the direct sum of copies of IT on Ht <g> V = ®/i • L2(T, V), 

[ the direct sum of copies of n on //G( 0 V = 0{ (ft/ g,) — 1} (gl; — 1) 

L2(r, V). 

From now on, we set a(cr) = A(a) for brevity. 

LEMMA6. Let a e Tï(l), so that6* e Ht. Then 

(i) P I ( A ) * ; = E «; ( f f'V)v+ E ^ " ^ ) v . 

IfaETt, then 

(2) P I ( A ) * ; = E C f f " " + E *;(<T ")v-

PROOF. Define the unitary operator U: L2(Th V) —> L2(T, V) by 

Then, on L2(r,(£), V), 
pi(A) = i r 1 ^ ) ^ / . 
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Therefore one has, if a G r*(^ ), 

PMK = u-xp(A)m: = u~x
P(A)è: 

= [/"'( E 6«"~,ll)v) 

= E tf°~Xy,)v + E 6^~la^)v. 

Similarly one gets the equality (2). 
In particular, if <J G l | and J(a, 1) is large enough, the, in view of Lemma 5 (1), we 

have 
a(cr_1/x) = 0, and tf(<7-1a:;/i) = 0 

for every /i G T^ and 

(a) P , (A)^= £ ««*-"">* 

= E <ff~'M)v + E < f f"V ) v 

= Po(A)C 

Similarly, for <r € T," with sufficiently large d(o\ 1), 

(b) p(A)èv
a = po(A)ô:. 

In a similar way as in the proof of the above lemma, we may prove 

LEMMA 7. Let a — GJ G G,-. We put I — mgi + 1 and V — mgt +j. 

(1) If 6 G T+(l)(so that8% G HGi), then 

PI(A)6S= E «;('"V)V+ E «*'~,"i)v. 

(2) 7/6/ erGi(t'),then 

P I W W = E «;('~,*~,'i)v + E ^ V ) V -
/*erç(0 /ierC/.(D 

REMARK. In the above, the operations 0_1/i> 9~la/j,, 6~lcr~lii are executed in 
r(<7,ra). 

Now if 0 is as above in (1) and if d(6,1) is large enough, then 

a(6-l(ifi) = 0 

for every fi G rc,-^')» a nd 
a(0_1/i) = 0 
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for every /i G oTG.(t ) = 1^(0 U (uJL0 ̂ M )) U (u,y/ rGy(* )) (see Lemma 5, (2)). 
Thus, 

(c) pxiAWe = p o W -

Similarly, we find that if 9 G TGX^) a nd d(0, 1) is sufficiently large, then we get the 
same equality as (c). 

Putting (a) (b) (c) together, we are led to the following lemma. 

LEMMA 8. If A G CQ(T, ^F), then po(A) and p\(A) coincides on the complement of a 
finite dimensional space, so that the operator po(A) — p\(A) is of trace class. 

It is easy to check that, for A G W*(T, L) 

(p0(A)ê^èv
a) =<fl(l)v,v) a G T(l) 

and from Lemma 6 and Lemma 7, we deduce that 

(pi(AKX) 

Therefore, if A G C%(T, J ) , then 

(a(l)v,v) cr ^ 1 
10 G = 1. 

tr(po(A) - Pi(A)) = E E E ( (POW - MA))V Av<) 
£ = i ï = i a e r ( £ ) 

(3) * °° 
= EE<«aKvi> 

£ = i i = i 

= /i-tr rA. 

If we put .# = { A G W*(r, il) : po(A) — Pi (A) is of trace class}, then (3) is valid for 
A e A. What we have proved above is that CQ(T, J) C A. 

We now let P G C*ed(r, %) be a projection. Given a positive e, we may find a self-
adjoint A G Cg(r, jF) such that \\A — P\\ < s. Note that the spectrum of A is located 
near the two points { 0,1}, providing e is small enough. Let C be a circle in C with the 
centre 1 which does not intersect the spectrum of A. Then 

2TTI JC Z-A 

is a projection, and \\E — P\\ < 1 for sufficiently small e. We observe that 

Po((z-Arl)-pl((z-Arl) = {z-po(A)y\po(A)-pl(A))(z-pl(A)y\ 

so that (z — A)~l is in A. 
The function z »—• (z — Po04)) (poO )̂ — Pi(^))(z _ Pi W ) o n the circle C with 

value in C\ is continuous. Here C\ is the Banach space of operators of trace class acting 
in L2(r, V). The norm || • || i is defined by 

||r||i = tr(rr)1/2. 
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In fact, it is enough to observe that, if T G C\, then for bounded operators 5, So, U, UQ of 
L2(r, V) 

\\STU- SoTUoh = \\(S- S0)TU + S0T(U- U0)\\i 

<||s-So||||r||1||^|| + ||So||||r||1||t/-^/o||. 
Thus the integral 

^ fc(z - Po(A))-1 (po(A) - pi(A))(z - Pi(A))"1 & 

exists and in C\. This means that £ is a projection in A. Further h • trr(E) = tr(po(£) — 

Pi(£)) G Z since po(£) and pi(£) are projections. On the other hand, we have 

trr E = trr P. 

In fact the estimate || E — P\\ < 1 guarantees that the restriction E\ Image P: Image P —> 
Image E is injective and has a dense image. The polar decompostion of E\ Image P allows 
us to construct a partial isometry U G W*(T, L) with E = U* U and P = £/£/*. 

We therefore have proved 

PROPOSITION 2. L r̂ T = Fk * Gi * • • • * Gn, where #G,- = g/ < oo. If we put h = 

l.c.m.{ g i , . . . , gn}, //Z^/Î trp P G /i_1 Z /6>r every orthogonal projection in C*ed(T, %). 
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