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Dynamics of a self-propelled compound droplet
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A recent experiment by Wang et al. (Soft Matt., vol. 17, 2021, pp. 2985–2993) shows that a
self-propelled compound drop in a surfactant-laden solution can autonomously change its
motion from a straight line to a spiraling trajectory, enhancing its capability for chemical
detection, catalytic reaction and pollutant removal in a large fluid region. To understand
the underlying physics of this peculiar motion, we develop a two-dimensional minimal
model to study the swimming dynamics of a compound droplet driven by a self-generated
Marangoni stress. We find that, depending on the Péclet number (Pe) and the viscosity and
volume ratios of the two compound phases, the drop can swim in a variety of trajectories,
including straight lines, circles, zigzag curves and chaotic trajectories. The drop moves
in circles when its two components have comparable volumes. Otherwise, it shows other
types of motions depending on Pe. Our simulation results for the circular motion at small
Pe are qualitatively comparable to the experiment. The transition between zigzag and
circular trajectories is mainly determined by the orientation of high-order modes with
respect to the drop’s swimming direction. For most compound drops, the speed decays as
Pe−1/3 at high Péclet numbers as it does for a single-phase drop. A drop with two equal
components undergoes a run-and-reorient motion due to the competition between the even
and odd modes.

Key words: Marangoni convection, drops

1. Introduction

Over the past decades, self-propulsion of small active drops and particles has been widely
studied to understand microorganism locomotion, active matter and non-equilibrium
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systems (Herminghaus et al. 2014; Bechinger et al. 2016; Ebbens 2016). Various nano- to
micro-sized active drops and particles have been synthesized to perform different tasks in
bio-medical and industrial technologies, such as targeted drug delivery (Gao et al. 2015;
Singh et al. 2017), bottom-up manufacturing of new materials and structures (Mallory,
Valeriani & Cacciuto 2018), and clean-up of oil spills and pollutants for environmental
remediation (Gao et al. 2013; Soler et al. 2013; Li et al. 2014). In these applications,
compound drops with one phase with special biochemical properties encapsulated in
another fluid phase are of increasing interest due to their multifunctionality (Hu et al.
2012; Walther & Muller 2013; Nisisako 2016; Zhang, Grzybowski & Granick 2017).
In practice, partially engulfed compound drops are usually unavoidable in production,
and more importantly, their configuration is vital in releasing the internal ingredients.
Compound droplets made of two partially engulfed immiscible components are also
frequently encountered in double emulsification, microfluidic dripping of two streams
and fabrication of Janus particles. Previous studies have mainly focused on their static
configurations and hydrodynamic responses to an external flow field. In this work the
hydrodynamics of the self-propulsion of an active compound droplet will be studied.

The ability of active drops to navigate through a viscous fluid is crucial for directed
cargo delivery. The swimming dynamics of an individual drop also determines the
hydrodynamic interaction and collective behaviour of multiple drops (Marchetti et al.
2013; Elgeti, Winkler & Gompper 2015). The swimming motion of active drops can be
achieved by two mechanisms, diffusiophoresis and Marangoni effects. Both mechanisms
are characterized by a mobility factor related to drop size, viscosity and the chemical
properties of the drop (Izri et al. 2014; Morozov & Michelin 2019a). The diffusiophoresis
motion of the drop is caused by the interaction between the solute species and a short-range
potential at the drop interface that generates a slip flow (Anderson 1989; Michelin & Lauga
2014). The Marangoni effect, on the other hand, relies on a gradient of surface tension
on the drop interface to drive the motion (Herminghaus et al. 2014; Ryazantsev et al.
2017). The concentration gradient around the drop can be either externally applied (Barton
& Subramanian 1989; Brochard 1989), or self-generated through a symmetry-breaking
mechanism caused by chemical reaction (Toyota et al. 2009; Thutupalli, Seemann &
Herminghaus 2011) or solubilization (Izri et al. 2014; Krüger et al. 2016). More details
about this topic can be found in recent reviews (Maass et al. 2016; Ryazantsev et al. 2017).
In this work we consider the autonomous motion of a drop driven by a self-generated
surface tension gradient. The qualitative results, however, lend insights into active drops
utilizing other swimming mechanisms.

The swimming mechanism of an isotropic oil droplet due to the exchange of surfactants
between the drop interface and a surrounding micellar solution has been discussed by
Herminghaus et al. (2014). They showed that the self-propulsion of the drop is caused by
the ‘molecular pathway’ of drop oil diffusing away from the interface. The dissolved oil
molecules fill the surfactant micelles in the solution and create a thin boundary layer of
depleted free surfactant. At the front of the drop, convection decreases the boundary layer
thickness and increases the local surfactant concentration, thereby generating a backward
surface tension gradient that propels the drop motion. This process involves the coupled
transport and reaction of multiple components, including oil molecules, empty and filled
micelles, free surfactant in solution and absorbed surfactant on the drop interface. The
critical step for self-propulsion is that the drop creates a positive gradient of surfactant
concentration away the interface, which under an incoming flow, increases the surfactant
concentration on the interface. For simplicity, in this study we only consider the transport
of the surfactant in the bulk fluid with a specified positive normal gradient at the surface.
A similar model has also been applied in previous studies of phoretic particles (Michelin,
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Dynamics of a self-propelled compound droplet

Lauga & Bartolo 2013; Hu et al. 2019) and drops with Marangoni propulsion (Yoshinaga
et al. 2012; Schmitt & Stark 2013; Yoshinaga 2014; Li 2022).

The self-propelled motion of a single-phase active drop is primarily controlled by the
Péclet number Pe = U0a/D (Anderson 1989; Michelin et al. 2013). This dimensionless
number characterizes the ratio between the convective transport of surfactant due to drop
mobility and its diffusion, where U0 is a characteristic fluid velocity driven by surface
tension gradients, a is the drop size and D is the surfactant diffusivity. Due to the
interaction between drop motion and surfactant transport, even a single-phase, isotropic
drop can exhibit complex swimming dynamics. Experiments show that, upon increasing
Pe, the trajectory can transform from rectilinear to zigzag, and eventually become chaotic
(Krüger et al. 2016; Suga et al. 2018; Hokmabad et al. 2021). At high Pe, the onset of
high-order modes and interaction between the drop and the concentration field trigger
a nonlinear feedback mechanism that complicates the swimming behaviour (Suda et al.
2021).

Different numerical models have been considered to understand the self-propelled
motion of a drop in a surfactant solution. In most studies, the drop is modelled as a
sphere or a cylinder that isotropically consumes the surfactant at its interface. Michelin
and coworkers have undertaken numerous studies on the axisymmetric motion of the drop
by a method of spherical harmonics expansion. They found that the type of mode that
is most unstable is dependent on the relative strength of the Marangoni and phoretic
effects as well as the drop’s deformability (Morozov & Michelin 2019a). A drop with
a strong Marangoni effect undergoes a steady translation due to a dipole mode (source
dipole), whereas a drop with a strong phoretic effect only excites a motionless quadrupole
mode (stresslet) and generates a steady symmetric extensional flow (Morozov & Michelin
2019a). Similarly, a moderately deformable drop exhibits a dipole mode and a highly
deformable drop exhibits a quadrupole mode (Morozov & Michelin 2019c). Based on a
two-dimensional (2-D) drop model, Li (2022) showed that the drop swims as a pusher at a
relatively low Péclet number, consistent with the result for a three-dimensional (3-D) drop
in Morozov & Michelin (2019c). At high Péclet numbers, the drop transforms between
pusher- and puller-like swimming and moves in a zigzag trajectory. Nagai et al. (2013) and
Suda et al. (2021) developed a different active drop model assuming the motion is induced
by a point source of surfactant attached to the front of the drop surface. This model predicts
that with increasing Pe, the drop transforms from a puller to a pusher and the translational
motion becomes unstable to external disturbances. The opposite trend is most likely caused
by the point source assumption. In experiment, the point source of surfactant is realized by
attaching a small soap particle to the drop. Both experiment and linear stability analysis
show that the drop moves in a circular trajectory due to a combined effect of anisotropic
surface activity and a local no-slip condition at the point of the soap particle (Nagai et al.
2013). We will see that a compound drop has a similar trajectory caused by a different
mechanism.

Wang et al. (2021) observed that compound drops swim in dynamic trajectories that
transform between rectilinear and circular motions. The droplets are made of a mixture of
FB oil (hexafluorobenzene) and a multicomponent nematic liquid crystal, E7 (a mixture of
hydrogenated cyanobiphenyl and terphenyl mesogens). By tuning the concentration ratio
of FB and E7, the drop interior can be either single phased or biphasic (Wang et al. 2019).
When suspended in an aqueous solution of surfactant, the drop continuously dissolves
the FB oil into the solution and undergoes an autonomous motion. The drop is initially
single phased but it gradually transforms into a compound drop by losing FB. Eventually
it transforms back to single phased with only E7. During these phase transformations, the
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Figure 1. (a) Trajectory of a droplet that transforms between single-phase and compound states in an aqueous
solution of surfactant. The droplet is made of a mixture of E7 (a nematic liquid crystal molecule mixture)
and FB (an isotropic oil). The dissolution of the FB into the solution generates a propulsive Marangoni stress
causing the drop motion whose trajectory changes from a straight line to a circular curve and then returns to a
straight line. (b) The corresponding time history of the drop speed and the curvature of the trajectory.

trajectory of the drop changes from a straight line to a spiralling circle and then back
to a straight line again. Figure 1 shows a sequence of images of such a drop moving in
a surfactant solution. The curvature of the trajectory rapidly increases after the volume
ratio of the nematic and isotropic phases reaches a critical value. The drop speed initially
decreases with increasing volume ratio and it exhibits a large oscillation during the early
stage of the spiralling motion. This special motion is helpful for the drops to explore a
fluid domain for chemical detection, catalytic reaction and pollutant scavenging. Thus, it
would be desirable to understand the mechanism for this special trajectory.

Helical and circular trajectories have been observed in previous experiments of
single-phase drops of pure nematic liquid crystal (Krüger et al. 2016; Suga et al. 2018).
Suga et al. (2018) showed that the helical trajectories occur when the Ericksen number,
which is the ratio between the viscous and elastic stresses of the nematic phase, is above a
critical value. Morozov & Michelin (2019b) proposed a model to explain the helical motion
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Dynamics of a self-propelled compound droplet

by introducing a phoretic velocity directly induced by the nematic vector. In the experiment
of Wang et al. (2021), however, both the Ericksen number and the direct phoretic effect of
the nematic phase are small at a relatively low Pe. Therefore, the drop eventually moves in
a ballistic motion when it becomes purely nematic. Transition from straight line translation
to spinning motion has also been observed for a self-propelled disk driven by Marangoni
stresses on a water surface. Vortex shedding behind the disk is found to be the key reason
for the destabilization effect (Sur, Masoud & Rothstein 2019). This effect exists only at
relatively large Reynolds number and is absent in Wang’s experiment. In this work we
consider a general model for two-phase drops with different viscosities and neglect the
nematic effect. This model is qualitatively comparable to the drops in experiment when
the Marangoni effect dominates the phoretic mobility effect caused by the nematic vector.
Indeed, we will show that the compound configuration is the key reason for the circular
trajectories observed by Wang et al. (2021).

In contrast to single-phase drops, the current understanding of the self-propelled motion
of compound drops is much more limited. Most previous studies of compound drops have
examined their configurations (Torza & Mason 1970; Mori 1978) and hydrodynamics
in external flows (see Johnson & Sadhal (1985) for a review). Early investigations of
moving compound drops usually considered drops with simple geometries such as a nearly
spherical drop partially engulfed by a thin layer of a second phase (Johnson & Sadhal 1983;
Sadhal & Johnson 1983) or a completely engulfed compound drop with two concentric
spherical interfaces (Rushton & Davies 1983). Shardt, Derksen & Mitra (2014) showed that
the rotation of a 2-D Janus drop in a simple shear flow is strongly affected by the presence
of the internal interface. Unlike a single-phase drop, the two-phase drop rotates with a
time-varying speed. The maximum angular velocity occurs when the internal interface
aligns with the extensional axis of the simple shear flow, and the minimum occurs when the
interface aligns with the compressional axis. The internal interface induces an anisotropic
resistance on the drop and causes motions that are unattainable for single-phase drops,
including drop rotation in a streaming flow (Shklyaev et al. 2013) and cross-flow migration
in a shear flow (Díaz-Maldonado & Córdova-Figueroa 2015).

Previous numerical studies of the motion of compound drops due to Maragoni stresses
have been restricted to axisymmetric thermocapillary motions. Nir and co-workers have
studied the thermocapillary axisymmetric translational motion of a partially engulfed drop
by solving the streamfunction in toroidal coordinates (Rosenfeld, Lavrenteva & Nir 2008,
2009; Lavrenteva, Rosenfeld & Nir 2011; Rosenfeld et al. 2011). The Marangoni stress on
the drop surface is caused by an externally applied temperature gradient. It was found that
the speed and direction of the drop motion were influenced by many factors, including
viscosity, thermal conductivity, the configuration of the compound drop, the volume ratio
of the two phases and the dependence of the surface tension on temperature. In this work
we study similar effects on the swimming trajectory of an active compound drop in a
surfactant solution including configurations in which the internal drop interface is not
symmetric about the direction of the drop velocity. The combined effects of Péclet number
and the geometry of the compound phases will be discussed in detail.

We propose a minimalistic model of an active compound drop autonomously swimming
in a surfactant solution. To simplify the study, a 2-D drop made of two circular sectors,
each representing a different phase is considered. This shape reasonably mimics the actual
interfaces of the compound drops in the experiment and allows the use of the classic
solution for Stokes flow near a corner (Moffatt 1964) to construct the velocity field
inside the drop. The concentration and fluid velocity outside the drop are expanded in
a Fourier series. Using this simplified model, our study reproduces some key features
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Figure 2. Schematic of a two-phase drop in a surfactant solution. The two regions in the drop are separated by
two planar interfaces. The surfactant concentration in the outer fluid decreases with approach toward the drop
surface.

that qualitatively match the experimental observations by Wang et al. (2021) at small Pe.
Different swimming behaviours are classified in a parameter space of the Péclet number
and the volume and viscosity ratios of the two phases. The rest of this paper is organized as
following. Sections 2 and 3 outline the governing equation and mathematical formulation.
Section 4 discusses the numerical results of the self-propulsion of the compound drops.
The hydrodynamics and transition among different trajectories are studied in detail.
Finally, concluding remarks and perspectives are provided in § 5.

2. Governing equations

As shown in figure 2, we consider a 2-D circular oil drop of radius a with phases of
viscosity μ1 and μ2(≥ μ1) separated by two planar interfaces that meet at an angle α at
the drop centre in an outer aqueous solution of viscosity μ0. Both internal and external
interfaces are assumed to be undeformable. Note that in the experiment, the drop has a
curved internal interface and α is unspecified. The angle α is analogous to the volume ratio
between the two phases of the drop in the experiment. The current model becomes less
realistic at small or large α. The surfactant outside the drop is consumed at the interface at
a rate A > 0 that is independent of angular position and drop velocity and rotation rate. The
surface tension γ ∗ is assumed to follow a linear relation with the surfactant concentration,
dγ ∗/dc∗ = −γ1, where c∗ is the dimensional concentration and γ1 > 0 is the Marangoni
coefficient.

The governing equations are normalized as follows: lengths by a, velocities by U0 =
AM/D, time by a/U0, pressures and stresses by μ0U0/a, surface tension by μ0U0 and
concentration by Aa/D, where D is the surfactant diffusivity in the aqueous solution,
M = aγ1/[2(μ0 + μ1)] is the dimensionless mobility factor describing the strength of the
Marangoni effect. It is more convenient to define M and U0 using μ1 instead of the mean
viscosity μm = [μ1α + μ2(2π − α)]/2π, since μm varies with time in the experiment.
As will be discussed later, the mean viscosity is more relevant to the average speed of
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Dynamics of a self-propelled compound droplet

the drop. In a drop-comoving frame, the governing equations for the incompressible flow
and surfactant transport are

−∇p j + β j∇2u j = 0, ∇ · u j = 0, for j = 0, 1, 2, (2.1a)

∂c
∂t

+ u0 · ∇c = 1
Pe

∇2c, (2.1b)

where j = 0, 1, and 2 represent the aqueous solution and the two regions inside the oil
drop, respectively. The pressure p and velocity u must be determined in all three regions,
while concentration variation c is only solved in the aqueous solution. The viscosity ratios
are β0 = 1 and β1,2 = μ1,2/μ0. The non-dimensional surfactant concentration relative
to its far-field value is defined as c = (c∗ − c∗∞)/(Aa/D), where c∗∞ is the dimensional
far-field concentration. The Péclet number Pe = U0a/D defines the ratio of convection of
surfactant to its diffusion. Spontaneous motion of a drop is expected to occur when Pe is
above a critical value.

The boundary conditions at the internal and external interfaces are

r = 1,
α

2
≤ θ ≤ 2π − α

2
: u0

r = u1
r = 0, u0

θ = u1
θ , τ 0

rθ − τ 1
rθ + dγ

dθ
= 0, (2.2a)

r = 1, −α

2
≤ θ ≤ α

2
: u0

r = u2
r = 0, u0

θ = u2
θ , τ 0

rθ − τ 2
rθ + dγ

dθ
= 0, (2.2b)

θ = ±α

2
, r ≤ 1 : u1

θ = u2
θ = 0, u1

r = u2
r , τ 1

rθ = τ 2
rθ , (2.2c)

r = 1 :
∂c
∂r

= 1. (2.2d)

The far-field boundary conditions are

r = R : u0 = −U − Ω × r, (2.3a)

r = R : c = 0. (2.3b)

Since an unbounded 2-D diffusion problem does not have a steady solution at Pe = 0,
the concentration is assumed to recover c∗∞ at a large but finite distance R from the centre
of the drop. Equations ((2.2a)–(2.2c)) represent the conditions of zero normal velocity
and the continuity of tangential velocity and tangential force at the interfaces; τ

j
rθ is the

rθ component of the viscous stress tensor τ j = β j(∇u + ∇uT). The force balance at the
external interface includes the gradient of surface tension dγ /dθ = −2(1 + β1)∂c/∂θ .
The droplet velocity U and angular velocity Ω are determined by the force- and torque-free
conditions, ∫

r=1
n · τ 0 ds = 0,

∫
r=1

r × (n · τ 0) ds = 0. (2.4a,b)

3. Eigenfunction expansions for velocity and concentration fields

The velocity and concentration fields are solved using a pseudo-spectral method. In two
dimensions, the velocity field of an incompressible Stokes flow can be determined from
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the streamfunction Ψ as

ur = 1
r

∂Ψ

∂θ
, uθ = −∂Ψ

∂r
, (3.1a,b)

and the streamfunction satisfies
∇2∇2Ψ = 0, (3.2)

where

∇2 = 1
r

∂

∂r

(
r

∂

∂r

)
+ 1

r2
∂2

∂θ2 (3.3)

and we define θ relative to the centreline of phase 2.
We solve the fluid velocity using an eigenmode expansion as has been done in previous

work for a single-phase drop (Nagai et al. 2013; Li 2022) and a phoretic solid particle
(Hu et al. 2019). For a force- and torque-free drop, the streamfunction outside the drop is
written as a Fourier series,

Ψ 0 = Ω

2
r2 + Re

[ ∞∑
k=1

r2 − 1
rk A0

keikθ

]
, (3.4)

where Ω = 2
∑

k=1 Re[A0
k] cos(kα/2) is the angular velocity of the drop and A0

k is the
complex coefficient for the kth Fourier mode. The first two modes, k = 1 and k = 2,
correspond to a superposition of a uniform flow and a source dipole and a superposition of
a stresslet and a source quadrupole, respectively. In a lab-fixed frame, the x and y velocity
components of the drop are

Ux = Im[A0
1eiθd ], Uy = Re[A0

1eiθd ], (3.5a,b)

where Re[ ] and Im[ ] represent the real and imaginary parts, and θd(t) = ∫ t
0 Ω(t′) dt′ is

the orientation angle of the drop in the lab-fixed frame at time t. For a single-phase drop,
the streamfunction inside the drop is also written as a Fourier series.

For a two-phase drop, the streamfunction inside the drop is no longer a Fourier series.
Its general form is written as

Ψ j = Re

[ ∞∑
k=1

rλk
(

A j
keiλkθ + B j

kei(λk−2)θ
)]

(3.6)

for j = 1 and 2. The eigenvalue λk may be a complex number and a non-singular velocity
at r = 0 requires Re[λk] ≥ 1. Applying the boundary conditions (2.2c) at θ = ±α/2, λk is
solved by setting Det(AAA) = 0, where

AAA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1 c′
1 −s1 −s′

1 0 0 0 0

c2 c′
2 −s2 −s′

2 0 0 0 0

0 0 0 0 0 0 s1 s′
1

0 0 0 0 c1 c′
1 0 0

λks1 λ′ks′
1 λkc1 λ′kc′

1 −λks1 −λ′ks′
1 −λkc1 −λ′kc′

1

λks2 λ′ks′
2 λkc2 λ′kc′

2 λks1 λ′ks′
1 −λkc1 −λ′kc′

1

λ2
kc1 λ′2k c′

1 −λ2
ks1 −λ′2k s′

1 −βλ2
kc1 −βλ′2k c′

1 βλ2
ks1 βλ′2k s′

1

λ2
kc2 λ′2k c′

2 −λ2
ks2 −λ′2k s′

2 −βλ2
kc1 −βλ′2k c′

1 −βλ2
ks1 −βλ′2k s′

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(3.7)
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Figure 3. Typical eigenvalue distributions for two-phase drops with different angles α and viscosity ratios
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β = β2/β1, λ′k = λk − 2, s1 = sin(λk(α/2)), s′
1 = sin(λ′k(α/2)), s2 = sin[(λk(2π − α/2))],

and s′
2 = sin[(λ′k(2π−α/2))] with similar definitions for c1, c′

1, c2, c′
2 after replacing sine

with cosine. The eigenproblem AAA · xxx = 0 is solved to find the coefficients

xxx =
(

1,
Re[B1

k]

Re[A1
k]

,
Im[B1

k]

Re[A1
k]

,
Im[A1

k]

Re[A1
k]

,
Re[A2

k]

Re[A1
k]

,
Re[B2

k]

Re[A1
k]

,
Im[A2

k]

Re[A1
k]

,
Im[B2

k]

Re[A1
k]

)T

(3.8)

for the eigenfunctions (3.6) inside the drop. Note that multiple eigenfunctions may
exist for the same λk. For each eigenfunction, there is one coefficient not given by
(3.8) that should be determined by the boundary conditions (2.2a) and (2.2b) at r = 1
(Re[A1

k] in our simulation). For arbitrary α, numerical calculation of the eigenvalues λk is
needed. Figure 3 shows some examples of the eigenvalues for drops with different α and
β = β2/β1.

For an evenly divided drop, i.e. α = π, the eigenfunctions inside the drop can be further
simplified. In this case, all the eigenvalues are integers,

λk = 1, 2, 3, . . . , (3.9)

and the corresponding streamfunctions are

Ψ 1 = A1r cos θ + r2[B2 sin 2θ + D2β(cos 2θ + 1)]

+
∑

k=3,5,...

rk{Ak cos kθ + (Bk − Ckk) cos(k − 2)θ + Dkβ[sin kθ + sin(k − 2)θ ]}

+
∑

k=4,6,...

rk{Ak sin kθ + (Bk − Ckk) sin(k − 2)θ + Dkβ[cos kθ + cos(k − 2)θ ]},

(3.10a)

Ψ 2 = A1r cos θ + r2[B2 sin 2θ + D2(cos 2θ + 1)]

+
∑

k=3,5,...

rk{[Ak + Ck(k − 2)] cos kθ + Bk cos(k − 2)θ + Dk[sin kθ + sin(k − 2)θ ]}

+
∑

k=4,6,...

rk{[Ak + Ck(k − 2)] sin kθ + Bk sin(k − 2)θ + Dk[cos kθ + cos(k − 2)θ ]},

(3.10b)
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for π/2 ≤ θ ≤ 3
2π and −(π/2) ≤ θ ≤ (π/2), respectively. The coefficients Ak, Bk, Ck, Dk

are all real numbers.
The coefficients of the eigenmodes in the streamfunctions are determined by applying

the boundary condition on a set of collocation points on the drop surface using the method
of least squares. The same method was used to solve the Stokes flow in a 2-D rectangular
cavity (Shankar 1993). We truncate the series (3.4) and (3.6) to the Mth and Nth terms,
respectively, and define the total square error on K equidistant points θk at r = 1 as

E2
T = E2

ur
+ E2

uθ
+ E2

τrθ
, (3.11)

where the errors for normal velocity, tangential velocity and tangential stress are,
respectively,

E2
ur

=
K∑

k=1

(
1
r

∂Ψ
j

N
∂θ

)2

θk

, (3.12a)

E2
uθ

=
K∑

k=1

(
∂Ψ 0

M
∂r

− ∂Ψ
j

N
∂r

)2

θk

, (3.12b)

E2
τrθ

=
K∑

k=1

[(
1
r

∂Ψ 0
M

∂r
− ∂2Ψ 0

M
∂r2

)
− β j

(
1
r

∂Ψ
j

N
∂r

− ∂2Ψ
j

N

∂r2 + 1
r2

∂Ψ
j

N

∂θ2

)
− dγ

dθ

]2

θk

.

(3.12c)

The streamfunctions Ψ 0
M and Ψ

j
N are the truncated series to the first M and N terms for

regions outside and inside the drop with j = 1, 2 for α/2 ≤ θk ≤ 2π − α/2 and −α/2 ≤
θk ≤ α/2, respectively. The total error at the collocation points θk is minimized when

∂E2
T

∂C0
m

= ∂E2
T

∂C j
n

= 0, (3.13)

where C0
m = Ω, A0

1, A0
2, . . . , A0

M and C j
n = Im[A j

1], Im[A j
2], Im[A j

3], . . . , Im[A j
N] are the

coefficients for the basis streamfunctions, j = 1 and 2. At each time step, we solve the
M + N + 1 linear algebraic equations to find C0

m and C j
n. The concentration field is then

updated using the fluid velocity.
The concentration field is expanded in the θ direction using a truncated Fourier series

as

c = ĉ0(r) + Re

[K−1∑
k=1

ĉk(r)eikθ

]
, (3.14)

where for each mode, ĉk(r) is solved using a second-order finite difference method with
a grid number K in the θ direction equal to the number of terms in the Fourier series.
The advection of the concentration is treated in an explicit manner and the diffusion term
is solved implicitly. A second-order Runge–Kutta scheme is used to discretize time. The
simulation is performed in a circular domain with radius R = 200 having a uniform grid
in the θ direction and a non-uniform grid in the r direction. The domain size is made large
enough so that any further increase in size would have a negligible effect on the nonlinear
dynamics of the drop motion. The grid number K is chosen such that a set of grid points
lie on the planar interface. In typical simulations, M = N = 200 and K = 240, the grid
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Dynamics of a self-propelled compound droplet
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Figure 4. Velocity and force distributions on the external interface of a two-phase drop with
α = π, β1 = β2 = 1 and Pe = 6.

number in the r direction is Nr = 160 with a constant stretching ratio of approximately
1.03, the finest grid size is 
rmin = 0.05, and the time step is 
t = 0.1. The computation
grids are fine enough to resolve the surfactant boundary layer of thickness δ ∼ Pe1/3 ∼ 0.3
at Pe = 50, the highest Péclet number in this work. The results are confirmed to be well
convergent when compared with computations using finer spatial and temporal resolutions.
To illustrate that the boundary conditions are well satisfied at the external interface of the
drop, figure 4 shows the velocity and stress distribution at r = 1 for a drop with α =
π, β1 = β2 = 1 and Pe = 6. For the velocity and force continuity conditions, the errors
are less than 10−6. The maximum error for velocity occurs at the two internal interfaces.

We also solve the velocity field inside the drop using a finite volume method on a
staggered grid to further verify our results. Comparison of the finite volume and spectral
solutions indicates that the two results agree well, as shown in figure 14(b) for the time
history of speed and angular velocity for a drop of α = π, β1 = β2 = 1 and Pe = 15.

4. Self-propulsion of an active drop

4.1. Single-phase drop
A detailed consideration of the swimming dynamics of a 2-D single-phase drop can be
found in Li (2022). Here, we briefly summarize the main results for comparison with the
two-phase drop dynamics. The single-phase drop has no rotation and its self-propelled
motion is similar to a 2-D active diffusiophoretic solid particle (Hu et al. 2019). The linear
stability of a motionless drop shows that the critical Péclet number for the onset of the kth
mode is

Pec,k = 4k(k − 1)(1 + R2k)

2k2 ln R − 2k ln R + R2k − k2R2 + k2 − 1
, (4.1)

which is independent of the viscosity ratio β1 = μ1/μ0. As R → ∞, the critical Péclet
numbers are Pec,1 → 0 and Pec,k = 4k(k − 1) for k ≥ 2. Thus, a 2-D drop undergoes
spontaneous steady translational motion in an infinitely large fluid domain. We will see
that this result also holds for a compound 2-D drop.
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Figure 5. Streamlines and surfactant concentration field near a single-phase drop at different Péclet numbers.

Typical flow fields around a single-phase drop at different Péclet numbers are shown
in figure 5. For Pe � 11.8, the drop moves in a straight line at a constant speed, forming
two symmetric vortices in its interior and inducing a steady wake with less surfactant. The
contraction of the streamlines passing around the drop indicates a pusher-type swimming
motion. At higher Pe, the drop moves in a meandering trajectory with square and/or
triangle waves and the fluid velocity varies in time between pusher-type and puller-type
fields (Li 2022). On a large length scale, the meandering trajectory may form a line, a
closed circle or a chaotic pattern. These trajectories are similar to those for an active
solid particle (Hu et al. 2019). The single-phase drop has no rotation and the non-ballistic
motion is caused by changes in the direction of the translational velocity. The emergence of
these complex trajectories is directly related to the asymmetric surface tension distribution
on the drop interface, which causes imbalances between the two interior vortices or the
emergence of smaller vortices.

Figure 6(a) shows the dependence of the average drop speed U = 〈U2
x + U2

y 〉1/2 on
the Péclet number, where 〈〉 indicates a time average. The drop motion occurs above
approximately Pe = 0.47, which is consistent with linear stability analysis. For Pe � 1,
the velocity of the single-phase drop is very close to that for a solid particle. At higher Pe,
the drop has a larger speed than a particle. At Pe � 11.8, the speed starts to oscillate as
the drop undergoes an unsteady meandering motion. Similar to a solid particle, a freely
moving drop swims faster than a drop whose motion is restricted to lie on a straight line
at the same Pe. In fact, the speed of the restricted translation abruptly decreases to zero at
Pe ≥ 14.04 as the dipole mode (k = 1) is fully suppressed and the drop generates a pure
quadrupole mode (k = 2). As we will see later, the swimming dynamics of a compound
drop is also strongly influenced by the interaction and competition between dipole and
quadrupole modes. At Pe ∼ 39.2, the amplitude of the speed oscillation increases abruptly.
This corresponds to the transformation of the meandering trajectory from square to
triangular waves, which causes a sudden decline of the dominant frequency of the drop
speed (figure 6b).

4.2. Compound drop
The internal interfaces within a compound drop lead to different velocity modes inside
the drop than those in single-phase drops. This significantly influences the drop motion
and surfactant transport. The average speed depends not only on the Péclet number but
also the volume ratio and the viscosity of the two internal phases. Figure 6 shows the
results for drops with two combinations of viscosity, β1 = β2 = 1 and β1 = 1, β2 = 3
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Dynamics of a self-propelled compound droplet
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Figure 6. (a) The average speed U of drops at different Péclet numbers. The solid black line shows the speed
of a single-phase drop, the shaded area represents the standard deviation of the speed. The dashed line is the
speed of a drop when its motion is restricted to follow a straight line. The dotted line is the velocity of an active
solid particle (Hu et al. 2019). Symbols show the speed of two-phase drops with different combinations of α

and β2 for β1 = 1. Inset: the rescaled speed Ur = βrU as a function of the rescaled Péclet number Per (see
text for definition). (b) The dominant frequency fd of the drop speed at different Péclet numbers.

at different interface angles α. Due to the extra flow resistance caused by the internal
interfaces, two-phase drops almost always move slower than single-phase drops at the
same Pe. The only exception occurs for a drop containing two semicircular phases with
the same viscosity. For Pe � 14, this drop moves in a straight line parallel to the planar
interface and is unaffected by the interface. At Pe � 15, the average speed dramatically
decreases and the drop moves in a special run-and-reorient motion. The details of this
type of drop motion will be discussed later. For the other cases, the two-phase drops show
similar trends in drop speed and frequency with increasing Pe as the single-phase drop.

To better compare the speed of different compound drops, we introduce a new
characteristic velocity U0r = U0/βr and Péclet number Per = U0ra/D = Pe/βr, where
βr = (μ0 + μm)/(μ0 + μ1) and μm = [μ1α + μ2(2π − α)]/2π is the mean viscosity. As
shown in the inset of figure 6(a), the rescaled data collapses for various combinations
of α and β1, β2 and the velocity scales as Ur = βrU ∼ Pe−1/3

r for Per � 10, except for
the drops in run-and-reorient motions. The average speed of a compound drop is on
average 30 % lower than the speed of a single-phase drop. In figure 6(b) the speed for
most compound drops has a lower frequency than the frequency of a single-phase drop,
indicating different drop motions than the meandering swimming. The compound drop
has a non-zero angular velocity, which oscillates at the same frequency as the translational
velocity.

Next, we consider the swimming dynamics of compound drops. Figure 7(a) shows
typical trajectories for drops with Pe = 6, β1 = 1, β2 = 3 and different α. For α � π
and α � 1.5π, the drop translates in a rectilinear trajectory, while at intermediate α, its
trajectory becomes circular, consistent with the three swimming stages of a compound
drop in the experiment. Different from the circular pattern of the zigzag trajectory for
a single-phase drop (Li 2022), here the circular trajectory is smooth and can have a
small radius. Figure 7(b–f ) shows the concentration field and the streamlines near the
drops. The regions of low and high viscosity inside the drop are coloured light yellow
and orange, respectively. When the drop translates along a straight line, its interior forms
pairs of symmetric vortices in each of the circular sectors, and the small vortex pairs are
always at the trailing end. When the drop moves in a circular trajectory, the vortices are
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Figure 7. (a) Trajectories of compound drops with different angles α for β1 = 1, β2 = 3 and Pe = 6. (b–f )
Surfactant distribution and streamlines near the compound drops. The low and high viscosity regions inside
the drop are represented by the light-yellow and orange colours, respectively.

asymmetric and their arrangement depends on α. The direction of the drop motion can
be either roughly normal or parallel to the symmetry axis of the drop. In general, these
results qualitatively agree with the experiment, for which the drop motions parallel or
perpendicular to the internal interface are both observed. At a large α, the direction of
drop motion in simulation is different from the experiment of Wang et al. (2021) and the
discrepancy is probably related to the sharp corner configuration in our numerical model.

Figure 8 shows the average curvature κ of the trajectory and average speed U for drops
with fixed Pe, β1, β2 and different interface angles. It mimics the plot for the oil drop
with an evolving phase structure in the experiment (see figure 1). Although the 2-D drop
model with a static internal drop phase distribution is significantly different from the 3-D
drop in the experiment, our simulation does capture some essential features in figure 1(b).
For example, the curvature of the trajectory is non-zero only above a critical value of α,
above which the curvature has two peaks followed by a gradual decrease. The experiment
exhibits a few extra peaks at the late stage of the drop motion. These peaks are related
to the drop crossing its own trajectory and cannot be captured by the average curvature
in our simulation. The speed of the drop initially decreases with increasing α and then
exhibits a large oscillation. Our simulation shows that the speed and curvature are closely
correlated with the interior vortices: the speed increases and curvature decreases when the
drop has two large interior vortices (figure 7d), and the opposite occurs when the drop
forms more vortices with smaller sizes (figure 7c,e). Changing the viscosity inside the
drop only quantitatively affects the result. Upon increasing the drop viscosity, the critical
angle for the emergence of circular motion increases and the drop speed decreases. In
the experiment, the surfactant adsorption rates can be different between the two phases
of the drop. To examine this effect, we consider a case with A2/A1 = 0.5, assuming that
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Dynamics of a self-propelled compound droplet
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Figure 8. (a) The dependence of the average curvature of the trajectory κ (open symbols and solid lines) and
the ratio of average rotation and translation velocities of the drop Ω/U (filled symbols and dotted lines) on the
intersect angle α. (b) The dependence of the average speed U on α. The Péclet number of the drop is Pe = 6,
A2/A1 = 1 unless otherwise specified.

the nematic phase (region 2) creates a smaller concentration gradient than the isotropic
phase (region 1) due to its lower FB concentration. The curvature of the drop trajectory
in this case is single peaked and it has a higher peak value than the cases with uniform
adsorption rates. This shows that the additional source of asymmetry promotes the circular
motion. We also note that the curvature of the trajectory is close to the ratio of the average
rotational and translational velocities of the drop, i.e. κ � Ω/U. This means that, for a
compound drop, its rigid-body rotation is the main cause for the circular motion.

From the reciprocal theorem, the translational and rotational velocities of a cylindrical
swimmer are directly related to integrals of the slip velocity (Elfring 2015)

Ux = 1
2π

∫ 2π

0
uθ |r=1 sin θ dθ, Uy = − 1

2π

∫ 2π

0
uθ |r=1 cos θ dθ, (4.2)

Ω = − 1
2π

∫ 2π

0
uθ |r=1 dθ. (4.3)

Therefore, the contributions of small vortices with opposite signs tend to cancel each
other and result in a lower speed. The curvature in the simulations is systematically lower
than that in the experiment, probably due to the differences in surfactant transport and
reciprocal relations for two and three dimensions.

In addition to circular motion, compound drops exhibit a strikingly rich variety
swimming dynamics for different combinations of Pe, β1,2 and α. Figure 9 shows some
examples of the drop trajectories found in simulations, including circles, star-shaped
circles, quasi-periodic and aperiodic loops, smooth meandering curves, staircase-like
zigzag curves and chaotic patterns. These trajectories can be roughly placed into three
categories: straight lines, loops and zigzag curves, depending on whether the curvature
of the trajectory (or similarly, the angular velocity of the drop) has a preferred sign.
Figure 10(a) shows the phase diagram for the three types of trajectories with suggested
boundaries for β1 = 1, β2 = 3. In the diagram, the colour shows the mean value of the
absolute curvature and the symbol size indicates the drop speed. The categorization
of the star-shaped circular trajectories is less definitive than the others. We designate
them as loops since their average curvature is typically large, in contrast to the circular
trajectories of a single-phase drop. For a drop with two different phases, the trajectory is a
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Figure 9. Trajectories of two-phase drops with β1 = 1 and different combinations of Pe, α and β2. All plots
are shown to scale and the scale bar at the bottom right is 20 times the drop size. Animations of the flow fields
around the drops are provided in the supplementary movies available at https://doi.org/10.1017/jfm.2022.891.
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Figure 10. The phase diagram of drop trajectories for (a) β1 = 1, β2 = 3 and (b) β1 = β2 = 1. Triangle
symbols represent zigzag trajectories, and circle symbols represent circular and straight trajectories. The lines
mark the approximate boundaries between straight line and circular/zigzag trajectories. The colour shows the
average absolute curvature of the trajectory. The symbol size represents the average speed of the drop with
larger symbols representing larger speeds.

straight/zigzag line at small/large Pe when the drop has a dominant phase (α � 0.5π and
α � 1.7π), and the trajectory is generally circular when the two phases are comparable in
size, although there are a few exceptions. In figure 10(b) a drop having two phases with
the same viscosity shows similar behaviour, except at α = π, when it moves in straight or
zigzag lines because of symmetry.
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Dynamics of a self-propelled compound droplet

To understand the transition from straight line to circular/zigzag motion, we proposed
a reduced model to analyse the linear stability of the translational motion. At the drop’s
external surface (r = 1), the equation for the surfactant transport is

∂c
∂t

+ u0
θ

∂c
∂θ

= 1
Pe

∂2c
∂θ2 + f (θ), (4.4)

where f (θ) is the flux of surfactant to the drop surface due to radial diffusion. We only keep
the first two modes of the concentration Fourier expansion, c = ĉ0 +∑2

k=1(ĉ
c
k cos kθ −

ĉs
k sin kθ), where ĉc

k and ĉs
k are the real and imaginary parts of ĉk in (3.14). We assume

the tangential velocity on the drop surface has the same terms as a single-phase drop,
u0
θ = −Ω +∑2

k=1(ĉ
s
k cos kθ + ĉc

k sin kθ) (Nagai et al. 2013). This simplified model allows
us to consider the drop rotation without knowing the detailed information of f (θ) or the
dynamics of the drop. In the base state, the drop moves along its axis of symmetry and
the concentration only has even modes. The non-zero coefficients, ĉc

k, which determine
the drop speed and surfactant distribution, can be directly solved from (4.4), provided that
f (θ), which should also be an even function of θ , is known. Here, however, we will treat ĉc

1
as an adjustable parameter. From the condition of vanishing velocity at θ = ±(α/2), we
have the angular velocity Ω = ĉs

1 cos(α/2) + ĉs
2 cos α, the translational velocity Ux = 1

2 ĉc
1

and Uy = −1
2 ĉs

1, and ĉc
2 = −1

2 ĉc
1 sec(α/2). The perturbation equations for ĉs

1 and ĉs
2 can

be written as
d
dt

(
ĉs

1
ĉs

2

)
= AAA ·

(
ĉs

1
ĉs

2

)
, (4.5)

where

AAA =

⎡
⎢⎣− 1

Pe
+
(

cos
α

2
+ 3

4
sec

α

2

)
ĉc

1

(
3
2

+ cos α

)
ĉc

1

2ĉc
1 − 4

Pe
+ cos α sec α

2 ĉc
1

⎤
⎥⎦ . (4.6)

Here, we have neglected the perturbations to f (θ). The non-rotating drop state is stable
when both ĉs

1 and ĉs
2 have negative growth rates, i.e. Det(AAA) > 0 and Tr(AAA) < 0.

Otherwise, Ω grows exponentially with time and the straight line motion becomes
unstable. Figure 11 shows the stability phase diagram in the space of α and Pe. The
parameter ĉc

1 is a function of α and Pe, and its value is estimated to be |ĉc
1| ∼ 0.1–0.4

based on the range of the simulated drop speed. We set ĉc
1 as a negative constant for

α < π, because the drop translates to the negative x direction (figure 7b). For α > π,
positive ĉc

1 should be used since the drop moves in the opposite direction (figure 7 f ).
From (4.6), we can see that the drop rotation is caused by the combined effects of flow
stagnation at the interface contact line and the surfactant convection by coupled velocity
modes. The analysis predicts that steady translation becomes unstable when α is close to
π. The critical Pe for unstable translation decreases as the drop velocity increases. These
predictions qualitatively agree with our numerical results.

It might have been thought that the patterns of the drop trajectories could be
distinguished by the eigenvalues with circular trajectories occurring when the eigenvalue
is imaginary and zigzag trajectories when the eigenvalue is real. However, our results
show that the eigenvalues for the two-mode expansion are real for both types of trajectory.
As we will see in the following, the higher-order modes (k ≥ 3) are important for the
rotational motion of the drop. This also suggests that the nonlinear interaction between
drop swimming and surfactant transport plays a critical role in determining the trajectory
of the drop.
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|ĉ c
1| = 0.2

|ĉ c
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Figure 11. The stability phase diagram on the space of α and Pe predicted by the simplified linear stability
model for surfactant transport at the drop interface.

To compare the circular and zigzag motions, figure 12(a) shows the time history of the
angular velocity for the drops with α = π and β1 = 3, β2 = 3 at different Péclet numbers.
At Pe = 6 and 10, the drop rotates in the counterclockwise direction, and the high viscosity
region of the drop is on the inner side of the circular trajectory. At Pe = 20 and 30, the
drop reverses its rotation moving in clockwise circles with the high viscosity region on
the outer side. At an intermediate Péclet number, Pe = 15, the drop periodically reverses
its rotation and moves in a meandering trajectory. In figure 12(b) the distribution of the
tangential gradient of surfactant concentration dc/dθ and tangential velocity uθ on the
drop surface look generally similar for all cases. In particular, the lowest concentration (or,
equivalently, the largest surface tension), occurs at θ ∼ 1.6π in the wake region, creating a
flow outward from the interface. The maximum and minimum velocities occur at θ ∼ 1.3π
and θ ∼ 1.9π, respectively. The main difference between the fields for drops rotating in
different directions appears at θ ∼ 0.7π, where the drop with counterclockwise rotation
has a secondary local peak of dc/dθ and local minimum of uθ , representing a new vortex
inside the drop. Without this vortex, the drop rotates clockwise because the low viscosity
region generates a larger slip velocity than the other side (figure 12c,d). At high Péclet
number, the drop speed decreases and the induced flow is not strong enough to advect the
surfactant downstream to envelope the drop surface. The accumulation of the surfactant
at the front of the drop further decreases the local surface tension and creates a strong
slip flow that reverses the drop rotation (figure 12 f ). At the intermediate Pe, transport of
surfactant near the front of the drop regularly switches directions and the flow field shifts
between the two states. Therefore, the drop periodically changes its rotation direction and
moves in a meandering trajectory.

Following Li (2022), we investigate the correlation between the surfactant concentration
and the fluid velocity for different drop swimming motions. Figure 13(a) shows the time
history of the magnitudes of the flow modes. For each case, the first two modes have the
dominant contribution to the drop swimming. At Pe = 20, the stresslet mode (k = 2) has a
comparable magnitude as the source dipole mode (k = 1). It generates a strong extensional
flow that changes the surfactant distribution around the drop and induces the extra small
vortex inside the drop. At Pe = 15, the magnitude ratio between the first modes has a large
oscillation.
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Figure 12. (a) Time history of the angular velocity of drops at different Pe, α = π, β1 = 1 and β2 = 3.
(b) Distribution of the tangential gradient of surfactant concentration dc/dθ and tangential velocity uθ on
the drop surface. (c–f ) Concentration fields and streamlines near the drops. The red point and arrow show the
locations of the lowest surfactant concentration and local peaks of tangential velocity on the drop surface.

The orientations of the fluid velocity modes changes with Pe even more than their
magnitudes do. Figure 13(b–d) shows the time evolution of the surfactant concentration at
the drop surface and the direction of the fluid velocity mode, which for each singularity,
is defined by the axis of symmetry of a local converging flow along the drop surface. The
results are shown in a drop-fixed frame to reveal the relative angle between the velocity
modes and the low concentration wake. The two internal interfaces are located at θ = π/2
and 3π/2 in the plots. When the drop moves in a straight line, all velocity modes align
with the axis of symmetry of the concentration wake, creating a pusher-type flow field.
In comparison, when the drop moves in a non-straight trajectory, the velocity modes
do not align in the same direction. For the drop with α = π, the angular velocity Ω =
2
∑

k=1(−1)k−1Re[A2k] is determined by the even modes (k = 2, 4, 6, . . .). The k = 2
mode always has a positive angle with respect to the direction of 3π/2 and, therefore, has
a negative contribution to the angular velocity. In comparison, the orientation of the k = 4
mode differs at different Péclet numbers. At Pe = 20, it is on the same side of the internal
interface (3π/2 ) as the k = 2 mode and causes a positive angular velocity contribution.
At Pe = 15, the k = 4 mode oscillates and causes a back-and-forth rotation of the drop
and, hence, the zigzag motion.

Finally, we examine the run-and-reorient motion for the special case of a drop with two
phases having equal volumes and viscosities, i.e. α = π, β1 = β2 = 1. In figure 14(a) the
drop moves in a trajectory composed of piecewise segments with a reorientation angle of
approximately 102◦. The periodic variation in speed and angular velocity is directly related
to the transformations of vortex modes inside the drop. As shown in figure 14(c), the
drop forms two vortices inside and swims as a squirmer with an asymmetric slip velocity
distribution. The imbalance of the Marangoni stress on the two sides of the drop surface
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Figure 13. (a) Time history of the magnitude of velocity modes at different Pe, β1 = 1, β2 = 3 and α = π.
(b–d) The correlation between the surfactant distribution at the drop surface and the orientation of the velocity
modes. The results are shown in a drop-fixed frame.

damps the rotation quickly and the drop starts to translate along a straight line with slow
rotation (Ω ∼ 10−4). This motion is unstable due to the emergence of the quadrupole
mode, as occurred for the single-phase drop at Pe � 14 discussed before, and it generates
an extra vortex pair in front of the drop. The extra vortex pair gradually transforms the
drop into a pusher-type swimmer and reduces the drop speed (figure 14d). The induced
flow causes the surfactant to accumulate at the front stagnation point and creates a surface
tension gradient that obstructs the drop motion. Eventually in figure 14(e) the translational
motion is largely suppressed and the drop creates a symmetric extensional flow field. This
flow is intrinsically unstable due to the attraction between two local maxima of surface
tension. Outside the drop, the two regions of low surfactant concentration are advected
towards each other and merge at a location that is perpendicular to the internal surface,
leading to a fast reorientation and slow translation of the drop. After that, the dipole mode
gradually outcompetes the quadrupole mode and the drop repeats the translational motion.
The formation of the secondary wake of low concentration in front of the drop is biased
along the direction of drop rotation, so that it attracts the main wake and causes the reversal
of drop rotation in the next cycle.

Figure 15 shows that the velocity modes for this symmetric drop at Pe = 15 change
dramatically during the drop motion. The magnitudes of the odd and even modes
are strongly anti-correlated: the odd modes have a large magnitude during the drop’s
translation stage, while the even modes have a large magnitude when the drop slows down
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Figure 14. (a) Trajectory of a drop with equal phase volumes and viscosities α = π, β1 = β2 = 1 and
Pe = 15. Solid and dashed lines are the results simulated using the eigenfunction expansion and finite volume
methods for the interior region of the drop, respectively. (b) Time history of the drop speed and angular velocity.
(c–e) Concentration field and streamlines near the drop at the time instants marked in (a,b).

and starts to rotate. In the reorientation stage, the formation of the secondary wake of low
surfactant concentration only causes the odd modes to change direction. Meanwhile, the
even modes remain aligned with the direction of the main wake until they suddenly change
direction causing the sudden rotation of the drop. This type of run-and-reorient motion is
similar to the meandering motion of a single-phase drop along a trajectory with triangle
waves (Li 2022), but the transition for the two-phase drop is much more abrupt due to the
coupling with the drop rotation.

5. Concluding remarks

To summarize, we have investigated the self-propulsion of a 2-D compound drop
composed of two circular sectors driven by Marangoni stresses. Compared with
a single-phase drop, the internal interface and viscosity difference introduce more
complexity in the hydrodynamic flows and cause a variety of swimming trajectories,
including straight lines, circles, smooth and staircase-like zigzag curves, as well as chaotic
motions. Depending on whether the trajectory has a predominant bending direction, we
classify the trajectories into three categories: straight lines, circles and zigzag curves.
Generally speaking, the drop moves in a straight line or zigzag curve when one phase
is much larger than the other, whereas its trajectory becomes circular when the two phases
are of comparable sizes. The direction of the drop rotation is dependent on the Péclet
number. At small Pe, the drop rotates with its high viscosity region on the inner side, and
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Figure 15. (a) Time history of the magnitude of fluid velocity modes for a drop with Pe = 15, α = π, β1 = 1
and β2 = 3. (b) The correlation between the surfactant distribution at the drop surface and the orientation of
the flow velocity modes. The results are shown in a lab-fixed frame.

the opposite occurs at high Pe. A difference in viscosity of the two phases inside the drop
is not necessary for the circular motion. The average speed, on the other hand, is more
sensitive to the Péclet number and average viscosity than the size ratio of the two phases.
The presence of the internal interfaces reduces the drop speed. For most of the compound
drops, the speed scales as U ∼ Pe−1/3 for Pe � 10, which is the same as the scaling for a
single-phase drop.

Our numerical results can reproduce the key features of experimental observations of
a compound oil droplet with continuous phase transformation (Wang et al. 2021). At
relatively low Péclet numbers (Pe � 10), our study shows the trajectory transforms from
straight lines to smooth circles and eventually back to straight lines with increasing volume
ratio of the phases. The curvature of the trajectory has a local minimum when the drop has
two large interior vortices rather than multiple small vortices. The drop speed reaches a
maximum near the conditions for minimal curvature. These results are consistent with the
experiments.

At high Péclet numbers, the drop motion exhibits meandering features due to the onset
of instability modes at higher wavenumbers, similar to the motion of a single-phase drop.
The numerical simulations also discover a run-and-reorient motion for a drop containing
two semicircles of equal viscosity at Pe � 15. The drop moves along a staircase-like
zigzag curve and the flow field inside the drop periodically switches between dipole
and quadrupole modes. These results show that the swimming dynamics of the drop is
determined by the interplay among various factors: the convection of surfactant around
the drop, the distribution of the Marangoni stress on the drop surface, the interior vortices
and the difference of flow resistance experienced by the two regions of the drop. The
high-order modes play an important role in determining the direction of drop rotation and
the pattern of the trajectory.

Several directions can be taken in future research to overcome the limitations of this
work. In the current study we use a static drop model to mimic the different stages of
a drop with continuous phase transformation. This simplification may partially explain
the discrepancies between simulation and experimental results. Transient compositional
changes of the drop interior influence the time history of surfactant transport, causing a
continuous change in the trajectory curvature in experiment (Wang et al. 2021). Future
simulations could model the changes to the drop interior as one component of the drop
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is transported into the exterior liquid phase. Secondly, current work uses a fixed flux
boundary condition for the surfactant while neglecting the potential for the surfactant to be
fully depleted near the drop. This assumption is valid if the concentration variation is small
and is useful to focus on the basic physics. However, in practice the drop may completely
consume the surfactant, particularly when the drop moves in a small circle. As suggested in
our simulation (figure 7a), this effect can reduce the curvature of a circular trajectory and
cause an outward spiraling trajectory, similar to the experiment. Finally, 3-D simulations
of a compound drop are undoubtedly desirable. Other effects, such as the liquid crystal
phase and the deformation of the internal interface can also be important. In the inertial
regime the trajectory transition due to vortex shedding (Sur et al. 2019) can be studied
by solving the full Navier–Stokes equations. We also propose that the current simulation
may be realized in an experiment using an oil drop floating on the surface of a thin film of
surfactant solution (Ichikawa et al. 2013; Pimienta & Antoine 2014). The rotation direction
of the compound drops can be easily observed to test the simulation results.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.891.
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