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Baroclinic critical levels arise as singularities in the inviscid linear theory of waves
propagating through a stratified, horizontally directed and sheared flow. For a steady
wave forcing, disturbances grow secularly over the critical layers surrounding these levels,
generating a jet-like defect in the mean flow. We use a matched asymptotic expansion to
furnish a reduced model of the nonlinear dynamics of such defects. By solving the linear
initial-value problem for small perturbations to the defect, we establish that secondary
instabilities appear at later times. Because the defect is time dependent, conventional
normal-mode analysis is quantitatively inaccurate, but does successfully predict the
occurrence of the secondary instability. The instability has a singular character in that
disturbances with the shortest horizontal wavelength grow most vigorously at late times,
unless dissipation is included. The instability can be suppressed by weak viscosity; by
itself, thermal dissipation delays, but does not arrest instability. Numerical computations
with the dissipative reduced model demonstrate that the secondary instability saturates as
the defect rolls up into a coherent vortical structure. This structure excites a new wave
propagating at a different phase speed, thereby forcing a new set of baroclinic critical
levels. The implications for self-replication are discussed.
Key words: critical layers, nonlinear instability, internal waves

1. Introduction

In inviscid linear theory, waves propagating through stratified, horizontally directed and
sheared flow encounter singularities at a novel type of critical level. These ‘baroclinic’
critical levels arise where the phase speed relative to the basic flow matches a characteristic
gravity wavespeed (Olbers 1981; Basovich & Tsimring 1984; Badulin, Shrira & Tsimring
1985; Staquet & Huerre 2002; Boulanger, Meunier & Le Dizès 2008; Wang & Balmforth
2018, 2020). Much like the classical critical level, the singularity must be resolved by weak
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Figure 1. Sketch of the model. A wavemaker with wavenumbers kx and kz is introduced at y = 0, forcing the
baroclinic critical levels at y = ±N/(Λkx) (corresponding to dimensionless locations ±N with N = NΛ−1)
and leading to defects in the mean flow. Small perturbations in vertical vorticity near y = N/(Λkx) then seed
a secondary instability that induces the roll up of the defect there, creating a new wave with a different phase
speed that forces a new set of of baroclinic critical levels.

viscosity, unsteadiness or nonlinearity. However, disturbances typically remain strong in
the vicinity of the singular levels, the baroclinic critical layers, with potentially important
implications for mixing and the transition to turbulence.

In previous work (Wang & Balmforth 2020), we studied the nonlinear evolution of
the baroclinic critical layers of a wave driven by a steady wavemaker into the rotating,
uniformly stratified, Couette flow illustrated in figure 1. The initial, linear dynamics that
arises is similar to that for internal gravity waves (Booker & Bretherton 1967; Brown &
Stewartson 1980) or Rossby waves (Stewartson 1978; Warn & Warn 1978): disturbances
grow secularly over a gradually narrowing critical layer. Modifications to the mean flow,
with the form of a jet-like defect, then come into play to terminate the linear growth,
whilst still allowing further sharpening of the density gradients within even thinner regions
inside the critical layer. This later-time dynamics is very different to that occurring inside
the critical layer of a forced Rossby wave, where the local vorticity field rolls up into a
distinctive cat’s eye pattern (Stewartson 1978; Warn & Warn 1978).

In the current paper, we take our analysis of forced baroclinic critical layers in a
different direction: jet-like defects embedded within linear shear are expected in general
to modify the stability of a flow by introducing inflexion points into the mean velocity
profile (Gill 1965; Lerner & Knobloch 1988; Balmforth, Castillo-Negrete & Young 1997).
This leads one to suspect that the mean-flow modification incurred inside the baroclinic
critical layer suffers secondary instabilities (see also Umurhan, Shariff & Cuzzi 2016).
Indeed, Killworth & McIntyre (1985) and Haynes (1985, 1989) have shown that the cat’s
eye in the Rossby-wave critical layer is susceptible to secondary instabilities, owing to
the introduction of local reversals of the mean vorticity gradient. Similarly, Boulanger
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Nonlinear dynamics of forced baroclinic critical layers II

et al. (2008) have argued that secondary instabilities in viscous, baroclinic critical layers
rationalize the emergence of strong vertical motions in tilted stratified vortices.

To delve more deeply into this question, we draw a parallel with our previous study
and exploit a matched asymptotic expansion to derive a reduced model that captures
the secondary instability of the forced baroclinic critical layer. The key difference with
our earlier exploration is that vorticity gradient associated with the mean defect becomes
order one at an earlier time than the mean-flow modification feeds back upon the secularly
growing critical-layer disturbance. In other words, secondary instabilities may become
possible before nonlinearity arrests the linear growth. Such relatively fast instabilities are
filtered over the longer-time dynamics of our original asymptotic expansion. A different
critical-layer theory is therefore required, one that turns out to be more like conventional
analyses of classical critical layers (Stewartson 1978; Warn & Warn 1978). The reduced
model provides us with a compact formalism to detect secondary instability and explore
the consequences. In particular, we provide a linear stability theory for the defect, taking
into account the time dependence of the basic state explicitly by solving the corresponding
initial-value problem (which also provides a gauge for the accuracy of a frozen-time
normal-mode approximation). We then solve the reduced model numerically to explore
the nonlinear dynamics of the secondary instability.

A main issue is whether the dynamics of the forced baroclinic critical layer and its
secondary instability bears upon the self-replication of vortices observed in numerical
simulations by Marcus et al. (2013, 2015, 2016). In particular, imagining our original
wavemaker to represent a localized vortex seeded in the shear flow, the issue is whether
secondary instability can induce a roll up of the defects inside the baroclinic critical layers
to create new vortices that can in turn act as new wavemakers. Provided the new vortices
are sufficiently strong to initiate a self-perpetuating cycle, we may provide a theoretical
underpinning for the numerical observations. We return to this particular motivating issue
in our concluding discussion.

The organization of the paper is as follows. In § 2, we give the mathematical model
and briefly review our previous paper: we show the secular growth of linear waves in the
critical layer, which then forces a mean-flow defect. Then we diverge from our previous
paper in studying the mean flow’s nonlinear feedback to the fundamental wave, and
instead, we embark on a new route of exploring the secondary instability induced by the
mean-flow defect. In § 3, we use the method of matched asymptotic expansions to build
a reduced model which compactly describes the leading-order dynamics of the secondary
instability. We solve the linear instability problem analytically in § 4, emphasizing its
unusual properties endowed by the unsteadiness of the mean-flow defect. The subsequent
nonlinear evolution is solved numerically in § 5, showing the defect rolling up into vortices,
and we also give a comment on how the secondary instability could enable the replication
of zombie vortices. Discussion and concluding remarks are given in § 6.

2. Mathematical formulation and background

2.1. Model and governing equations
As sketched in figure 1, the basic flow has a horizontal velocity U = Λy pointing in the
x-direction, with a shear rate Λ in the y-direction. The fluid has reference density ρ0 and
is uniformly stratified with buoyancy frequency N. The domain rotates around the vertical
z-axis at rate Ω . A steady wavemaker with horizontal and vertical wavenumbers kx and kz
is imposed at y = 0. We define the dimensionless parameters N = N/Λ and f = 2Ω/Λ,
and non-dimensionalize the length, time, velocity, pressure and density by k−1

x , Λ−1,
Λk−1

x , ρ0Λ
2/(kxg) and ρ0Λ

2/(kxg), respectively, where g is the gravitational acceleration.
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If (u, v, w, ρ, p) represent the perturbations to the three velocity components, density and
pressure imposed on the basic state, the governing equations are

ut + yux + (1 − f )v + uux + vuy + wuz = −px + ν̃∇2u, (2.1)

vt + yvx + fu + uvx + vvy + wvz = −py + ν̃∇2v, (2.2)

wt + ywx + uwx + vwy + wwz = −pz − ρ + ν̃∇2w, (2.3)

ρt + yρx − N 2w + uρx + vρy + wρz = χ̃∇2ρ − λ̃ρ, (2.4)

ux + vy + wz = 0, (2.5)

where the (x, y, z, t) subscripts represent partial derivatives, and viscosity and diffusion
of density perturbations (i.e. temperature) are included, with dimensionless strengths of ν̃

and χ̃ (the dimensional kinematic viscosity and diffusivity scaled by Λ/k2
x ). In view of

astrophysical applications, we focus on the limit where ν̃ and χ̃ are small, and also include
a term representing Newton cooling in (2.4), with parameter λ̃. An equation for the vertical
component of vorticity follows from (2.1) and (2.2):[

∂

∂t
+ ( y + u)

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
− wz − ν̃∇2

]
(vx − uy + f − 1) + wxvz − wyuz = 0.

(2.6)

To continuously force waves into the system, we introduce an idealized wavemaker
at y = 0. Booker & Bretherton (1967), Stewartson (1978) and Warn & Warn (1978) all
adopted a wavy boundary for this task. Here, however, we adopt a different forcing more
equivalent to the initialization of the simulations by Marcus et al. In particular, we place
a localized strip of vorticity at y = 0 that introduces a jump in the tangential velocity but
leaves the normal velocity continuous:

u|y=0+ − u|y=0− = ε0 exp(ix + imz) + c.c., v|y=0+ = v|y=0−, (2.7a,b)

where ε0 is a small number representing the strength of the forcing, m is the ratio of
vertical to horizontal wavenumbers, and c.c. represents the complex conjugate. The forcing
is switched on at t = 0, and remains fixed throughout, with our main objective being to
study the evolution of the baroclinic critical layers that are thereby forced. Consequently,
we ignore any structure and the evolution of the forcing itself; we return to this limitation
and its possible impacts in our conclusions.

The disturbances are assumed to decay for |y| � 1 and satisfy periodic boundary
conditions in x and z; in practice, we assume the same periodicity as the forcing.
As in Wang & Balmforth (2020), we assume that the flow is linearly stable: we take
f ( f − 1) > 0 to eliminate the centrifugal instability (Emanuel 1994); the lack of any
reflective boundaries removes the possibility of the strato-rotational instability (Vanneste
& Yavneh 2007; Wang & Balmforth 2018).

2.2. The linear non-dissipative baroclinic critical layer
In inviscid, non-diffusive linear theory, we neglect all the nonlinear and dissipative terms
in (2.1)–(2.5). Outside the baroclinic critical layers surrounding y = ±N , the flow is
characterized by a steady wave solution of the form,

(u, v, w, p, ρ) = ε[ûI( y), v̂I( y), ŵI( y), p̂I( y), ρ̂I( y)] exp(ix + imz) + c.c., (2.8)

where the amplitudes, identified by the subscript ‘I’, satisfy a second-order differential
equation (Wang & Balmforth 2020). However, the solution remains time dependent near
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the critical levels. Focusing on the level at y = N , one finds

p → εA exp(ix + imz) + c.c., for y → N , (2.9)

where ε, related to ε0, gauges the strength of the forcing at the baroclinic critical layer, so
that |A| = 1 and A encodes a complex phase dictated by p̂I( y) (Wang & Balmforth 2020).
The remainder of the time-dependent solution near this particular critical level depends on
the rescaled variables,

Y = y − N
δ

, T = δt (2.10a,b)

where δ is a small parameter measuring the length scale of the critical layer, such that

(u, v, w, ρ) = ε[uI(Y, T), vI(Y, T), δ−1wI(Y, T), δ−1ρI(Y, T)] exp(ix + imz) + c.c.
(2.11)

Substituting into the linear, non-dissipative versions of (2.3) and (2.4), we obtain, to
leading order (

∂

∂T
+ iY

)
ρI = −1

2
mNA, w1 = i

N ρI. (2.12a,b)

With the initial condition, ρI → 0 as T → 0, we solve (2.12a,b) to obtain

ρI = 1
2

imNA
1 − e−iYT

Y
. (2.13)

This solution illustrates the linear growth of the density and vertical velocity perturbations
over an increasingly narrow critical layer with Y = O(T−1) or y = N + O(t−1). From the
leading order of (2.5) and (2.1), we further derive

vIY = −imwI, uI = i(1 − f )vI − A
N . (2.14a,b)

The second critical layer at y = −N is treated similarly, with the spatial symmetry of
the problem ensuring that no separate considerations are required (Wang & Balmforth
2020). Note that δ is not prescribed for this derivation (and, indeed, (2.11) is independent
of δ when expressed in terms of t and y); this scale becomes selected, however, in the
developments of § 3. Also, in (2.14a,b) and below, we extend our shorthand subscript
notation for derivatives to Y , T , a rescaled coordinate ξ and a phase variable θ .

2.3. The mean-flow response in a non-dissipative critical layer
To find the mean-flow response within the critical layer at y = N , we set

(u, v, w, ρ, p) = ε[uI(Y, T), vI(Y, T), δ−1wI(Y, T), δ−1ρI(Y, T), pI(Y, T)]

× exp(ix + imz) + c.c.

+ ε2[δ−2u0(Y, T), 0, δ−2w0(Y, T), δ−2ρ0(Y, T), p0(Y, T)] + · · · ,

(2.15)

where spatial periodicity in x and z and the decay for |y| � 1 removes any mean-flow
component to v, and the omitted terms include an O(ε2) first harmonic and higher-order
corrections (cf. Wang & Balmforth 2020). Substituting (2.15) into (2.1)–(2.5) and

917 A48-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

29
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.297


C. Wang and N.J. Balmforth

extracting the mean-flow components, we find

u0T = imwIu∗
I − v∗

I uIY + c.c., p0Y = imwIv
∗
I − v∗

I vIY + c.c.,

ρ0 = −v∗
I wIY + c.c., −N 2w0 = −v∗

I ρIY + imw∗
I ρI + c.c.

}
(2.16a–d)

Substituting (2.13) and (2.14a,b) into (2.16a) and then integrating now yields

u0 = m2

N
cos YT − 1

Y2 . (2.17)

Wang & Balmforth (2020) show that when t = O(ε−2/3) and δ = ε2/3, the mean flow
feeds back on to the linear solution (2.13), halting the secular growth. However, in the
next section, we will see that a secondary instability can arise for earlier times, and, in
particular, when the mean vorticity gradient becomes order one. From (2.17), we see that
this demands that ε2δ−2u0yy = O(ε2δ−4) = O(1), or δ = ε1/2, which sets the stage for our
matched asymptotic analysis.

3. The reduced model

As indicated above, the structure of the solution consists of an outer region, in which
the O(ε) disturbance forced by the wavemaker is quasi-steady, that is coupled to inner
regions of thickness O(ε1/2) surrounding the baroclinic critical levels where evolution
takes place over an O(ε−1/2) time scale. We further take the distinguished limit in which
the dissipative terms only enter the problem within the critical layers where the fine length
scale and slower time promote their importance, leading us to the rescalings

ν̃ = ε3/2ν, χ̃ = ε3/2χ and λ̃ = 2ε1/2λ. (3.1a–c)

As in Wang & Balmforth (2020), the problem possesses an important symmetry about
y = 0. For the forced wave, with its two baroclinic critical levels at y = ±N , the symmetry
allows us to consider the spatial half of the problem in y > 0 and thereby focus on
only one of the critical layers. In the secondary instability problem, however, each of
the defects generated at these levels can act as the seed of secondary instability. The
problem is conveniently simplified by focusing on only one of the defects and considering
the disturbances that amplify in its vicinity as a result of a suitable initial perturbation
(cf. figure 1). In this situation, the secondary instability is purely driven by the defect at
y = +N and develops no fine structure near y = −N . In other words, there is only one
effective defect for the secondary instability. Moreover, because the basic flow velocity
is N at the defect, the associated phase velocity of the secondary instability must be N
to leading order, a detail that also follows from the leading-order balances in the critical
layer, and is standard for instability induced by localized defects (Gill 1965; Balmforth
et al. 1997).

3.1. Outer solution
We first consider the evolution of secondary instability in the outer region, i.e. away from
the critical level y = N . Since the instability is primarily generated by the localized defect,
the outer solution features linear quasi-steady waves with phase velocity N and slowly
evolving amplitudes driven by the critical-layer disturbances. The nonlinearity within
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Nonlinear dynamics of forced baroclinic critical layers II

the critical layer also generates a broad spectrum of linear waves for the outer flow. We
therefore set

(u, v, w, ρ, p) = ε[ûI( y), v̂I( y), ŵI( y), p̂I( y), ρ̂I( y)] exp(ix + imz)

+ ε

∞∑
n=1

Φn(T)[ûn( y), v̂n( y), ŵn( y), ρ̂n( y), p̂n( y)] exp(inKθ) + c.c.,

(3.2)

where the second instability is characterized by the phase,

θ = x + mz − N t, (3.3)

and the amplitude Φn of the nth wave component. The wavenumber factor K allows the
secondary instability to have a different fundamental wavelength (2π/K) than the forcing,
although, for simplicity, we restrict the vertical wavenumber to be the same multiple m
of the horizontal wavenumber as the forcing. Given the instability is mainly caused by
horizontal shear, this restriction does not seem particularly limiting and we expect similar
results had we considered other vertical wavenumbers.

The spatial dependence of the outer solution is given by the linear steady wave equation

Pξξ − 2ξPξ

ξ2 − f ( f − 1)
−

[
ξ2 − f ( f + 1)

ξ2 − f ( f − 1)
+ m2 ξ2 − f ( f − 1)

ξ2 − N 2

]
P = 0, (3.4)

with p̂n( y) = P(ξ),
ξ = nK( y − N ) (3.5)

and

ûn = nK[( f − 1)Pξ − ξP]
ξ2 − f ( f − 1)

, v̂n = inK[ξPξ − fP]
ξ2 − f ( f − 1)

,

ŵn = − nmKξP
ξ2 − N 2 , ρ̂n = inmKN 2P

ξ2 − N 2 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.6a–d)

But for the replacement of y by ξ , (3.4) is identical to the equation that must be solved
to determine the outer solution p̂I( y) for the original, quasi-steady forced wave (Wang &
Balmforth 2020). Here, however, we solve this equation with conditions specific to the
secondary instability imposed at y = N (ξ = 0; the distinguished defect) and the singular
points of (3.4). The latter are located at the positions where the coefficients in (3.4) diverge,
namely ξ2 = f ( f − 1) and ξ2 = N 2. The divergences at ξ = ±√

f ( f − 1) (which are
real, given our assumption that f ( f − 1) > 0) correspond to removable singular points
(cf. Vanneste & Yavneh 2007; Wang & Balmforth 2020) and require no special attention.
The singular points at ξ = ±N are genuine and correspond to y = N [1 ± (nK)−1]; these
are the new baroclinic critical levels of the outer (quasi-steady) wave characterizing the
secondary instability, which are displaced from the original baroclinic critical level and
defect at ξ = 0 (y = N ) owing to the different phase speed (see figure 1 and (3.2)).

More specifically, we solve (3.4) subject to the far-field conditions P(ξ) → 0 for ξ →
±∞, together with matching conditions at both the defect (ξ = 0) and the new baroclinic
critical levels ξ = ±N . Importantly, the dynamics at the new baroclinic levels follows
the same pattern as the forced wave at the original baroclinic levels. In particular, for
the time scale and amplitude on which the secondary instability develops, that dynamics
remains linear and can be understood by a similar analysis to that in § 2.2, or its
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Figure 2. The outer quasi-steady wave solution P(ξ) of the secondary instability, m = 1/2, N = 4/3,
f = 4/3.

dissipative generalization. This consideration leads us to demand that P(ξ) be continuous
at ξ = ξB = ±N , but suffers a jump in derivative given by

Limε→0[Pξ ]ξB+ε
ξB−ε = iπm2[N 2 − f ( f − 1)]

2ξB
P(ξB), (3.7)

in the manner of the Lin rule commonly employed for classical critical levels (Lin 1945)
and irrespective of whether there is dissipation or not. Salient details of the calculation are
provided in Appendix A. Note that this condition ensures that P(ξ) is independent of n,
other than through the rescaled coordinate ξ ≡ nK( y − N ).

By contrast, we must deal with a fully nonlinear critical layer at the defect once the
secondary instability emerges, which translates to a non-trivial matching condition. To
pave the way for this matching, we observe the limits,

p̂n = P →
{
( f − 1)[1 + α+ξ + · · · ], ξ > 0 or y > N ,

( f − 1)[1 + α−ξ + · · · ], ξ < 0 or y < N ,
(3.8)

and

v → ε

∞∑
n=1

inKΦn exp(inKθ) + c.c., u → ε

∞∑
n=1

nKΦn
1 − f

f
α± exp(inKθ) + c.c.

(3.9a,b)

The coefficients α± follow from the solution of (3.4) with the far-field conditions and
(3.7). A sample solution for P(ξ) is shown in figure 2.

3.2. Inner region
The inner region has a length scale O(ε1/2) surrounding the critical level y = N , and
evolves in a slow time scale of O(ε−1/2). Therefore, we introduce the rescalings

T = ε1/2t, Y = ( y − N )

ε1/2 (3.10a,b)

to resolve the dynamics in the critical layer. Because the secondary instability is essentially
a horizontal shear instability driven by the mean-flow defect, the leading-order dynamics
is described by a single evolution equation for the vertical component of vorticity, as we
elaborate below.
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We search for a local solution given by

(u, v, w, ρ, p) = ε[uI(Y, T), vI(Y, T), ε−1/2wI(Y, T), ε−1/2ρI(Y, T), A(T)]

× exp(ix + imz) + c.c.

+ ε[U(Y, T), 0,W(Y, T),G(Y, T), 0] · · ·
+ ε[uII(θ, Y, T), vII(θ, T), wII(θ, Y, T), ρII(θ, Y, T), pII(θ, T)], (3.11)

which combines the primary forced wave, the mean-flow response (promoted to O(ε) by
the choice δ = ε1/2) and the secondary instability, identified by the subscript ‘II’. The
amplitude of the secondary instability is taken to be O(ε), which corresponds to the
magnitude for which its nonlinear effect becomes felt within the inner region, as will
become apparent shortly. Both the primary forced wave and the secondary instability
have zero average over the phases x + mz and θ = x + mz − N t (by definition for the
latter). In (3.11), we have used the fact that the y-component of the momentum equation
(2.2) demands that pressure fields associated with the primary wave and the secondary
instability are independent of Y to leading order. Similarly, the continuity equation (2.5)
demands that the leading order vII is also independent of Y (given vIIY = −ε1/2(uIIθ +
mwIIθ )).

We now substitute this local solution into (2.1)–(2.5). In view of the breakdown of the
solution and the manner in which its components scale with ε, some book-keeping is
required to develop the equations and derive the reduced model. In particular, we must
keep track of some of the higher-order terms in these equations in order to extract equations
for the mean flow and secondary instability beyond the leading-order relations satisfied
predominantly by the forced wave. Nevertheless, much of the detail can be avoided by
exploiting the vertical vorticity equation in (2.6), after noting an important property of
the secondary instability. In particular, at O(ε1/2), the density equation (2.4) recovers the
forced-wave relation between wI and ρI in (2.12a,b). But the O(ε) terms that follow can
be split up into the corrections to this forced-wave relation, a mean-flow equation and
a condition on the secondary instability that demands that wII = 0. That is, the vertical
velocity component of the secondary instability is relatively small, highlighting how it
corresponds closely to a two-dimensional horizontal shear instability.

Advancing to the vertical vorticity equation in (2.6), at leading order O(ε1/2) we
recover only a known forced-wave relation between uIY and wI equivalent to (2.14a,b). The
O(ε) terms, however, involve the interaction between various components. As elaborated
by Wang & Balmforth (2020) and in § 2.3, the forced wave nonlinearly generates the
mean-flow defect and first harmonic. The dynamics that we focus on here, however,
is the interaction between the secondary instability and the mean flow: collecting the
components with phase θ = x + mz − N t at order O(ε) yields the vorticity equation

ZT + YZθ + ΦθZY − ΦθUYY = νZYY , (3.12)

where we have introduced the local vorticity Z and stream function Φ, satisfying

Z = −uIIY and vII = Φx = Φθ. (3.13a,b)

Once (3.12) is satisfied, the remaining O(ε) terms in (2.14a,b) are generated by the
interaction between the forced wave and the secondary instability, with phase other than
x + mz and x + mz − N t. But because y = N is neither a baroclinic critical level nor a
classical critical level for waves with such phases, these forcing terms must be countered
by solution components that appear as part of the O(ε3/2) corrections to (3.11) and can
therefore be ignored.
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To determine the mean-flow vorticity gradient UYY in (3.12), we return to (2.3), (2.4)
and the phase-average of (2.1), which imply

ρIT + iYρI + 1
2

mNA = 1
2
(χ + ν)ρIYY − λρI and UT = m

N 2 (A∗ρI + Aρ∗
I ) + νUYY .

(3.14a,b)
Without dissipation, these last relations may be solved to recover (2.17).

3.3. Matching
The inner and outer solutions are connected together by matching the cross-stream velocity
v and the jump of the tangential streamwise velocity u. We first represent the stream
function Φ of the inner solution by its Fourier components:

Φ =
∞∑

n=1

Φn exp(inKθ) + c.c. (3.15)

Hence, because vII ≡ Φθ is independent of Y (and the solutions are scaled in the same
way), this velocity component immediately matches to the outer solution for v given by
(3.9a). Next, we match

[uII]∞Y=−∞ ≡ −
∫ ∞

−∞
Z(θ, Y, T) dY (3.16)

with the jump condition implied by (3.9b), which gives

Φn = f
2π( f − 1)nα

∫ 2π/K

0

∫ ∞

−∞
Z exp(−inKθ) dY dθ, (3.17)

where α+ − α− = α.
The matching of the forced wave is accomplished by Wang & Balmforth (2020); the

analogous result to (3.17) is the integral relation

Ar = c0 − 2c2

πmN
∫ ∞

−∞
ρIi dY and Ai = 2c1

πmN
∫ ∞

−∞
ρIr dY, (3.18a,b)

where the subscripts r and i refer to the real and imaginary parts, and c0, c1 and c2 are
constants determined by the outer steady wave solution. Alternatively, given the solution
for ρI(Y, T) (as given below in § 4.1),

A = Ar + iAi = c0(1 − ic1)

1 + c1c2
. (3.19)

Note that |c0| ≡ |1 + c1c2|/
√

1 + c2
1, ensuring |A| = 1.
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3.4. The reduced model and the conservation laws
In summary, our model for the secondary instability takes the form,

ZT + YZθ + ΦθZY − ΦθUYY = νZYY , (3.20)

Φ =
∞∑

n=1

Φn exp(inKθ) + c.c., Φn = f
2π( f − 1)nα

∫ 2π/K

0

∫ ∞

−∞
Z exp(−inKθ) dY dθ.

(3.21a,b)
Given that |A| = 1, we further set ρI = AR, to find

RT + iYR + 1
2

mN = 1
2
(χ + ν)RYY − λR and UT = m

N 2 (R + R∗) + νUYY ,

(3.22a,b)
which governs the evolution of the mean-flow defect.

Equations (3.20), (3.21a,b) and (3.22a,b) constitute the reduced model for the nonlinear
evolution of the secondary instability. For the boundary conditions, we observe that the
vertical vorticity, mean flow and density perturbation must all become smaller by O(ε1/2)
outside the inner region, and so (Z,U , ρI) → 0 for Y → ±∞. The initial conditions
are Z(θ, Y, 0) = Z0(θ, Y) and U(Y, 0) = R(Y, 0) = 0, where we prescribe the kick that
brings the secondary instability into action in terms of a small initial vertical vorticity
distribution Z0 localized at the defect surrounding y = N .

The system has a number of conservation laws: let

〈· · · 〉 =
∫ ∞

−∞

∫ 2π/K

0
· · · dθ dY, (3.23)

then from (3.20) and (3.21a,b), the secondary instability satisfies

〈Z〉T = 0, or 〈Z〉 = 0, (3.24)

and

〈YZ〉T = 0,

[〈
1
2

Y2Z
〉
−

∞∑
n=1

2π( f − 1)nα

f
|Φn|2

]
T

= 0, (3.25a,b)

which correspond to the conservation of vorticity, momentum and energy within the
critical layer. Independently of these, when the flow is non-dissipative, the forced wave
satisfies the conservation laws(

U + 2
N 3 |R|2

)
T

= 0 and
d

dT

∫ ∞

−∞
1
2

Y|R|2 dY = 0. (3.26a,b)

The first of these relates the mean-flow defect to the pseudo-momentum of the forced
wave; the second corresponds to energy conservation for the linear theory and is
the simplification of a more complicated conservation law applying in the nonlinear
critical-layer theory presented by Wang & Balmforth (2020).

The conservations laws in (3.25a,b) and (3.26a,b) emphasize how the energetics of the
secondary instability is decoupled from that of the forced wave. Any growth of Φ(θ, T)

must therefore be accounted for by the rearrangement of the background linear shear.
In other words, the secondary instability does not draw energy from the forced wave,
which instead acts as the catalyst to release the kinetic energy of the underlying base flow.
Note that (3.25a) also implies that there is no net momentum transport by the secondary
instability; the mean defect, however, does transport momentum to the baroclinic critical
layer, as we expose more clearly in § 4.1.

917 A48-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

29
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.297


C. Wang and N.J. Balmforth

4. Linear secondary instability

We first study the linear instability of the reduced model, and then address the later
nonlinear evolution in § 5. For small initial disturbances, we neglect the nonlinear term
ΦθZY in (3.20) and analyse the single Fourier component:

Φ = Φ1(T) eiKθ + c.c. and Z = Z1(Y, T) eiKθ + c.c. (4.1a,b)

The linear instability problem then becomes

Z1T + iKYZ1 = iKΦ1UYY + νZ1YY , (4.2)

Φ1 = f
( f − 1)Kα

∫ ∞

−∞
Z1 dY, (4.3)

along with (3.22a,b) for the mean defect.

4.1. Mean defect
To solve the equations for mean dissipative defects, we employ a Fourier transform in Y:
denoting the transform variable as q and adding a hat decoration to identify transformed
quantities, we have

R̂T − R̂q + 1
2 (χ + ν)q2R̂ + λR̂ = −πmN δ(q), (4.4)

ÛT + νq2Û = m
N 2 [R̂(q, T) + R̂∗(−q, T)]. (4.5)

We may use the method of characteristics to integrate these equations. For the first equation
we find

R̂(q, T) = −πmN exp
[

1
6 (χ + ν)q3 + λq

]
H(q + T)H(−q), (4.6)

or

R = −1
2 mN

∫ 0

−T
exp

[
1
6 (χ + ν)q3 + λq + iqY

]
dq, (4.7)

where H(x) is the step function. Introducing this result into the second equation furnishes

Û(q, T) = πm2

N
exp(ν|q|3 − νq2T) − 1

νq2 exp
[
−1

6
(χ + ν)|q|3 − λ|q|

]
H(T − |q|), (4.8)

or

U = m2

2N
∫ T

−T

exp(ν|q|3 − νq2T) − 1
νq2 exp

[
−1

6
(χ + ν)|q|3 − λ|q| + iqY

]
dq. (4.9)

The defect is illustrated in figure 3 for λ = 0 and three choices for the other
dissipative parameters, χ and ν. Figure 3(a) shows the sharpening defect of the
inviscid problem; the peak speed increases quadratically with time. With diffusion of
density but no viscosity (χ > 0 and ν = 0; figure 3b), the sharpening of the defect
is halted, leaving a peak speed that increases only linearly with time with U(0, T) ∼
−21/6πm2T/[34/3χ1/3Γ (2

3 )N ] (where Γ (x) is the Gamma-function); simultaneously, the
density perturbation ρI reaches steady state (see Wang & Balmforth 2020). Finally, the
defect stops narrowing and begins to spread viscously for ν > 0, leading to a peak speed
U(0, T) ∼ −(m2/N )

√
πT/ν (figure 3c). Defects with λ > 0 and χ = ν = 0 behave much
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Figure 3. Solutions for the mean-flow defect (plotting −2NU/m2 against Y and T) for (a) (χ, ν) = (0, 0),
(b) (χ, ν) = (1/4, 0) and (c) (χ, ν) = (0, 1/4).

like those with thermal diffusion alone, Newton cooling allowing the density to again reach
steady state.

The explicit solution in (4.8) permits one to construct the momentum transport into
the baroclinic critical layer by the forced wave: in terms of the original variables, the net
transfer of momentum is given by

ε3/2
∫ ∞

−∞
U dY = ε3/2Û(0, ε1/2t) = −πm2

N ε2t. (4.10)

This relatively weak transfer by the forced wave constitutes the only such transport in our
model (the net momentum of the secondary instability being conserved; see § 3.4), which
may have some relevance to accretion disks or geophysical flows.

4.2. Non-dissipative normal-mode instability
Although the mean-flow defect U is unsteady, one is tempted to solve (4.2) and (4.3) as
a standard linear stability problem by freezing the base flow at each moment in time,
which is a common, if opaque, approximation. Before providing a true solution of the
full linear initial-value problem in § 4.3 below, we first consider this approximation for
the non-dissipative problem (χ = ν = λ = 0), in order to gauge its fidelity and gain some
first insights. We therefore ignore the time dependence of U for the time being and set
(Z1, Φ1) = (Ž1, Φ̌1) exp(−iKCT), where C = Cr + iCi is the rescaled phase speed of the
normal-mode disturbance to arrive at

Ž1 = Φ̌1UYY

Y − C
and

∫ ∞

−∞
UYYdY
Y − C

= Kα( f − 1)

f
, (4.11a,b)

where, as in (2.17), the mean-flow defect is given by U ≡ m2N−1Y−2(cos YT − 1). We
may therefore set η = YT and rewrite the dispersion relation as∫ ∞

−∞
[η−2(cos η − 1)]′′ dη

η − CT
=

∫ ∞

−∞
2(cos η − 1) dη

η2(η − CT)3 = KαN ( f − 1)

m2fT4 ≡ J
T4 . (4.12)

The unstable modes, which arise in complex conjugate pairings, appear at bifurcation
points with TCr = ±ηj, where ηj > 0 denote the positive zeros of [η−2(cos η − 1)]′′ (i.e.
the inflexion points of U ), of which there are infinitely many, which we order so that
η1 < η2 < ... Only those zeros for which J[η−2(cos η − 1)]′′′ < 0 act as bifurcation points
(a Fjortoft-type result), implying TCr = ηj(−1) jsgn(J).
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Figure 4. Solutions of the dispersion relation. (a) The lowest five solutions for the real and imaginary parts
of CT against |J|/T4; the dotted lines and stars indicate ηj and the bifurcation points. Red (blue) lines
show the modes with JCr < 0 (JCr > 0). In panel (b), we take J = −1 and plot C against T; the limiting
T−1-dependence of the higher modes with j > 1 is indicated by the dotted lines. The (black) dashed lines in
panels (a,b) show the asymptotic limit in (4.13) for j = 1.

Sample roots of the dispersion relation are shown in figure 4. Considering the plots of
CT against |J|/T4 in figure 4(a), we see that each mode becomes unstable for |J|/T4 less
than a critical value (indicated by the stars). For |J|/T4 → 0, the eigenvalues of all but the
first mode approach constant values (implying C = O(T−1)); the first mode has the limit

2
C3T3

∫ ∞

−∞
(1 − cos η)

dη

η2 ≡ 2π

C3T3 ∼ J
T4 or C ∼

(
πT
4|J|

)1/3

[−sgn(J) + i
√

3].

(4.13)

Given that the first, most unstable, mode has time dependence exp(−iKCT), we find an
exponent

− iKCT ∼ 1
2
|σK|1/3T4/3

[√
3 − i sgn(σK)

]
with σK = − 2πm2K2f

N ( f − 1)α
, (4.14)

which acquires a T4/3 factor due to the increase of the growth rate with time. This exponent
increases with K, implying that the problem may become ill-posed at late times. However,
the power-law growth of the exponent suggests that the frozen-base-state approximation
may not be accurate. We confirm this subsequently by solving the linear initial-value
problem instead.

Note that the phase speed of the most unstable normal mode is dictated by −sgn(J),
or equivalently −sgn(α), which is positive for all the conditions we have explored.
The strongest instability therefore has positive phase speed, implying that the associated
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classical critical level Y = Cr > 0 is located where the defect vorticity −UY is negative
(see figure 3). Although the normal-mode analysis is crude in view of the time-dependent
base state, we see in § 4.4 that the same critical-level structure also develops for the
solution of the non-dissipative linear initial-value problem. This suggests that the main
effect of the secondary instability will be to roll up that side of the defect, a feature that
we observe in the numerical computations of § 5.

4.3. The linear initial-value problem
To solve directly the linear initial-value problem for the secondary instability induced by
an unsteady defect, we again apply a Fourier transforms in Y: the transform of (4.2) gives

Ẑ1T − KẐ1q + νq2Ẑ1 = −iKq2Φ1Û , (4.15)
which can again be integrated to find

Ẑ1(q, T) = exp{ν[q3 − (q + KT)3]/(3K)}Ẑ10(KT + q)

− iK
∫ T

0
(q + KT − KT̃)2Φ1(T̃)Û(q − KT̃ + KT, T̃)

× exp{ν[q3 − (KT − KT̃ + q)3]/(3K)} dT̃, (4.16)

where Z1(Y, 0) = Z10(Y) or Ẑ1(q, 0) = Ẑ10(q). But, in view of (4.3),

Φ1(T) = f
αK( f − 1)

∫ ∞

−∞
Z1(Y, T) dY ≡ f Ẑ1(0, T)

αK( f − 1)
, (4.17)

and so

Φ1(T) = S(T) − 1
2 iσK

∫ T

KT/(K+1)

I(T, T̃)Φ1(T̃) dT̃, (4.18)

where

I(T, T̃) = 1 − exp[νK
2(T − T̃)2(KT − KT̃ − T̃)]

νK2

× exp
{
−1

6
[Kχ + (K + 2)ν]K

2(T − T̃)3 − λK(T − T̃)

}
, (4.19)

S(T) = f Ẑ10(KT)

( f − 1)Kα
exp

(
−1

3
νK

2T3
)

= Φ1(0)
Ẑ10(KT)

Ẑ10(0)
exp

(
−1

3
νK

2T3
)

, (4.20)

and σK is given in (4.14). Equation (4.18) constitutes an integral equation for the amplitude
of the secondary instability; the term denoted by S(T) represents a viscously damped
shear-tilting contribution from the initial condition (the first term on the right of (4.16)).

By way of illustration, we consider the simple example in which Φ1(0) = 1 and
Ẑ10(KT) = Ẑ10(0) (or Z1(Y, 0) ∝ δ(Y)), implying S(T) ≡ exp(−1

3νK
2T3). In this case, a

small-time solution to (4.18) is obtained by treating Φ1(T̃) as constant inside the integral,
to furnish

Φ1(T) ∼ exp
(

−1
3
νK

2T3
)[

1 + 1
2

iσK

∫ T

KT/(K+1)

I(T, T̃) dT̃
]−1

(4.21)

∼ 1 − 1
3
νK2T3 − iσKT4

24(K + 1)3 + · · · (4.22)
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4.4. Non-dissipative limit
For non-dissipative flow, further simplifications are possible, and one can extract explicitly
the large-time behaviour of the secondary instability. For (χ, ν, λ) → 0, the integral
equation (4.18) reduces to

Φ1(T) = 1 − 1
2 iσK

∫ T

KT/(K+1)

Φ1(T̃)(T̃ − T)2[(K + 1)T̃ − KT] dT̃. (4.23)

This equation is equivalent to a delay-differential equation of the form,

Φ1TTTT + iσK[(TΦ1)T − 3KΦ1] = delay (4.24)

where the terms on the right-hand side denoted ‘delay’ involve the function
Φ1(KT/(K + 1)), which are small in comparison with those on the left-hand side when
the solution grows exponentially with time (as will become apparent below). We therefore
neglect the right-hand side for large times and find the Wentzel-Kramers-Brillouin (WKB)
solution:

Φ1 ∼ a
TK+1/3 exp

{
3
8

[
√

3 − i sgn(σK)]|σK|1/3T4/3
}

, (4.25)

where a is a constant.
This large-time solution can be determined more directly from (4.23) by noting that

the integral is dominated by a small interval near the upper limit when Φ1(T) grows
exponentially. Setting Φ1 ∼ eΘ(T) and Taylor expanding the integrand about T̃ = T then
furnishes 1 ∼ −iσKT(Θ ′)−3, which gives a result equivalent to (4.25). A similar strategy
may be used to find an approximation for Z1(Y, T), which in the non-dissipative limit is
given by

Z1 = Z10(Y) exp(−iKYT) + iK
∫ T

0
Φ1(T̃)UYY(Y, T̃) exp[iKY(T̃ − T)] dT̃

∼ Φ1(T)UYY(Y, T)

Y − iΘ ′/K
, (4.26)

for large times.
Comparing (4.25) to the normal-mode solution in (4.14), we see that the latter misses

the algebraic factor of T−1/3−K and provides an incorrect constant in the exponent, but
otherwise predicts the correct exponential dependence on time T and wavenumber K. Thus,
the frozen-base-state approximation is quantitatively incorrect, but does correctly establish
the existence of secondary instability at late times. Despite this, the asymptotic solution
for Z1(Y, T) in (4.26) matches the normal-mode form in (4.11a) (with a suitably chosen
instantaneous phase speed). In particular, the solution in (4.26) possesses an analogue of
the classical critical level of the most unstable normal mode of § 4.2.

Figure 5 displays a numerical solution to the integral equation in (4.23) for a secondary
instability with the wavenumber of the forcing (K = 1), and illustrates its convergence to
the small and large time limits in (4.22) and (4.25), respectively. Much like the mean-flow
defect, the scaled vorticity perturbation Z1(Y, T)/Φ1(T) narrows and strengthens with
time (figure 5c), matching well with the prediction in (4.26).

Solutions for different wavenumbers are shown in figure 6. The subharmonics (K < 1)
grow more weakly than the forced wavnumber (K = 1); the harmonics (K > 1) also grow
less quickly initially, but then amplify more strongly at late times. Evidently, as predicted
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Figure 5. Secondary instability of non-dissipative (χ = ν = λ = 0) disturbances for K = 1, showing (a)
Re(Φ1) and (b) Im(Φ1) for σ1 = 0.59 (m = 1/2, f = 4/3, N = 4/3). The dotted and dashed lines show the
early and late-time solutions in (4.22) and (4.25), respectively. The amplitude of the large-time solution is fixed
by the final value of the numerical solution. In panel (c), snapshots of Z1(Y, T)/Φ1(T) are plotted at the times
T = 6, 7, . . . , 20; the dashed lines show the prediction in (4.26) at the final time.
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Figure 6. Secondary instability of non-dissipative (χ = ν = λ = 0) disturbances with (a) K ≤ 1 and (b) K ≥
1, for σ1 = 0.59 (m = 1/2, f = 4/3, N = 4/3). The dotted and dashed lines show the early and late-time
solutions in (4.22) and (4.25), respectively. The amplitudes of the large-time solutions are fixed by the final
value of the numerical solutions.

by the normal-mode analysis and the WKB solution, the exponential amplification
diverges with wavenumber at late times, a feature arising because of the continued growth
of the mean-flow defect. In order to remove this divergence, dissipation must be included.
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Figure 7. (a) Secondary instability amplitudes |Φ1(T)| and (b) instantaneous growth rates (log |Φ1(T)|)T for
the values of χ indicated, with K = 1, ν = λ = 0 and σ1 = 0.59. The dotted line shows the early-time solution
in (4.21) for χ = 6. The dashed line in panel (b) shows (4.25). (c) Snapshots of Z1(Y, T)/Φ1(T) for χ = 1 at
the times T = 20, 40, . . . , 200.

4.5. Effects of dissipation
With viscosity or density diffusion, the solution of the initial-value problem is less explicit,
and we mostly resort to numerical strategies to solve the integral equation. As we will see,
these two types of dissipation play very different roles in the secondary instability. On the
other hand, as apparent in (4.18) and (4.19), Newton cooling parametrized by λ plays a
similar role to density diffusion, so, hereon, we focus on the latter and set λ = 0.

The impact of density diffusion (χ > 0; ν = 0) on the secondary instability is illustrated
in figure 7. The dissipative effect restricts growth at early to moderate times, with the
solution following (4.22). However, beyond some ‘waiting’ time dependent on χ , the
secondary instability again kicks in, with Φ1(T) eventually converging to the long-time
non-dissipative solution in (4.25). Thus, when viscosity is absent, density diffusion can
only delay the secondary instability and its short-wavelength divergence (rationalization
of this observation is provided in Appendix B, together with other details of the long-time
asymptotics). Although the mode amplitude therefore grows eventually in the same manner
as without diffusion, the scaled vorticity perturbation Z1(Y, T)/Φ1(T) is nevertheless
modified, with diffusion halting any decrease in length scale, as for the mean defect
(compare figure 7(c) with 3(b)).

The addition of viscosity (ν > 0) is more dramatic, as illustrated in figure 8 for K = 1.
This second dissipative effect genuinely reduces the secondary instability and removes
it entirely if ν is sufficiently large. Simultaneously, the vorticity perturbation develops
a spatial structure closer to a normal-mode form (i.e. Z1/Φ1 maintains nearly the same
profile as the disturbance evolves; see figure 8c). Evidently, as highlighted by the plots
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Figure 8. (a) Secondary instability amplitudes |Φ1(T)| and (b) instantaneous growth rates (log |Φ1(T)|)T for
the values of ν indicated, with K = 1, χ = λ = 0 and σ1 = 0.59. The dotted and dashed lines in panel (b) show
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Figure 9. (a) Secondary instability amplitudes |Φ1(T)| for ν = 0.01 (solid) and 0.1 (dashed) at the values of K

indicated, with χ = λ = 0 and σ1 = 0.59. (b) Late-time (at T = 20) instantaneous growth rate (log |Φ1(T)|)T
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non-dissipative WKB solution (4.25), 1
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√
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of the instantaneous growth rate in figure 8(b), when perturbations become damped, they
decay exponentially with time (cf. Appendix B). The situation is more complicated if
viscosity is not sufficiently strong to remove the secondary instability; arguments provided
in Appendix B suggest that the secondary instability ultimately grows exponentially
with T1/2. The emergence of this very late-time behaviour is visible in figure 8(b) for
a subset of the solutions.
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As illustrated in figure 9 for χ = 0, the stabilization of the secondary instability when
ν > 0 is more pronounced at higher wavenumber K. Indeed, viscosity evidently suppresses
the late-time, short-wavelength divergence of the inviscid problem. For example, for
ν = 0.1, the instability becomes restricted to modes with K < 6 (as measured by the
instantaneous growth rate (log |Φ1(T)|)T at T = 20, which is plotted in figure 9(b) for
modes with varying K and ν), and all wavenumbers decay for ν > 0.29.

When ν and χ (or equivalently λ) are both finite, the effect on the secondary instability
is somewhat equivalent to a combination of the trends seen in figures 7–9. Notably, the
viscosity required to eliminate secondary instability becomes dependent on the degree of
thermal dissipation. Thus, the instability threshold in ν (which we identify as a critical
Reynolds number in § 6) depends on χ and λ, as well as the basic flow structure, which is
represented through σ1.

5. Nonlinear secondary instability

5.1. Computational details
To explore the fate of the secondary instability once it reaches the nonlinear stage, we solve
numerically the reduced model in (3.20), (3.21a,b) and (3.22a,b). To deal with the vorticity
equation, we use a split-step, semi-Lagrangian advection scheme based on the algorithm
of Cheng & Knorr (1976), which can be supplemented with a third step to accommodate
viscosity. The scheme advects and diffuses the combination Z − UY ; the main difference
with the original algorithm is that the unsteadiness of the defect introduces an additional
inhomogeneous forcing term, which is straightforwardly accommodated into one of split
steps. The density perturbation ρI and the mean-flow defect U are obtained by quadrature
from (4.7) and (4.9). As |Y| → ∞, the vorticity has the far-field form, Z ∼ Y−5, allowing
us to truncate the spatial domain and impose the boundary condition Z = 0 at values
of |Y| around 10. For most of the computations, we use a resolution of 0.02 × 0.03; in
computations with lower values for ν, where the flow develops very fine spatial scales, we
reduced this to 6 × 10−3 in θ and 7 × 10−3 in Y .

For the most part, we set

Z0 = 0.01 exp
(

− Y2

0.1

)
cos θ, (5.1)

for the initial condition, which excites a single Fourier mode with K = 1. We also ran
simulations with an alternative initial condition given by the 2π−periodic extension of

Z0 = 0.01 exp
(

−θ2 + Y2

0.01

)
, (5.2)

which excites a wider and flatter spectrum of Fourier modes, to give the opportunity for
secondary instabilities associated with the higher Fourier modes to out-compete that for
n = K = 1.

To present the results, we use the disturbance of vertical vorticity

ζ = −(uIY + UY + uIIY) = Z − UY − uIY (5.3)

(the total vertical vorticity being f − 1 + ε1/2ζ ), and the norm of the stream function

||Φ|| =
√

1
2π

∫ 2π

0
Φ2 dθ ≡

√√√√2
∞∑

n=1

|Φn|2; (5.4)
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Figure 10. Numerical solution for a nonlinear secondary instability with χ = 0, σ1 = 0.59 and the initial
disturbance given by (5.1): (a) Time series of ||Φ(θ, T)|| for the three values of ν indicated. (b,c) Snapshots
of the vertical vorticity ζ(θ, Y, T) defined in (5.3) for the solution with (b) ν = 0.025 and (c) ν = 0.1, plotted
as a density on the (θ, Y)−plane at the times indicated and shown by the circles and stars in panel (a). The
dotted lines in panel (a) indicate the corresponding linear solution from (4.18) with Φ1(0) selected to match
the numerical solution; the inset replots the data with a linear vertical axis. For the last six snapshots in panel
(b), the corresponding stream function Φ(θ, T) is also plotted.

the forced wave, defect and secondary instability all contribute to ζ , whereas ||Φ|| provides
a measure of purely the latter.

5.2. Single-wave excitation
We first display results for computations incorporating viscosity (ν > 0), but not density
diffusion (χ = 0), with the single-mode initial condition (5.1). As shown in figure 10, this
excitation creates a perturbation dominated by the fundamental Fourier mode in θ , which

917 A48-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

29
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.297


C. Wang and N.J. Balmforth

||Φ
||

–4
4 5 6 7 8 9

T = 12

4 5 6 7 8 9

T = 15
–2

0
Y 2

4

6

–4

–6

–5

–4

–3

–2

–1

0

1

2

3

4

4 5 6 7 8 9

T = 24

5 6 7 8 9 10

T = 35
–2

0
Y

2

4

6

–4
2 3 4 5 6 7

T = 20

6 7 8 9 10 11

T = 22
–2

0
Y 2

4

6

0 5 10 15 20 25 30 35

302010
0

2

4
100

10–2

T

(a)

(b)

(c)

(d )

θ θ

Figure 11. Numerical solution for χ = 0.17, ν = 10−4 and σ1 = 0.59, plotting (a) time series of ||Φ|| and (b)
snapshots of ζ at the times indicated (circles in panel (a)). In panel (a), the dashed line shows the linear solution
from (4.18); the inset replots the data with a linear vertical axis. Note that the horizontal axis is shifted for each
snapshot in panel (b) in order to align roughly the winding billow, and the colour mapping is slightly saturated
to emphasize the tertiary instability.

develops initially as predicted by the linear analysis of § 4.5. The figure shows numerical
solutions for viscosities corresponding to ν = 0.025, 0.1 and 0.3. The plot of ||Φ|| in
figure 10(a) demonstrates how the linear instability is removed with ν = 0.3 (cf. § 4.5),
but secondary instability appears after a brief delay for the lower values of ν. Subsequently,
nonlinearity comes into effect to arrest the exponential growth of ||Φ||.

Turning to the snapshots of the vertical vorticity ζ for ν = 0.025 in figure 10(b), we
observe at early times the development of the linear forced baroclinic critical layer (T =
1.8), followed by a strengthening mean-flow defect (T = 5) as outlined in § 2. Around T =
10.4, the secondary instability becomes evident by an undulation of the defect vorticity in
θ . The defect then rolls up, forming a billow with a core of negative vorticity at the centre.
The billow fades and spreads at later times under the action of viscosity. The pattern of
evolution is much the same for ν = 0.1 (figure 10c), except that the final vortex is weaker
and larger, with the drawn-out filaments of vorticity fading faster. Although we did not
attempt an exhaustive search of the parameter space, the common features between the
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solutions in figure 10 illustrates how such dynamics was typical whenever the viscosity ν

was not small (larger than 0.001 or so).
An example of single-mode excitation with thermal diffusion (χ > 0) and much lower

viscosity is shown in figure 11. In this example, the viscosity parameter is sufficiently
small (ν = 10−4) to minimize the effect of viscous smoothing whilst ensuring that the
computation remains resolved. The net result is that the secondary instability evolves
essentially without large-scale viscous effect, but the generation of excessively fine
spatial scales is prevented. As shown in figure 11(a), secondary instability again appears,
amplifies exponentially, and then saturates. Simultaneously, the vertical vorticity ζ once
more rolls up into a billow (figure 11b). This time, however, the winding thin filaments that
constitute the billow do not smooth out and suffer a ‘tertiary instability’ at approximately
T = 20, rolling up into even smaller vortices. The fine spatial scales thereby generated
eventually permit the relatively weak viscosity to exert its effect, smoothing the vorticity
into a final coherent structure similar to that in figure 10. As long as thermal diffusion
was appreciable (χ was not too small), billows acompanied by tertiary instability of the
wound-up filaments characterized our computations at small ν < 10−3, extending the
paradigm of figure 10 to smaller viscosity.

Although the roll up of the defect causes the secondary instabilities in figures 10 and
11 to stop growing exponentially, the late stage of evolution in which the final billow
spreads viscously corresponds to a protracted secular growth of ||Φ|| (see the insets
of figures 10(a) and 11(a)). In fact, the viscous spreading of vorticity within classical
critical layers (Brown & Stewartson 1978) is known to reinvigorate growth after the initial
saturation of linear instability (Churilov & Shukhman 1987; Goldstein & Hultgren 1988;
Balmforth & Piccolo 2001). Evidently, the secondary instability here shares this feature
of the later-time dynamics, although the unsteady forced nature of the problem ensures
that the situation is a little different, with the late-time secular growth of ||Φ|| appearing
similar to that of the mean defect (§ 4.1).

5.3. Multimode excitation
A solution initiated by the multimode excitation in (5.2) is displayed in figure 12. In this
case, the dissipative parameters are set to ν = 0.01 and χ = 0.1, which leads to a wide
range of unstable linear modes of which the most powerful have relatively high values
of K at late times (cf. figure 9; the addition of χ = 0.1 mostly delays the late-time growth
rather than changing its form). Despite this unstable spectrum, the initial condition in (5.2)
projects a little more strongly on the lower modes, such that Φ2(T) and Φ3(T) achieve the
highest amplitudes once the system becomes nonlinear and the linear instabilities saturate
(see figure 12a). The vertical vorticity correspondingly rolls up into three (unequal) billows
(figure 12b). Subsequently, these billows interact, pairing and then merging into a single
coherent vortical structure. As the billows merge, the n = 2 and 3 harmonics weaken, with
fundamental mode Φ1 recovering to dominate at late times. Again, the spreading of the
final coherent structure coincides with a protracted secular growth of ||Φ||.

The nonlinear pairing dynamics seen in figure 12 characterized all of the computations
that we conducted in which multiple billows emerged as a result of the secondary
instability. The generic outcome for any initial condition therefore appears to be a single
coherent structure that spreads viscously with an associated protracted secular growth of
||Φ||. Note that the inclusion of dissipation seems essential to this saturation process of
the secondary instability: computations of the reduced model with either no or very low
dissipation invariably failed as a result of either the generation of excessively fine structure
at the hyperbolic points of the roll up of single-mode excitations (the tips of the billows),
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Figure 12. Numerical solution for χ = 0.1, ν = 0.01 and σ1 = 0.59 with initial condition (5.2): (a) Time
series of the Fourier components of Φ(θ, T) and the norm ||Φ||. (b) Snapshots of Φ(θ, T) and ζ(θ, Y, T) at
the times indicated (circles in panel (a)). In panel (a), the modes with n = 1 to 3 and K = 1 are plotted with the
colour scheme indicated, with the dotted lines displaying the corresponding linear solutions from (4.18); the
next five Fourier modes are plotted in light grey. The inset shows a linear plot of ||Φ||.

or the emergence of a widespread grid instability with multimode initial conditions. Thus,
nonlinearity alone appears to be unable to prevent the divergence of the non-dissipative
secondary instability suggested by linear theory.

5.4. Replication
In view of the matched asymptotic structure of the problem outlined in § 3, the emergence
of a coherent vortical structure at the baroclinic critical layer at y = N corresponds to
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the appearance of a new quasi-steady wave throughout the bulk of the shear flow. This
new wave is superposed on the original forced wave and has a different phase speed,
close to N . The continued winding and spreading of the coherent structure sustains the
amplitude of the new wave (given by ||Φ||) over the long time T , which therefore drives
the associated baroclinic critical levels. Because the new wave consists of a spectrum of
Fourier modes (albeit dominated by the fundamental mode with n = 1), there are multiple
such levels at y = N [1 ± (nK)−1]. Each is forced in the manner of the original baroclinic
critical level, as outlined in §§ 2.2 and 2.3, with further defects forming in the mean flow,
each susceptible to more secondary instabilities. Thus, a pattern of self-replication can be
established, as observed in the simulations of Marcus et al. (2013, 2015, 2016).

To quantify self-replication, we observe that our original wavemaker was characterized
by a velocity jump with strength ε0 (see (2.7a,b)). The secondary instability of the defect
at the forced baroclinic critical layer also generates a velocity jump across that narrow
region, with a norm given by

εα
1 − f

f
||Φθ || (5.5)

(i.e. the jump in the outer solution, given by (3.9b), and recalling that α+ − α− ≡ α). A
comparison of the strengths of these velocity jumps therefore suggests that self-replication
is unlikely if

1 � ε

ε0
α

1 − f
f

||Φθ ||. (5.6)

Although ε = O(ε0), a practical concern is that the outer solution for the forced wave
decays exponentially away from the wavemaker (see Wang & Balmforth 2020), which may
ensure (5.6). However, the sustained secular growth of Φ, in combination with relatively
large values for the other O(1) factors in (5.5) (namely α) implies that one is able to
avoid the condition in (5.6) for typical parameter settings. For example, for the parameters
chosen for the computations in figure 10, (f = N = 4/3, m = 1/2) we find |ε/ε0| = 1/8
but α = 8. Hence, ||Φθ || need only to sustain values of order one, which will inevitably
happen given the secular growth of Φ.

6. Discussion

The forcing of the baroclinic critical level of a wave in stratified shear flow generates
a narrowing and strengthening defect in the mean flow that may suffer a secondary
instability. In this paper, we have explored this instability, using a matched asymptotic
expansion to build a reduced model that confirms its existence and captures the subsequent
nonlinear dynamics. The model indicates that the secondary instability largely follows
the pattern of a classical two-dimensional shear instability driven by the development
of inflexion points in the mean-flow profile. The unsteady nature of the defect, however,
renders some differences with a classical normal-mode-type problem, introducing a more
singular character to the secondary instability unless viscous dissipation is included.
Computations with the dissipative reduced model indicate that the outcome of the
secondary instability is the roll up of the defect into a coherent vortical structure that
continues to grow secularly under the continued forcing of the baroclinic critical level.
Without dissipation, the secondary instability fails to saturate, producing excessively short
spatial scales that break the computation and potentially even the asymptotic model.

Notably, the secondary instability operates by rolling up the side of the defect with
negative vorticity. This results from the presence of a favourable inflection point in the
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defect velocity profile there, following the lines of classical shear flow stability theory
(cf. Marcus 1990; Marcus et al. 2013). The shear layer on the opposite side of the
defect survives the roll-up process, indicating that secondary instabilities generate vortical
structures with a definite (negative) sign.

Another important feature of our problem is the discrepancy between the time scale
over which nonlinear effects become important within the forced baroclinic critical layer
and that characterizing the emergence of secondary instability. In particular, the baroclinic
critical layer evolves linearly during the emergence of the secondary instability, the impact
of nonlinearity (discussed more comprehensively in Wang & Balmforth 2020) arising only
at later times. A direct consequence of this time scale separation is that the energetics of the
secondary instability become decoupled from that of the forced wave (§ 3.4), highlighting
how the rearrangement of the background shear flow powers the roll up of the defect
rather than energy drawn from the forced wave. In addition, the forcing of the defect
continues even as the secondary instability twists up its vertical vorticity, fuelling the
late-time secular growth of the final coherent structure.

The long-lived coherent vortical structure generated at the forced baroclinic critical
level is a key feature seen in the simulations of Marcus et al. This localized structure
is complemented by a new quasi-steady wave appearing throughout the bulk of the shear
flow, that travels at a phase speed close to the mean-flow speed at the forced barcolinic
critical level. The wave possesses new baroclinic critical levels that in turn become
driven in the same manner as the original baroclinic critical level. The sustained localized
coherent structure, in combination with the subsequent excitation of the relatively distant
baroclinic critical levels of its associated large-scale wave, underscores the self-replication
process seen in the numerical simulations.

Two barriers to self-replication are clear: first, it is possible that dissipation could
overwhelm the secondary instability, preventing the formation of the coherent structure.
Indeed, we have demonstrated that viscosity can stabilize the defect, and so the Reynolds
number Re of the flow (defined by the shear rate Λ of the background flow divided by
the kinematic viscosity and the square of the wavenumber of the forcing kx; the inverse of
the dimensionless viscosity parameter ν̃ of § 2.1) cannot be too low. Thermal diffusion or
Newton cooling, on the other hand, appear only to delay the secondary instability without
preventing it, in the absence of viscosity. The threshold in Reynolds number is expected
on dimensional grounds to be given by Re > ε−3/2C, where ε is a dimensionless measure
of the strength of the forcing and C is an order-one constant dependent on the structure
of the quasi-steady wave set up outside the critical layer and other dissipative parameters
(thermal diffusivity and Newton cooling rate). This observation aligns with the numerical
findings of Lesur & Latter (2016) and (less directly) Barranco, Pei & Marcus (2018). More
quantitative comparison with these previous studies is difficult, in view of the differing
forcing patterns and the implicit viscosity present in any numerical scheme.

Second, even when the defect remains unstable, if the new wave associated with the
coherent structure is much weaker than the original forced wave, replication may not
perpetuate but eventually die out. However, our matched asymptotics establish that the
amplitude of the wave generated by the secondary instability is of the same order as the
forced wave, and the sustained secular growth of the new wave suggests that there will be
no practical concern for replication.

One last issue that we have not addressed (and which we leave for future work) is that the
wavemaker which forces the waves and their baroclinic critical layers may evolve under its
own dynamics. In the problem we have formulated here, our wavemaker was taken to be
steady, infinitely narrow and possess a single Fourier component. Were we to replace this
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structure by an array of vortices (as in the simulations of Marcus et al.), the wavemaker
must evolve under the action of viscosity and background shear, raising the question as to
whether the forcing could be sufficiently sustained. In addition, when the baroclinic critical
layer of the forced wave rolls up to create further vortices, new waves are excited with
baroclinic critical levels elsewhere. In fact, all of our main examples featured new waves
with a baroclinic critical level at the same position as the original wavemaker, implying an
interaction that has not been taken into account.

Acknowledgements. We thank D. Lecoanet and X. Wu for helpful discussions. We also thank the referees
for constructive comments. This work is part of C.W.’s Ph.D. research at the University of British Columbia.
C.W. thanks the University for providing the exceptional research and study environment.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Chen Wang https://orcid.org/0000-0002-3577-7245;
Neil J. Balmforth https://orcid.org/0000-0002-1534-9104.

Appendix A. The match at the new baroclinic critical layers

In this appendix, we provide the derivation for (3.7): the jump of pressure gradient across
the new baroclinic critical levels located at y = N [1 ± (nK)−1], or ξ = ξB ≡ ±N . In
terms of a new critical-layer coordinate

Y = y − N − ξB/(nK)

ε1/2 , (A1)

the vertical velocity and density equations can be combined into a local relation for the
components of the density perturbation, ρ → ∑

n ε−1/2ρ̃(Y, T) exp(inKθ) + c.c., similar
to (2.12a,b) (but now including the effects of dissipation and slow variation of the forcing):

ρ̃T + inKYρ̃ − χ + ν

2
ρ̃YY − λρ̃ = −nmKN 2

2ξB
Φn(T)P(ξB). (A2)

The solution of this equation (which can be expressed as a Fourier transform or an integral
similar to (4.6) or (4.7)) implies that∫ ∞

−∞
ρ̃dY = −πmN 2

2ξB
ΦnP(ξB). (A3)

This density anomaly corresponds to a jump in the components of v across the new
baroclinic critical layer given by

mnK

ξB

∫ ∞

−∞
ρ̃ dY = −1

2πm2nKΦnP(ξB) (A4)

(cf. (2.12a,b) and (2.14a,b)), which must be matched to the corresponding jumps in the
components of the outer solution (3.6b), given by

Limε→0
inKξBΦn

ξ2
B − f ( f − 1)

[
Pξ

]ξB+ε

ξB−ε
, (A5)

which leads to (3.7).
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Appendix B. Asymptotic limits of the dissipative initial-value problem

The long-time growth of the secondary instability at the rate predicted by (4.25) when ν =
λ = 0 but χ > 0 can be understood from (4.18): when Φ1(T) amplifies exponentially, the
integral becomes dominated eventually by a small interval near the upper limit, rendering
the diffusion factor exp

[
−1

6χK
3(T − T̃)3

]
unimportant.

Similarly, the details of the long-time behaviour for ν > 0 can also be
rationalized from (4.18). In this case, when the solution decays exponentially,
exp[νK

2(T − T̃)2(KT − KT̃ − T̃)] → 0 thoughout the bulk of the integration interval
at large times. The remainder of the integrand is dominated by the factor
exp[−1

6ν(K + 2)K
2(T − T̃)3], permitting an asymptotic solution with a purely exponential

form.
When viscosity is not sufficiently strong to remove the secondary instability, and

Φ(T) amplifies with time, the same arguments do not hold and the situation is more
complicated: exp[νK

2(T − T̃)2(KT − KT̃ − T̃)] remains important over a narrow interval
near the upper limit in combination with Φ1(T̃) ∼ eΘ(T̃) ∼ exp[Θ(T) + Θ ′(T)(T̃ − T)],
where exp[ 1

6ν(K + 2)K
2(T − T̃)3] → 1. In this instance, an alternative approximation of

the integral equation leads to

eΘ ∼ − iσKeΘ

2νK2

[
1

Θ ′(T)
−

√
π

4νK2T

]
(B1)

for Θ ′(T)/
√

νT � 1, or

Θ ′(T) ∼ − iσK

2νK2 + σ 2
K

8ν2K5

√
π

νT
, (B2)

which demonstrates that Φ1 grows exponentially with
√

T at very late times.
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