A GENERALISATION OF A RESULT OF ABEL WITH AN APPLICATION TO TREE ENUMERATIONS

by M. M. ROBERTSON
(Received 12th March 1964)

1. Introduction

We prove the following theorem, which was established by Abel (1) for the case $u=1$.

Theorem. If u, k are positive integers and $x, \alpha_{1}, \ldots, \alpha_{u}, \beta$ are real numbers, then
$\left(x+\sum_{j=1}^{u} \alpha_{j}\right)^{k}=\sum_{l=0}^{k} \sum_{s_{1}, \ldots, s_{u}}^{(l)} \frac{k!}{(k-l)!s_{1}!\ldots s_{u}!}(x+l \beta)^{k-l} \prod_{i=1}^{u} \alpha_{i}\left(\alpha_{i}-s_{i} \beta\right)^{s_{i}-1}$,
where the sum $\sum_{s_{1}, \ldots, s_{u}}^{(l)}$ is taken over all distinct ordered solutions $\left(s_{1}, \ldots, s_{u}\right)$ in non-negative integers of the equation $\sum_{i=1}^{u} s_{i}=l$.

It is clear that, when $\beta=0$, equation (1) reduces to the multinomial expansion. The theorem is applied in Section 3 to obtain a proof by induction of the well-known result of Cayley that the number of rooted trees with n distinct nodes is n^{n-1}.

2. Proof of the Theorem

The theorem is proved by induction on $k+u$. It is trivial to verify that (1) holds for $k=1$ and all u. In (1) Abel showed that (1) is true for $u=1$ and all k. We assume that (1) holds for $k=m-1, u=v$, for $k=m-1, u=v-1$ and for $k=m, u=v-1$, and we prove that then (1) holds for $k=m, u=v$.

By the hypothesis then, we have
$\left(x+\sum_{j=1}^{0} \alpha_{j}\right)^{m-1}=\sum_{l=0}^{m-1} \sum_{s_{1}, \ldots, s_{v}}^{(l)} \frac{(m-1)!}{(m-l-1)!s_{1}!\ldots s_{v}!}(x+l \beta)^{m-l-1}$

$$
\begin{equation*}
\times \prod_{i=1}^{v} \alpha_{i}\left(\alpha_{i}-s_{i} \beta\right)^{s_{i}-1} . \tag{2}
\end{equation*}
$$

Integrating with respect to x, we obtain

$$
\begin{align*}
\left(x+\sum_{j=1}^{v} \alpha_{j}\right)^{m}=\sum_{i=0}^{m-1} \sum_{s_{1}, \ldots, s_{v}}^{(n)} \frac{m!}{(m-l)!s_{1}!\ldots s_{v}!} & (x+l \beta)^{m-l} \\
& \times \prod_{i=1}^{v} \alpha_{i}\left(\alpha_{i}-s_{i} \beta\right)^{s_{i}-1}+C, \tag{3}
\end{align*}
$$

where C is independent of x. Multiplying (2) by $m \beta$, adding to (3) and then substituting $x=-m \beta$, we obtain

$$
\begin{aligned}
C= & m \beta\left(\sum_{j=1}^{v} \alpha_{j}-m \beta\right)^{m-1}+\left(\sum_{j=1}^{v} \alpha_{j}-m \beta\right)^{m} \\
= & m \beta \sum_{i=0}^{m-1} \sum_{s_{1}, \ldots, s_{v-1}}^{(l)} \frac{(m-1)!}{(m-l-1)!s_{1}!\ldots s_{v-1}!}\left\{\alpha_{v}-(m-l) \beta\right\}^{m-l-1} \\
& +\sum_{i=0}^{m} \prod_{i=1}^{v-1} \alpha_{i}\left(\alpha_{i}-s_{i} \beta\right)^{s_{i}-1} \sum_{1, s_{v-1}}^{(l)} \frac{m!}{(m-l)!s_{1}!\ldots s_{v-1}!}\left\{\alpha_{v}-(m-l) \beta\right\}^{m-l} \prod_{i=1}^{v-1} \alpha_{i}\left(\alpha_{i}-s_{i} \beta\right)^{s_{i}-1} \\
= & \sum_{l=0}^{m} \sum_{s_{1}, \ldots, s_{v-1}}^{l(l)} \frac{m!}{(m-l)!s_{1}!\ldots s_{v-1}!} \alpha_{v}\left\{\alpha_{v}-(m-l) \beta\right\}^{m-1-1} \prod_{i=1}^{v-1} \alpha_{i}\left(\alpha_{i}-s_{i} \beta\right)^{s_{i}-1} \\
= & \sum_{s_{1}, \ldots, s_{v}}^{(m)} \frac{m!}{s_{1}!\ldots s_{v}!\prod_{i=1}^{v} \alpha_{i}\left(\alpha_{i}-s_{i} \beta\right)^{s_{i}-1} .}
\end{aligned}
$$

This relation in conjunction with (3) completes the proof by induction.

3. Enumeration of Rooted Trees

We now prove by induction that the number of rooted trees with n distinct nodes is n^{n-1}. As there is only one rooted tree with one node, the formula holds for $n=1$. We assume that the number of rooted trees with i nodes is i^{i-1} for all $i \leqq n$. Now, rooted trees with $n+1$ nodes are formed by first choosing any one of the $n+1$ nodes as root and joining it in any one of $\binom{n}{r}$ ways to r of the other nodes. The remaining $n-r$ nodes are divided into r ordered sets (some of which may be empty), each of which forms a tree with one of the previous r nodes as root. Therefore, the number of rooted trees with $n+1$ nodes is equal to

$$
(n+1) \sum_{r=1}^{n}\binom{n}{r} \sum_{s_{1}, \ldots, s_{r}}^{(n-r)} \frac{(n-r)!}{s_{1}!\ldots s_{r}!}\left(s_{1}+1\right)^{s_{1}-1} \ldots\left(s_{r}+1\right)^{s_{r}-1}
$$

and this is equal to $(n+1)^{n}$ whenever, for $1 \leqq r \leqq n$,

$$
\binom{n}{r} \sum_{s_{1}, \ldots, s_{r}}^{(n-r)} \frac{(n-r)!}{s_{1}!\ldots s_{r}!}\left(s_{1}+1\right)^{s_{1}-1} \ldots\left(s_{r}+1\right)^{s_{r}-1}=\binom{n-1}{r-1} n^{n-r}
$$

i.e. whenever

$$
\begin{equation*}
\sum_{s_{1}, \ldots, s_{r}}^{(n-r)} \frac{(n-r)!}{s_{1}!\ldots s_{r}!}\left(s_{1}+1\right)^{s_{1}-1} \ldots\left(s_{r}+1\right)^{s_{r}-1}=r n^{n-r-1} \tag{4}
\end{equation*}
$$

Now,

$$
\begin{equation*}
\frac{(n-r)!}{s_{1}!\ldots s_{r}!}=\frac{(n-r-1)!}{s_{1}!\ldots s_{r}!} \sum_{l=1}^{r} s_{l}=\sum_{l=1}^{r} \frac{(n-r-1)!}{s_{1}!\ldots s_{t-1}!\left(s_{l}-1\right)!s_{l+1}!\ldots s_{r}!} \tag{5}
\end{equation*}
$$

where every $s_{1}>0$. When some s_{l} are zero the corresponding terms are omitted in the final summation of (5). Therefore the left side of (4) is equal to

$$
\begin{aligned}
& \sum_{l=1}^{r} \sum_{s_{1} \ldots, s_{r}}^{(n-r-1)} \frac{(n-r-1)!}{s_{1}!\ldots s_{r}!}\left(s_{1}+1\right)^{s_{1}-1} \\
& \quad \ldots\left(s_{l-1}+1\right)^{s_{l}-1-1}\left(s_{l}+2\right)^{s_{1}}\left(s_{l+1}+1\right)^{s_{1}+1-1} \ldots\left(s_{r}+1\right)^{s_{r}-1} \\
& =r \sum_{s_{1}, \ldots, s_{r}}^{(n-r-1)} \frac{(n-r-1)!}{s_{1}!\ldots s_{r}!}\left(s_{1}+1\right)^{s_{1}-1} \ldots\left(s_{r-1}+1\right)^{s_{r-1}-1}\left(s_{r}+2\right)^{s_{r}}
\end{aligned}
$$

and so, from (4), the formula is verified if

$$
\sum_{s_{1}, \ldots, s_{r}}^{(n-r-1)} \frac{(n-r-1)!}{s_{1}!\ldots s_{r}!}\left(s_{1}+1\right)^{s_{1}-1} \ldots\left(s_{r-1}+1\right)^{s_{r}-1-1}\left(s_{r}+2\right)^{s_{r}}=n^{n-r-1}
$$

This relation follows from (1) by putting $u=r-1, k=n-r-1, x=n-r+1$, $\alpha_{1}=\ldots=\alpha_{n}=1, \beta=-1$, and so the proof is complete.

REFERENCE

(1) N. H. Abel, Beweis eines Ausdruckes, von welchem die Binomial-Formel ein einzelner Fall ist, Journal für die Reine und Angewandte Mathematik, 1 (1826), 159-160

Department of Mathematics
University of California
Los Angeles, U.S.A.

