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ABSTRACT

Consider a group of n independent lives age x where each life puts § 1 in a fund
at time 0. The fund earns interest at rate /, and at the end of t years the
accumulated value of the fund is divided equally among the survivors. The
traditional approach to calculating the expected lump sum benefit per survivor
from the initial group of n lives is based on the concept of a deterministic
survivorship group. This approach ignores the stochastic nature of the
survivorship process. In reality, the benefit per survivor is actually a random
variable with an expected value which depends on the first inverse moment of a
positive binomial random variable. Using GRAB'S and SAVAGE'S (1954) recur-
sive formula for the first inverse moment, it is shown that the traditional
approach yields a fairly accurate approximation to the solution even when one
assumes a random number of survivors.
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1. THE PROBLEM

Consider two well known problems in actuarial life contingencies:

Problem (1): Each member of a group of n independent lives age x makes a
single payment of 1 into a fund at time 0. At time / the accumulated value of
the fund is divided equally among the survivors, if any. Assuming the fund
earns interest at rate i per annum and ,px is the probability of (x) surviving t
years, calculate the expected share of each survivor. The traditional answer of
this problem is

(1 + /)'
(1) Expected Share =

Problem (2): Each member of a group of n independent lives age x deposits an
amount 1 into a fund at the start of each year as long as he/she is alive. At time t,
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the accumulated value of the fund is divided equally among the survivors, if
any. If the fund earned interest at rate i per annum, calculate the expected
share of each survivor. The traditional solution is

(2) Expected Share = sx.j\

These problems are often discussed when the concept of the actuarial
accumulated value is introduced. See, for example BOWERS et al. (1986,
Chapter 5) or NEILL (1977, Chapter 2.3). Fundamental to the derivation of the
traditional "solutions" given in equations (1) and (2) is the notion of a
deterministic survivorship group; see BOWERS et al. (1986, Chapter 3.4). In a
deterministic survivorship group, deaths are not random and the proportion of
survivors at any age is always known exactly. Constrasting this is a random
survivorship group (BOWERS et al., Chapter 3.3) where the number of survivors
at any age is random variable.

Since, in any practical situation, the number of survivors will be a random
variable, it is clear that the traditional solutions can only be viewed as
approximate solutions. To derive the true solutions to problems (1) and (2), the
actual amount of money each survivor receives must be expressed as random
variables, then their expectations must be found. This can be accomplished as
follows: Let S\ and S2 be the actual share of the fund that each survivor
receives in problems (1) and (2) respectively. If there are no survivors then
Si = S2 = 0 so for problem (1),

(n(\ + i)'/N if N = 1 , 2 , . . . , «
(3) Si = M ''

(O if N=0

and for problem (2)

<A, c - UNa^ + X f ^ a ^ i l + iy/N if N=\,2,...,n

- (0 if N=0

where

N = number of survivors at age x + t from the group of n lives age x.

D = n - N is the number of deaths (from the initial n lives) between ages x and
x + t.

Kj = curtate future life time for the i'h life who died.

By assumption, the n lives are mutually independent so N has a binomial
distribution with parameters n and tpx. From equations (3) and (4), both E[S(\
and E[S2] depend on E[N~l\N > 0], i.e., the first inverse moment of the
positive binomial distribution. More on this in Section (2).

It should be pointed out that, in addition to depending on N, S2 also
depends on the random variable Kt, for i = 1,2,..., D, so expectations must
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be taken over the Af,'s as well. To this end, one can write

E[S2] = E[E[S2\N]]

E[SZ\N = m] Pr [N = m]
m=l

= y
m=\

m

m
+ O'Pr [A r = m}.

But given N = m, there are n — m deaths, each with Kt < t. For convenience
it is assumed that t is an integer, i.e., t = 1,2,

t-\

(5) E[d^pi]\Ki<t]=

where ,qx= l — ,px- It follows that

(6)

- i : h+(--
\ \m

m=\

tPx
Pr[N=m].

Let tcx
n) denote the sum

(7)
n

•^ n
m=\ m

n

- I -
m = l

Thus equations (3) and (6) can be written as

(8)

(9)

Using equation (7), one can compute ,c^ directly for any finite n.
Unfortunately, for large n, the bionomial probabilities are cumbersome to find.
However, LING (1992) provided an exact method of calculating the cumulative
distribution function of a binomial distribution via the F-distribution. This
method requires that the F-probabilities must be available. Ling also provides
references for accurate approximations to binomial probabilities.
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In view of the difficulties associated with directly evaluating the summation
on the right hand side of equation (2), different approaches are needed to
evaluate ,c^"\ In the next section, it will be proved that ,c^"' is actually
proportional to the first inverse moment of the corresponding positive binomial
distribution. The recurrence relationship between the successive first inverse
moments provided by GRAB and SAVAGE (1954) is used to evaluate tc

{"\

2. THE POSITIVE BINOMIAL DISTRIBUTION

Suppose a random variable X has binomial distribution with parameters n and
p, i.e.,

= Pr[X=m]=
m

pmqn-m, m = 0, ! , . . . , «

where p + q = 1 and 0 < p < 1. Then a random variable Y is called a positive
binomial random variable if its probabilities satisfy

(10) P r [ 7 = m ] = , m=\,2, . . . , « .
\-q"

The inverse moments of positive binomial random variables have been
studied by several authors including GRAB and SAVAGE (1954) who provided a
recurrence relation for the first inverse moment. Let bk{n,p) = E[Yk] be the
k'h inverse moment of Y. Grab and Savage proved that

q{\-qn) 1
(11) bx{n+\,p) = — *J-bl(n,p) + , n = 0, 1,...

(l-qn+l) n+\
with bx{n,p) = 0. MENDENHALL and LEHMAN (1960) used the beta distribu-
tion to approximate bk(n,p). In particular, Mendenhall and Lehman sug-
gested the approximation

(12) bkin,P) - . L n j . ,
nk (fl-r)

where a - («— Y)p and b = {n-\)q.
If one is interested in computing higher moments, an exact recurrence

relatoinship among the higher order inverse moments of Y is given in
GOVINDARAJULU (1963). For example, Govindarajulu proved that the second
inverse moments satisfy

(13) b2(n+l,p) = — +b2(n,p)
(l-q"+l) \ n+l j (n+l)2

with b2(0,p) = 0. So bx{b,p) and b2(n,p) can jointly be evaluated using the
recursive expressions in equations (11) and (13). Note that equation (13) will
not be used in the sequel.
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WALKER (1984) actually suggested three approximations to bk(n,p). Let
d = 1 + b and e = ac, then the approximations are as follows:

(14) bk(n

where, for approximation:

(i) c = « + ( « - l)q(2p- 1), d=2{n-\)p and e = 2n(n-l)p2;

(ii) c = n, d=(n-l)(l-q")/V and e = n(n- l)p/V where
V= l-qn-npq"~l; and finally

(iii) c = n + (n- l)q(2p- l) + 2n(n- I)2p3/lV

d = 2(n- \)p(l -qn)jW and e = 2« (« - \)p2\W where

When n/> > 10 the approximations cited above are all reasonably accurate.
However, since equation (11) is exact, it will be used to calculate E[S{] and
E[S2].

3. TRADITIONAL VS EXACT EXPECTED SHARES

In this section, the traditional answers given in equations (1) and (2) are
compared to the exact answers given in equations (8) and (9). Equation (11)
will be used to compute tc^n\ Note that
s -i c\ (w) /i / _ \M\ 7i (vi r\ \

Let pi be the ratio of E[S,] to the traditional approximation to this
expectation, i.e.,

(16) Px = -

t^x tPx

E[S2]
(IV) p2=

Mortality is assumed to follow that given in BOWERS et al. (page 72,
equation (3.7.1)), i.e.,

where A = 0.0007, B = 0.00005 and c = 10004. In addition, it is assumed that
x + t = 65, i.e., a person must survive to age 65 in order to receive survival
benefits. For various ages x = 20, 30, . . . , 60, the ratios p{ and p2 are computed
for different groups sizes. After using several different interest rates, the ratio
p2 appears to be fairly insensitive to interest rate changes, so only the ratios for
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/ = 6% are given. Note that p{ is independent of the rate of interest i. Group
sizes from 1 to 500 are used with bl(n,p) calculated using equation (11).

From Tables 1 and 2, it is clear that for n > 10, the ratios are very close to 1
so the traditional approach is fairly accurate even though it uses a deterministic
approach.

TABLE 1
px WHEN (x) SURVIVES TO AGE 65

n

5
10
20
30
40
50
100
200
300
400
500

x = 20

1.08105
1.03317
1.01503
1.00973
1.00720
1.00571
1.00281
1.00139
1.00093
1.00069
1.00055

x = 30

1.07628
1.03117
1.01416
1.00918
1.00679
1.00539
1.00265
1.00132
1.00087
1.00066
1.00052

x = 40

1.06849
1.02798
1.01277
1.00828
1.00613
1.00487
1.00240
1.00119
1.00079
1.00059
1.00047

x = 50

1.05344
1.02197
1.01011
1.00657
1.00487
1.00387
1.00191
1.00095
1.00063
1.00047
1.00038

x = 60

.02311

.00986

.00461

.0030!

.00224

.00178

.00088

.00044

.00029

.00022

.00017

TABLE 2
p2 WHEN (x) SURVIVES TO AGE 65

= 20 = 50

5
10
20
30
40
50
100
200
300
400
500

1.07305
1.02991
1.01355
1.00878
1.00649
1.00515
1.00253
1.00126
1.00084 1
1.00063 1
1.00050

.06573

.02688

.01221

.00792

.00586

.00465

.00229

.00113

.00075

.00057

.00045

1.05502
1.02250
1.01027
1.00666
1.00493
1.00391
1.00193
1.00096
1.00064
1.00048
1.00038

1.03878
1.01596
1.00734
1.00477
1.00354
1.00281
1.00139
1.00069
1.00046
1.00034
1.00027

1.01547
1.00661
1.00309
1.00202
1.00150
1.00119
1.00059
1.00029
1.00019
1.00015
1.00012

Tables 3 and 4 show that ratios based on the Mendenhall-Lehman approx-
imation to bx (n,p), i.e.,

(n-2)
(18) b\(n,p) = with a = («— I) p.

n{a-\)

Substituting-this approximation into equation (15) results in
(\q\ r(") ~ n —

If the expected number of survivors (n x tpx) is large, the approximation
given in equation (19) becomes fairly accurate and may be used (instead of
equation (11)) to estimate rc^n).
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«

5
10
20
30
40
50
100
200
300
400
500

A; = 20

.10104
1.03581
.01561
.00998
.00733
.00580
.00283
.00140
.00093
.00070
.00056

TABLE 3
/), WHEN (x) SURVIVES TO AGE 65

x = 30

1.09493
1.03374
1.01472
1.00941
1.00692
1.00547
1.00267
1.00132
1.00088
1.00066
1.00052

x = 40

1.08517
1.03042
1.01329
1.00851
1.00625
1.00494
1.00242
1.00119
1.00079
1.00059
1.00047

x= 50

1.06678
1.02408
1.01056
1.00676
1.00497
1.00393
1.00192
1.00095
1.00063
1.00047
1.00038

x = 60

1.02980
1.01097
1.00485
1.00311
1.00229
1.00181
1.00089
1.00044
1.00029
1.00022
1.00017

TABLE 4
p2 WHEN (x) SURVIVES TO AGE 65

X=20 = 30 JC = 40 x= 50 x= 60

5
10
20
30
40
50
100
200
300
400
500

1.09107
1.03230
1.01407
1.00900
1.00661
1.00523
1.00255
1.00126
1.00084
1.00063
1.00050

1.08182
1.02910
1.01270
1.00812
1.00597
1.00472
1.00230
1.00114
1.00076
1.00057
1.00045

1.06843
1.02446
1.01069
1.00684
1.00503
1.00398
1.00194
1.00096
1.00064
1.00048
1.00038

1.04847
1.01748
1.00767
1.00491
1.00361
1.00286
1.00140
1.00069
1.00046
1.00034
1.00027

1.01995
1.00735
1.00325
1.00208
1.00153
1.00121
1.00059
1.00029
1.00020
1.00015
1.00012

I was very surprised to see that the traditional actuarial approach provided
such a good approximation even when there is actually a random survivorship
group situation. It appears that there may be no need to use the exact theory
unless the group is very small, say less than 20 lives.

Note the apparent result, from the tables above, that the exact expected
benefit per survivor is greater than that suggested by the traditional approach,
i.e., p\ > 1 and p2 > 1. In the case of px, this is due to the Schwartz inequality
(as Grab and Savage noted in-.their equation (7)), where

E[N]

The explanation for p2 > 1 is not as obvious. However these results make
sense from the point of view of risk and return. Since the deterministic
survivorship group is riskless, the expected return to the " survivors " must be
less than the expected return demanded by those in the random survivorship
group.
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