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We calculate analytically the self-similar Stokes flow driven by an externally applied
electric field in a multiple coaxial Taylor cone consisting of an arbitrary number of
immiscible leaky-dielectric or dielectric fluids. The proposed conical solutions open new
avenues for innovative technological applications, some of which are briefly discussed.
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1. Introduction

Taylor (1964) described the hydrostatic structure of the so-called Taylor cone through the
balance between capillary and electrostatic stresses on the surface of an equipotential cone.
The cone angle αT = 49.29◦ is fixed after demanding that the surface be equipotential.
Although this solution is much simpler than the hydrodynamic cone-jet mode of
electrospray (Gañán-Calvo et al. 2018), it exhibits many features of that mode, provides
information about the far-field affecting the jet dynamics in electrospray (Gañán-Calvo
1997), and allows insight to be gained into some observed phenomena of this atomization
technique.

In general, the hydrostatic solution derived by Taylor (1964) cannot be adopted when
ejection takes place. When this ejection occurs in the form of a steady jet and the resulting
charged aerosol (Fenn 1993), the mass and (most fundamentally) charge withdrawal elicits
an internal electric field, and, consequently, shear electric stresses on the interface. These
stresses provoke steady, sometimes vigorous internal motions by viscous diffusion of
momentum (Barrero et al. 1999). Thus, the inescapable charge circulation associated with

† Email address for correspondence: amgc@us.es

© The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium,
provided the original work is properly cited. 915 R1-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

13
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:amgc@us.es
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2021.137&domain=pdf
https://doi.org/10.1017/jfm.2021.137


A.M. Gañán-Calvo and J.M. Montanero

a Taylor cone-jet makes the hydrostatic solution non-physical. In addition, when the cone
consists of two immiscible liquids with finite conductivities, the Taylor solution is even
more unrealistic because the two interfaces cannot form the same cone with the angle αT .
In this case, an electric field necessarily arises inside the shapes adopted by the interfaces,
even in the absence of ejections. Ramos & Castellanos (1994) calculated the self-similar
Stokes flow caused by an external electric field in a Taylor cone of a leaky-dielectric liquid
in a leaky-dielectric bath.

The understanding of the electrohydrodynamic phenomena taking place in double or
coaxial Taylor cones (Loscertales et al. 2002) is of great importance at both fundamental
and technological levels. This microfluidic structure opened a door to explore new and
creative materials (microcapsules, microfibres, emulsions, etc.) in a wide variety of
fields from pharmacy to the chemical or textile industry (Lauricella et al. 2020). For
instance, the development of highly dielectric elastomers for their application as dielectric
actuators in novel electromechanical, biomedical and biomechanical devices constitutes
an important application, which is critically dependent on the internal microstructure
of the materials (Mazurek et al. 2016). The only possibility for strict control on the
formation of double emulsions beyond the well-known dripping-jetting limit imposed
by charge relaxation phenomena (Gañán-Calvo et al. 2018) is to have stable double
Taylor cones that could survive as such, in the absence of emission, with the maximum
possible curvature at the apex. This entails the existence of electrohydrodynamic
coaxial-cone solutions incorporating the full spectrum of phenomena associated with
the flow of liquids and charges, which is not allowed by the original, single-cone Taylor
solution.

The Taylor–Melcher leaky-dielectric model (Melcher & Taylor 1969) has proved to be
a useful tool to study the dynamical behaviour of poorly conducting droplets in poorly
conducting or dielectric baths. In particular, it provides accurate predictions for the
steady cone-jet mode of electrospray (Gañán-Calvo 1997; Fernández de la Mora 2007;
Higuera 2010; Ponce-Torres et al. 2018), and can be used to simulate ionic-liquid menisci
undergoing evaporation of ions (Higuera 2008). This model assumes that all the net free
charge accumulates at the interface within a Debye layer much thinner than the system size.
It also considers the ohmic model to account for the conduction through the liquid bulk and
across the Debye layer. In this paper, we will solve analytically the leaky-dielectric model
to calculate the self-similar Stokes flow driven by the electric field in a multiple Taylor
cone comprising immiscible low-conductivity or dielectric fluids. First, we will obtain a
solution valid for sufficiently large distances from the cone vertex so that charge convection
over the interface can be neglected vs conduction across it. Then, we will include surface
charge convection in coaxial Taylor cones to extend the validity of the self-similar solution
to the vicinity of the cone vertex. We will illustrate the relevance of the present analytical
approach by considering some examples with potential technological applications, such as
the production of encapsulated microbubbles by electrohydrodynamic means.

2. Governing equations and self-similar solution

2.1. Governing equations
Consider the multiple Taylor cone sketched in figure 1. The shadowed labels j =
0, 1, . . . , J denote the J + 1 phases involved in the problem, while the non-shadowed
labels j = 1, 2, . . . , J denote the interfaces between the phases j − 1 and j. The
phases are leaky-dielectric or dielectric viscous fluids with electrical permittivities
ε(0), ε(1), . . . , ε(J), electrical conductivities K(0), K(1), . . . , K(J) and dynamical viscosities
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Figure 1. Sketch of the fluid configuration.

μ(0), μ(1), . . . , μ(J), respectively. The interfaces are characterized by the surface tensions
γ1, γ2, . . . , γJ . We make use of the spherical coordinate system with the symmetry axis
θ = 0, as indicated in figure 1. The locations of the interfaces are characterized by
the angles θ = α1, α2, . . . , αJ . In what follows, the superscript j = 0, 1, . . . , J indicates
the domain where the corresponding quantity is evaluated, while the subscript j =
1, 2, . . . , J − 1 indicates the interface.

We select the length, time, mass and electric charge units so that μ(1) = γ1 = κ(1) =
ε(1) = 1. Consequently, the problem can be formulated in terms of the permittivities,
conductivities and viscosity ratios β(j) = ε(j)/ε(1), κ(j) = K(j)/K(1) and λ(j) = μ(j)/μ(1)

(j /= 1), as well as the surface tension ratios Γj = γj/γ1 (j /= 1). With the above choice, the
electric relaxation time te = ε(1)/K(1) in the phase j = 1 equals unity.

The stream function characterizing the Stokes flow in each fluid domain, Ψ (j)(r, θ),
obeys the linear partial differential equation

E2(E2Ψ (j)) = 0, (2.1)

where the differential operator E2 is given by the expression

E2 ≡ ∂2

∂r2 + sin θ

r2
∂

∂θ

(
1

sin θ

∂

∂θ

)
. (2.2)

The radial and angular components of the velocity field are calculated from the stream
function as

v(j)
r = 1

r2 sin θ

∂Ψ (j)

∂θ
, v

(j)
θ = − 1

r sin θ

∂Ψ (j)

∂r
. (2.3a,b)

In the leaky-dielectric approximation, the net free charge in the bulk is assumed to be
zero, and, therefore, the Laplace equation

∇2φ(j) = 0 (2.4)

for the electric potential φ(j)(r, θ) applies to all the phases. The radial and angular
components of the electric field are calculated as

E(j)
r = −∂φ(j)

∂r
, E(j)

θ = −1
r

∂φ(j)

∂θ
. (2.5a,b)
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The interfaces are streamlines, and the radial component of the velocity field takes the
same value on the two sides of them. Therefore,

v
(j−1)
θ (r, αj) = v

(j)
θ (r, αj) = 0, v(j−1)

r (r, αj) = v(j)
r (r, αj), j = 1, 2, . . . , J. (2.6)

The difference between the normal stresses on the two sides of the interface is balanced
by the corresponding capillary pressure, which yields

− p(j−1)(r, αj) + τ
(j−1)
θθ (r, αj) + τ

(j−1)
Mθθ (r, αj) − Γjκ̂j

= −p(j)(r, αj) + τ
(j)
θθ (r, αj) + τ

(j)
Mθθ (r, αj), j = 1, 2, . . . , J, (2.7)

where p(j)(r, θ) is the hydrostatic pressure,

τ
(j)
θθ = 2λ(j)

r

(
∂v

(j)
θ

∂θ
+ v(j)

r

)
and τ

(j)
Mθθ = β(j)

2

[(
E(j)

θ

)2 −
(

E(j)
r

)2
]

(2.8a,b)

are the viscous and Maxwell normal stresses, respectively, and κ̂j = 1/(r tan αj) is the
local mean curvature of the jth interface. The continuity of the tangential stresses at the
interfaces leads to

τ
(j−1)
rθ (r, αj) + τ

(j−1)
Mrθ (r, αj) = τ

(j)
rθ (r, αj) + τ

(j)
Mrθ (r, αj), j = 1, 2, . . . , J, (2.9)

where

τ
(j)
rθ = λ(j)

[
r

∂

∂r

(
v

(j)
θ

r

)
+ 1

r
∂v

(j)
r

∂θ

]
and τ

(j)
Mrθ = β(j)E(j)

r E(j)
θ (2.10a,b)

are the viscous and Maxwell tangential stresses, respectively.
The continuity of the tangential component of the electric field at the interface leads to

E(j−1)
r (r, αj) = E(j)

r (r, αj), j = 1, 2, . . . , J. (2.11)

In addition, the difference between the normal components of the electric field
displacement on the two sides of the interface equals the surface charge density:

β(j−1)E(j−1)
θ (r, αj) − β(j)E(j)

θ (r, αj) = σj(r), j = 1, 2, . . . , J, (2.12)

where σj(r) is the surface charge density at the jth interface. The surface charge
conservation at the interface leads to

2πr sin αj

[
κ(j−1)E(j−1)

θ (r, αj) − κ(j)E(j)
θ (r, αj)

]
= d

dr

[
2πr sin αjσj(r)v(j)

r (r, αj)
]
, j = 1, 2, . . . , J. (2.13)

The right-hand side of (2.13) represents the surface charge convection along the interface.
Interestingly, if one assumes that this effect is negligible as compared with charge
conduction from/towards the bulk, (2.12) and the surface charge densities are removed
from the formulation of the problem, and (2.13) is replaced with (Burcham & Saville
2002)

κ(j)E(j)
θ (r, αj) = κ(j−1)E(j−1)

θ (r, αj), j = 1, 2, . . . , J. (2.14)

In general, as will be seen in § 2.2, the left and right terms of (2.13) scale differently with
respect to r. Indeed, while the conduction term dominates for r � 1, charge convection
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becomes dominant for r � 1. Therefore, convection cannot be neglected vs conduction for
r � 1. However, for J > 1 (more than two domains), it is possible to obtain self-similar
solutions all the way from r ∼ 1 to r � 1 (for r � 1, the leaky-dielectric fails, as will
be explained in § 2.2) in the absence of (or negligible) charge emission from the apex.
For this purpose, we apply the Gauss theorem and Laplace equation (2.4) in each domain,
which in the absence of emission leads to∫ r

0
2πr′

[
sin αjE

(j)
θ (r′, αj) − sin αj+1E(j)

θ (r′, αj+1)
]

dr′

=
∫ αj+1

αj

E(j)
r (r, θ)2πr2 sin θ dθ, j = 0, 1, . . . , J, (2.15)

where α0 = π and αJ+1 = 0 (note that the numbering of αj is opposite to the increment
of θ ). In addition, the integration of (2.13) from 0 to r yields∫ r

0
2πr′ sin αj

[
κ(j−1)E(j−1)

θ (r′, αj) − κ(j)E(j)
θ (r′, αj)

]
dr′

= 2πr sin αjσj(r)v(j)
r (r, αj), j = 1, 2, . . . , J, (2.16)

where we have taken into account that rσvr = 0 for r = 0, as will be seen in § 2.2. If we
multiply (2.15) by κ(j) and sum up (2.15) and (2.16) for all the domains, we obtain

J∑
j=0

[
κ(j)

∫ αj+1

αj

E(j)
r (r, θ)2πr2 sin(θ) dθ + 2πr sin αjσj(r)v(j)

r (r, αj)

]
= 0, (2.17)

where σ0 = σJ+1 = 0. This equation expresses that the sum of bulk conduction (left term)
and surface convection (right term) across the sphere surface of radius r must be zero in
the steady regime. As will be shown in § 2.2, the conduction and convection terms in (2.17)
scale as r3/2 and r1/2 for the self-similar solution, respectively. Therefore, those two terms
must be zero independently, i.e.

J∑
j=0

κ(j)
∫ αj+1

αj

E(j)
r (r, θ)2πr2 sin(θ) dθ = 0,

J∑
j=0

2πr sin αjσj(r)v(j)
r (r, αj) = 0.

(2.18a,b)
Equation (2.18b) establishes that the sum of the charge convected by all the interfaces at a
distance r from the vertex is zero. In the absence of charge emission, if J = 1, the charge
convected along the only interface is, therefore, zero, and (2.14) verifies.

2.2. Self-similar solution

Equations (2.1) admit solutions of the separable form Ψ (j)(r, θ) = rm+2F(j)
m (θ), where

F(j)
m (θ) is the solution to[

(m + 2)(m + 1) + (1 − x2)
d2

dx2

]
×
[

m(m − 1) + (1 − x2)
d2

dx2

]
F(j)

m (x) = 0, (2.19)

and x = cos θ . Due to (2.7), we necessarily search for the self-similar solution m = 0,
i.e. that leading to a velocity field independent from the radial coordinate r. In this case,
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we obtain

F(j)
0 (x) = a(j)

1 (1 − x2)1/2P1
1(x) + a(j)

2 (1 − x2)1/2Q1
1(x) + a(j)

3 + a(j)
4 x

= c(j)
1 + c(j)

2 x + c(j)
3 x2 + c(j)

4 (1 − x2) atanh(x), (2.20)

where P1
1(x) and Q1

1(x) are the associated Legendre functions, and a(j)
k and c(j)

k (k = 1, 2,
3 and 4) are arbitrary constants. The regularity condition for v

(0)
r (π) and v

(J)
r (0) yields

c(0)
4 = 0, c(J)

4 = 0, (2.21a,b)

respectively. The regularity condition for v
(0)
θ (π) and v

(J)
θ (0) yields

c(0)
1 − c(0)

2 + c(0)
3 = 0, c(J)

1 + c(J)
2 + c(J)

3 = 0. (2.22a,b)

The velocity field (2.3a,b) calculated from the above solution verifies the momentum
equation

− ∇p(j) + λ(j)∇2v(j) = 0, (2.23)

which yields the pressure field

p(j)(r) = p∞ + 2λ(j)(c(j)
2 − c(j)

4 )

r
, (2.24)

where p∞ is the pressure for r → ∞. This pressure takes the same value for all the phases
because (2.7) is satisfied with κi, τ

(j)
θθ , τ

(j)
Mθθ → 0 as r → ∞.

The Laplace equation (2.4) admits solutions of the separable form

φ(j)(r, θ) = rm+1/2Φ(j)
m (θ), (2.25)

where Φ
(j)
m (θ) is the solution to

(1 − x2)
d2Φ

(j)
m

dx2 − 2x
dΦ

(j)
m

dx
+
(

m + 1
2

)(
m + 3

2

)
Φ(j)

m = 0. (2.26)

Again, we select the solution for m = 0 because in this case E(j)
r , E(j)

θ ∝ r−1/2, and then
the radial dependence of the Maxwell stresses, τ

(j)
Mθθ , τ

(j)
Mrθ ∝ r−1, is the same as that of

the viscous and capillary ones. The solution of (2.26) for m = 0 is

Φ
(j)
0 = A(j)

1 P1/2(x) + A(j)
2 Q1/2(x), (2.27)

where P1/2(x) and Q1/2(x) are the associated Legendre polynomials, and A(j)
1 and A(j)

2
(j = 1, 2, . . . , J) are arbitrary constants. The regularity condition for this solution leads to

A(0)
1 = A(J)

2 = 0. (2.28)

As anticipated, if surface charge convection is neglected (2.14), the radial dependence of
all the quantities involved in the boundary conditions cancels out. Therefore, the boundary
and regularity conditions constitute a system of 7 × J + 6 algebraic linear equations for
the 6 × (J + 1) unknowns

{c(j)
k ; A(j)

� } j = 0, 1, . . . J, k = 1, 2, 3 and 4, � = 1 and 2. (2.29)

The angles αj (j = 1, 2, . . . , J) are the eigenvalues for which that system of equations
admits a non-trivial solution. This solution is a function of the properties of the
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fluids exclusively. It should be noted that neglecting surface charge convection in (2.14)
allows one to decouple the hydrodynamic and electric problems for given values of
the cone angles. Then, the Laplace equation for the electric potential together with the
boundary and regularity conditions for the electric field constitute a closed homogeneous
system of linear equations. The determinant Δ(κ(0), κ(2), . . . , κ(J);α1, α2, . . . , αJ) (note
that κ(1) = 1) of the matrix associated with that system must be zero to obtain a
non-trivial solution of the problem, from which one may obtain a relationship as α1 =
f (α2, α3, . . . , αJ; κ(0), κ(2), . . . , κ(J)). If J = 1 (two domains), the condition Δ = 0 leads
to α1 = f (κ(0)) or κ(0) = κ(0)(α1). This function will be plotted in § 3.

If one adopts the self-similar solution derived above, the conduction and convection
terms in (2.13) scale as r1/2 and r−1/2, respectively (or as r3/2 and r1/2 in (2.17)).
Therefore, surface convection cannot be neglected vs conduction for r � 1, and the
self-similar solution ceases to be valid in that region. However, the intermediate region
r ∼ 1 is scientifically and technologically relevant since the existence of solutions valid
for this region would open ways to extend significantly the range of operation of current
electrospray systems for very small flow rates or size of ejecta, or to develop novel systems
with highly non-linear voltage-current responses, among many other possible new ideas.
To extend the validity of the solution down to r ∼ 1 (for r � 1 the leaky-dielectric fails,
as explained below), we replace (2.14) with the integral equation (2.17) for the total charge
both conducted and convected across the sphere of radius r. In this integral equation, the
conduction and convection terms scale as r3/2 and r1/2, respectively. Therefore, those two
terms must be zero independently to obtain a self-similar solution. Thus, for J = 2, one
may alternatively consider the two integral equations (2.18a,b) instead of the two interface
equations of the form (2.14). Despite its realization being yet unclear, the solution of this
problem opens up a beautiful possibility: that instead of a charge ejection issuing from
the cone vertex, the system may internally drain the charges through the innermost liquid
domain. In fact, the existence of an inner liquid drain (i.e. the inner J-domain) is the only
way to have a non-emitting self-similar (conical) electrohydrodynamic solution in an outer
dielectric medium, a possibility excluded in the original Taylor solution. In other words,
in a steady regime and from a global charge balance perspective, the role of the inner
drain would be equivalent to that of an emitted jet, but in the opposite direction. To have
this, the intermediate medium j = 1 should resist electric breakdown, a condition met
by many low-conductivity (leaky-dielectric) liquids for the maximum electric fields here
considered, which are of the order of Eo = (μ(1)K(1))1/2/ε(1) (e.g. 1 MV m−1 for distilled
water, well below its electric breakdown of ∼70 MV m−1).

In any case, the solution derived above fails for sufficiently small distances from the
cone vertex (r � 1) for two reasons. First, the condition δ/r � 1 (δ is the Debye length)
is a geometrical requisite to justify the interfacial nature of the leaky-dielectric model
(Russel, Saville & Schowalter 1991; Gañán-Calvo et al. 2018). Second, the electric field
diverges as the distance to the vertex goes to zero. Then, the equilibrium in the Debye layer
is perturbed by the applied electric field for sufficiently small values of r, which prevents
the ohmic conduction through that layer (Russel et al. 1991).

3. Discussion and results

In this section, we present some illustrative results obtained (i) by neglecting charge
convection over the interface vs ohmic conduction across it (2.14) (solution of Type I),
and (ii) by setting both the charge conducted and convected across a sphere of radius r
equal to zero (2.18a,b) (solution of Type II). As explained in § 2.2, the equations leading
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Figure 2. Solution for J = 1. (a) The function κ(0)(α1), and (b) solution for β(1) = 3.5, λ(0) = 0.1 and α1 =
0.7, which corresponds to κ(0) = 0.0426335 . . . . The continuous lines are the streamlines, while the dashed
lines are the equipotential lines. The electric potential is re-scaled so that the maximum value in the figure is 1.
The white line is the interface.

to the solution of Type II reduce to those of Type I, and therefore charge convection over
the interface is necessarily neglected.

When J = 1, there is a unique relationship κ(0)(α1) for the self-similar solution of Type
I (valid for r � 1) to exist (figure 2a). As can be seen, non-emitting self-similar solutions
exist only for 0 < α1 < αT = 0.860274 . . . Interestingly, there is a maximum value of the
conductivity ratio κ

(0)
max = 0.0568226 . . . , which corresponds to α∗

1 = 0.523599 . . . . For
conductivity ratios in the interval 0 < κ(0) < κ

(0)
max, there are two possible solutions: one

for a lower voltage decay and another for a higher one. These solutions correspond to a
larger and smaller value of α1, respectively, depending on the ratio of permittivities β(0).
Figure 2(b) shows an example for α1 > α∗

1 . These results coincide with those obtained by
Ramos & Castellanos (1994), which constitutes a validation of our calculations.

For J = 2, the electrohydrodynamic solution depends on seven parameters:
{Γ2, β

(0), β(2), κ(0), κ(2), λ(0), λ(2)}. Given the immense variety of possible solutions, we
have selected a few examples to illustrate cases of technological relevance and novelty.
Figure 3(a) shows the resulting angles α1 and α2 for solutions of Type I given values of the
conductivities: isocontours κ(0) =const. are plotted for fixed values of κ(2) as a function of
α1 and α2. As explained in § 2.2, the results are calculated from the solvability condition
Δ(κ(0), κ(2);α1, α2) = 0 for the electric problem.

Among the non-emitting, self-similar double Taylor cones with technological relevance,
the case of an inner (j = 2) gas domain with β(0) < 1, κ(2) = 0 and λ(2) � 1 is of
particular importance since the electrohydrodynamic generation of micrometre bubbles
from steady Taylor cones has not been possible so far, and the solutions here proposed
may open a way to produce them. Figure 4 shows two examples of solutions of Type I
including the case of a gaseous core. It is worth mentioning that self-similar solutions
of Type I cannot be found for all possible configurations. It can be seen that for J = 2
(three domains), the outer phase j = 0 cannot be a dielectric medium (κ(0) /= 0) for the
non-trivial solution to exist. This means that the two fluids occupying the region θ < α1
should be connected to relatively close voltages. In this configuration, the phases and
interfaces j = 1 and 2 drive charges in the same direction, while the outer medium drains
charges in the opposite one. In the absence of liquid ejection (e.g. a charged aerosol),
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Figure 3. (a) Isocontours of κ(0) = const. calculated from solutions of Type I for J = 2 and fixed values of
κ(2) as a function of α1 and α2. (b) Isocontours of κ(3) = const. calculated from solutions of Type I for J = 3
and fixed values of κ(0), κ(2) and α3 as a function of α1 and α2.

ohmic conduction through the bulk is the only transport mechanism from the source to the
drain.

In contrast, when J = 3 (four domains), solutions of Type I with an outer dielectric
medium (in particular, a gas) can be found, which is not possible for J = 1 and 2. In other
words, configurations with J � 3 are the only ones that allow self-similar solutions of
Type I without emission into a gaseous ambient. Figure 3(b) shows examples of resulting
cone angles α1 and α2 calculated for different combinations of electrical conductivities
and inner cone angle (α3). One may observe that no solution with κ(0) = 0 is found
when κ(2) > κ(1). On the other hand, the viable values of κ(3) are strongly non-linearly
dependent on κ(2).

Solutions of Type II relax the approximation of negligible charge convection over the
interfaces, allowing charge convection from one interface to another due to the flow
reversal close to the apex (r � 1) when charge relaxation limit sets in. This mechanism
is expected to limit the local electric field. Solutions of Type II allow the existence of
double Taylor cones with no charge emission into an outer dielectric (e.g. gas) domain.
Figure 4(c) shows an example of these solutions akin to, for example, an intermediate
layer of a silicone oil with a core of a glycol of the same viscosity. The electric field in the
intermediate domain is even slightly stronger than that in the outer gaseous environment.
To have this, the inner and intermediate liquid domains should be connected to voltages
with opposite polarities, which (as previously discussed) demands a sufficient dielectric
strength from the intermediate liquid. This configuration is particularly relevant since
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Figure 4. Solutions for J = 2. (a) Type I, two viscous liquids in a low viscosity, low permittivity, outer liquid:
Γ2 = 0.2, β(0) = 0.05, β(2) = 1, λ(0) = 0.5, λ(2) = 0.002, κ(0) = 0.02 and κ(2) = 0.02, which yields α1 =
0.5567 and α2 = 0.4462. (b) Type I, with an inner (j = 2) gas domain: Γ2 = 2, β(0) = 0.0217, β(2) = 0.011,
λ(0) = 0.2, λ(2) = 0.001, κ(0) = 0.05357 and κ(2) = 0, which yields α1 = 0.471503 and α2 = 0.08982. (c)
Type II, with an outer (j = 0) gas domain: Γ2 = 1, β(0) = 0.3135, β(2) = 2.26, λ(0) = 0.007, λ(2) = 1, κ(0) = 0
and κ(2) = 10, which yields α1 = 0.51043 and α2 = 0.1497. The continuous lines are the streamlines, while
the dashed lines are the equipotential lines. The electric potential is re-scaled so that the maximum value in the
figure is 1. The white lines represent the interfaces.

the inner liquid can act as a charge drain if the voltages are selected according to the
solution here obtained. If slightly different voltages are applied to the liquids, emissions
are expected to take place from the cone tip at scales smaller than unity.

In this work, we have found analytically self-similar electrohydrodynamic solutions
without emission in the classical Taylor cone problem. The existence of these solutions is
particularly relevant to the technological possibility of emitting tiny droplets close to the
conditions of no-emission. In particular, the case J = 2 offers two types of voltage setting
configurations: solutions Types I and II. A very interesting example of Type I solutions
is obtained for two liquids with a gaseous innermost phase. This configuration may allow
ejecting microbubbles from that phase into the outer liquid domain with dimensionless
sizes below unity. Once dispersed in the outermost medium, these microbubbles would be
covered by a layer of liquid drawn from the intermediate domain during the ejection. This
would protect them from collapse and coalescence, and would provide them with special
mechanical properties. Besides, and under the above-described conditions leading to
solutions of Type II with internal charge drain, the system would act as a novel microfluidic
triode, which may bring unexpected features for applications ranging from new sensors
to mass spectrometry, ultra-high precision deposition or materials syntheses. Both the
numerical simulation and experimental realization of these possibilities are beyond the
scope of this analytical study, and will be the subject of subsequent works.

Acknowledgements. A.M.G.C. wishes to express his gratitude to his close colleagues M.A. Herrada and
J.M. López-Herrera for ongoing and inspiring discussions.

Funding. This research has been supported by the Spanish Ministry of Economy, Industry and
Competitiveness (A.M.G.C., J.M.M., grant numbers DPI2016-78887 and PID2019-108278RB); Junta de
Andalucía (A.M.G.C., grant number P18-FR-3623); and Junta de Extremadura (J.M.M., grant number
GR18175).

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
A.M. Gañán-Calvo https://orcid.org/0000-0002-7552-6184;
J.M. Montanero https://orcid.org/0000-0002-3906-5931.

915 R1-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

13
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-7552-6184
https://orcid.org/0000-0002-7552-6184
https://orcid.org/0000-0002-3906-5931
https://orcid.org/0000-0002-3906-5931
https://doi.org/10.1017/jfm.2021.137


Self-similar electrohydrodynamic solutions in multiple

REFERENCES

BARRERO, A., GAÑÁN-CALVO, A.M., DÁVILA, J., PALACIOS, A. & GÓMEZ-GONZÁLEZ, E. 1999 The role
of the electrical conductivity and viscosity on the motions inside Taylor cones. J. Electrostat. 47, 13–26.

BURCHAM, C.L. & SAVILLE, D.A. 2002 Electrohydrodynamic stability: Taylor–Melcher theory for a liquid
bridge suspended in a dielectric gas. J. Fluid Mech. 452, 163–187.

FENN, J.B. 1993 Ion formation from charged droplets: roles of geometry, energy and time. J. Am. Soc. Mass.
Spectr. 4 (7), 524–535.

FERNÁNDEZ DE LA MORA, J. 2007 The fluid dynamics of Taylor cones. Annu. Rev. Fluid Mech. 39, 217–243.
GAÑÁN-CALVO, A.M. 1997 Cone-jet analytical extension of Taylor’s electrostatic solution and the asymptotic

universal scaling laws in electrospraying. Phys. Rev. Lett. 79, 217–220.
GAÑÁN-CALVO, A.M., LÓPEZ-HERRERA, J.M., HERRADA, M.A., RAMOS, A. & MONTANERO, J.M.

2018 Review on the physics of electrospray: from electrokinetics to the operating conditions of single and
coaxial Taylor cone-jets, and AC electrospray. J. Aerosol. Sci. 125, 32–56.

HIGUERA, F.J. 2008 Model of the meniscus of an ionic-liquid ion source. Phys. Rev. E 77, 026308.
HIGUERA, F.J. 2010 Numerical computation of the domain of operation of an electrospray of a very viscous

liquid. J. Fluid Mech. 648, 35–52.
LAURICELLA, M., SUCCI, S., ZUSSMAN, E., PISIGNANO, D. & YARIN, A.L. 2020 Models of polymer

solutions in electrified jets and solution blowing. Rev. Mod Phys. 92, 035004.
LOSCERTALES, I.G., BARRERO, A., GUERRERO, I., CORTIJO, R., MARQUEZ, M. & GAÑÁN-CALVO, A.M.

2002 Micro/nano encapsulation via electrified coaxial liquid jets. Science 295, 1695–1698.
MAZUREK, P., YU, L., GERHARD, R., WIRGES, W. & SKOV, A.L. 2016 Glycerol as high-permittivity liquid

filler in dielectric silicone elastomers. J. Appl. Polym. Sci. 133, 44153.
MELCHER, J.R. & TAYLOR, G.I. 1969 Electrohydrodynamics: a review of the role of interfacial shear stresses.

Annu. Rev. Fluid Mech. 1, 111–146.
PONCE-TORRES, A., REBOLLO-MUÑOZ, N., HERRADA, M.A., GAÑÁN-CALVO, A.M. & MONTANERO,

J.M. 2018 The steady cone-jet mode of electrospraying close to the minimum volume stability limit.
J. Fluid Mech. 857, 142–172.

RAMOS, A. & CASTELLANOS, A. 1994 Conical points in liquid-liquid interfaces subjected to electric fields.
Phys. Lett. A 184, 268–272.

RUSSEL, W.B., SAVILLE, D.A. & SCHOWALTER, W.R. 1991 Colloidal Dispersions. Cambridge University
Press.

TAYLOR, G. 1964 Disintegration of water drops in electric field. Proc. R. Soc. Lond. A 280, 383–397.

915 R1-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

13
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.137

	1 Introduction
	2 Governing equations and self-similar solution
	2.1 Governing equations
	2.2 Self-similar solution

	3 Discussion and results
	References

