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STARLIKE UNIVALENT FUNCTIONS BOUNDED 
ON THE REAL AXIS 

RICHARD FOURNIER 

Introduction. We denote by E the open unit disc in C and by H(E) the 
class of all analytic functions f on E with f(0) = 0. Let (see [3] for more 
complete definitions) 

S = {/ e H(E)\fis univalent on E} 

S0 = {/ G H(E)\f is starlike univalent on £ } 

TR = {/ G H(E)\f is typically real on £ } . 

The uniform norm on (— 1, 1) of a function / e //(£") is defined by 

| / | = sup | / (x) |. 
- K K l 

Our first goal in this paper is to obtain various estimates (in terms of 
l/l ) for the functions/in S0. Our main motivation is the following results 
recently obtained by Rahman and Ruscheweyh [4]: 

T i iEORE^ A A. Let 

Az)> 
oo 

TR 

with \f\< oo. 77z^«, 

i ° / w subordinate 
, 2|/|z 
?o =r 

1 + z2 

2°|fl„| ^ 2 | / | /o r» = 1,2, . . . ; 

3° |/(x) | =i ̂ 4 / o ^ e ( - l . l ) . 
1 + X 

We shall prove: 

THEOREM 1. Let f e 5 0 be an odd function with \f\ < oo. 77zeAz, /or 
some 0 G [0, 277), / w subordinate to 
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STARLIKE UNIVALENT FUNCTIONS 643 

2\f\eiez 

1 +z2' 

Theorem 1 admits several corollaries. We obtain: 

COROLLARY 1.1. Letf e S0 andf'(0) = 1. Then \f\ â 1/2 and equality 
is possible if and only if 

z 
f(z) = ~v K\-W where X e [0, 1]. 

(1 + izf\\ - iz)2(l A) 

COROLLARY 1.2. Let 

oo 

f{z) = 2 anz
n e S0 

n = \ 

with l/l < oo. Then \an\ ^ 2\f\n for n = 1, 2, . . . . //"« = 1, equality is 
possible if and only if 

(1 + /z)2X(l - /z f 1 -^ 

where a e C #«d X G [0, 1], 7/̂ w > 1, equality is possible if and only if 

f(z) = J^?-
COROLLARY 1.3. Let 

oo 

f(z) = 2 aln_xz
ln~x e S0 

W/7/Î l/l < oo. 77ze« |«2/i-il — ̂ l/l />A* « = 1 ,2 , . . . . Equality is possible 
for some n = I if and only if 

OLZ 

f(z) = ~ where a e C 
1 + z2 

If M > 0 is a given positive number, there is no estimate of the type 

| / ( x ) | ^M\f\\x\, x e ( - 1 , 1 ) 
valid over the whole class H(E); a simple counter-example is given by the 
Chebyshev polynomial Tn(z) of the first kind and degree n, with odd n, for 
which 17; | = 1, Tn(0) = 0 and 17^(0) | = n. We will however show that the 
result 3° of Rahman and Ruscheweyh quoted above remains valid for 
the class S0. We prove 

THEOREM 2. Letf e S0 with \f\ < oo. Then 
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644 RICHARD FOURNIER 

1 + x 

Our proof of Theorem 2 is based on a result about polynomials which 
we believe is interesting enough to be quoted separately. Let 0 < r ^ 1, 
n ^ 1 and £Pn(r) be the set of polynomials p of degree n having all their 
zeros on the circle Izl = \lr and such that 

min( |/i(l) |, \p(-- D i ) s i. 
e shall prove 

PROPOSITION 1. Let p G ^ ( r ) a«J x 

\p(x) 1 = (-
+ ) r2x2y2 

r2 I 

( - 1, 1). Then 

and equality is possible for some x e (— 1, 1) if and only if 

1 
where 

p{z) = p(0)(\ + riz)k(\ - riz)n~k 

\p(Q) | = _ _ andO ^ k ^ n. 
FK J (1 4- r2)n/1 

Since the functions in S0 with real Taylor coefficients are typically real 
functions, our results are in some sense extensions of Theorem A. In the 
conclusion we will discuss an extension of our corollaries to a subclass of 
S larger than S0 and add some more comments about the relation between 
non-vanishing polynomials in the unit disc and starlike functions. 

Proof of Theorem 1. We assume first that the function / is continuous 
on [ - 1 , 1]. Since for r e (0, 1) and 0 e [0, 2ir), 

± l o g | / ( ^ ) I = l- R c t r e ^ ) > 0, 
dr r \ j(re ) I 

we obtain that \f(re ) | is an increasing function of r G [0, 1], for each 
fixed 6 G [0, 2w). In particular \f(r) | increases with r G [0, 1] and because 
f( — r) = —f(r) we obtain 

(1) | / | = max \f(x) | = | / ( 1 ) | = | / ( - 1 ) | . 
x e [ - l , l ] 

Let / (1) = |/(1) | A We will prove that 

Peie> €f{E) i f p S | / ( l ) | . 

It is sufficient to prove that f{\) £ f(E) because f(E) is a starlike do­
main with respect to the origin. If f(\) e f(E), there exists z0 e E with 
f(z0) = f(l). It follows from (1) that z0 is not real and because fis an open 
mapping, there must exist S > 0 such that 
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(2) {z\ |z - z0| < Ô } c £, {z\ \z - z0\ <8} n ( - 1 , 1) = 0 

and / ( {z\ \z — zQ\ < 8} ) is an open neighbourhood of f(z0) = f(\). 
Let 

{xn} c (0, 1) with lim xn = 1. 

Then 

lim /(*„) = / ( l ) 

and for n large enough, 

/ ( * „ ) e / ( { z | | z - z 0 | < 5 } ) . 

By (2) this is impossible because / is univalent. Therefore f{\) £ f(E) 
and the function / must omit the radial half-line ( /( l ) , oo). The function 
/ being odd, it must also omit the radial half-line (—/(l), oo). This 
means, in view of (1), that 

(3) / is subordinate to F(z) 
2\f\el6>z 

1 + z 2 ' 

More generally let / be an odd function in S0 and define 

gn(z) - / ( (l - l-)z) for n è 2. 

Then gn G S0, gn is odd and continuous on [— 1, 1] and 

By (3) there must exist, for each n ê 2, an analytic function wn on E such 
that 

(4) K(z) 

8«(t) -

|z|, z G £ and 

n 
Av„(z) 

1 + wz
n(z) 

for some sequence {8n} c [0, 2?r). The sequence {0n} admits a conver­
gent subsequence {0n). The sequence of functions {wn} is uniformly 
bounded on E and also admits a subsequence converging to a function w 
analytic on E with |w(z) | ^ |z|. Finally, since 

l/l = lim 
n 

https://doi.org/10.4153/CJM-1989-029-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-029-1


646 RICHARD FOURNIER 

we obtain by a passage to the limit in (4), 

/(z) = 2|/k*-£%-
1 -f w (z) 

for some 6 e [0, 2m). This completes the proof of Theorem 1. 

Proof of the corollaries. We need two lemmas. The first one depends on 
a well-known result about the coefficients of analytic functions with 
positive real part on E. The second one is purely computational. The 
proofs are omitted. 

LEMMA 1. Let <p e [0, 2m) andf e S0 such that 

Then 

f(z) = -.—^ :—^—pr where X e [0, 11. 
JK } (1 - ie*zf\\ + iel<pz)2(l~X) L J 

LEMMA 2. Let <p e [0, 2ir) andf e S0 as in Lemma 1. TTien | / | = 1/2 
*/ and only if el(p = ± 1. 

Proof of Corollary 1.1. We may assume that | / | < oo. Define 

g( z) = -T7T and //(z) = V - g ( 2 ) g ( ~ z ) . 

For a suitable choice of the root, the function h is well-defined and 

1 
h'(0) = 

l/l 

A'(z) 1/ «'(z) _̂  g'(-z) 

Since 

h(z) 2\ g(z) g(z) 

it follows easily that h is an odd starlike function. Since 

\h\ = lim VlgWIIgC-/-) ^ Urn max( \g(r) \, \g(-r) | ) = |g| = 1, 
r-->1 r—M 

we obtain from Theorem 1 that 

1 2e'ez 
h(z) = — z + . . . is subordinate to ^ 

l/l 1 + z 
for some 0 e [0, 277). Therefore (see [3], page 192) \/\f\ ^ 2 and equality 
is possible if and only if 
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STARLIKE UNIVALENT FUNCTIONS 647 

h(z) = y/-g{z)g(-z) = 
i + e 2 'V 

for some <p e [0, 2m). Since h'(0) = 1 / | / | = 2 we must have 

V - / ( z ) / ( - z ) 
Z 

1 + ^'V 

and the case of equality now follows from Lemma 1 and Lemma 2. 

Proof of Corollary 1.2. Let 

oo 

with l/l < oo. Then g(z) = f(z)/ax verifies the hypothesis of Corollary 
1.1 and therefore 

hi 2 

i.e., \ax\ =H 2 | / | , and the equality is possible if and only if 

/ U ' = (1 + izf\\ - izf^-V 

where ax is an arbitrary complex number and À e [0, 1]. The function g is 
normalized starlike univalent function; we know (see [3], page 44) that 

\g(n\0)\ 

n\ 
^ % n 

with equality only if g is a rotation of the Koebe function. From the 
reasoning above it follows that 

\a„\ ̂  «hi =i 2|/|» 

with equality if and only if 

f(z) = - ~ where a, e C. 
(1 ± izf l 

Proof of Corollary 1.3. Let 

oo 

n=\ 

with l/l < oo. Then g(z) = f(z)/al verifies the hypothesis of Corollary 
1.1 and therefore \ax\ ^ 2 | / | . Since the functions 
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648 RICHARD FOURNIER 

(1 4- izf\\ - zz)2(1 -X) 

are odd if and only if À = 1/2, we obtain that the equality is possible if 
and only if 

f(z) = —-—~, where a} e C. 
; 1 + z 2 1 

The function g is a normalized odd starlike function. Therefore ( [3], 
page 110) 

g ( 2 - l ) ( 0 ) 

(In - 1)! 
\a2n-\\ ^ j 

l"ll 

with the equality only if g is a rotation of z/(l + z2). It follows that 
lfl2«-il — 2 | / | and the case of equality follows at once. 

Proof of Proposition 1. 

LEMMA 3. Let x e (— 1, 1). There exists a polynomial q(z) e @n(r) 
such that 

(\ + r 2 x V 2 

\p(x) | = \q(x) | ^ | 

Proof. There exists a sequence {pj} e ^ ( r ) with 

inf |/>(x) | = \q(x) | ^ 1 2 and q(0) > 0. 
G^(r) \ 1 + r J 

lim \pf(x) | - inf \p(x) |. 

Assume that 

n 

Pj(z) = Pj(0) I I (1 + rA>z) . 

There is an integer J0 such that 

j^J0=* \Pj(x) I ^ inf |/?(x) | + 1 
pe0>n(r) 

and therefore 

inf \p(x) | + 1 

l^(0) | *"*>" «j^J0. 
(1 - r |x | ) 

It follows that the sequences { A ( 0 ) }, {0l }, {02 ,•}, . . . , {#„ ,} are bound­
ed and the sequence {pj} admits a subsequence converging to a poly­
nomial q; since 
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STARLIKE UNIVALENT FUNCTIONS 649 

we obtain that |̂ f(0) | > 0 and q e ^ ( r ) . Clearly 

\q(x) | = inf \p(x) |. 

The class ^ ( r ) is closed under multiplication by unimodular constants, so 
that we can suppose q(0) > 0. Further, 

and therefore 

|tf(x) I Si |?(x) , - , 2 

1 + r 

LEMMA 4. Let 

q{z) EE p(l - rz)*(l + rzf~* G ^ ( r ) , 

where 0 < p 0«d 0 ^ k ^ «. TTiew 

inf \p(x)\ < \q(x)\, ifx e ( - 1 , 1). 
pePn(r) 

Proof. The cases where r = 1 or 0 = /c or 0 = « are trivial and we shall 
prove Lemma 4 under the hypothesis 0 < r < 1 and 0 < /c < n. Suppose 
that the result is false; then, for some x e (— 1, 1), 

(6) inf \p(x) | = \q(x) |. 

Since g e ^(A*) we have 

1 ^ |^(1)| ^ | < / ( - l ) | or 1 ^ | ? ( - 1 ) | ^ |^(1)|, 

i.e., 

(7) 1 ^ p(l - r)*(l + r ) " - * ^ p(l + r)*(l - r)n~k 

or 

(8) 1 ^ p(l + r)k{\ - r)n~k ^ p(l - r)*(l + r ) n _ / c . 

We shall discuss below the case where (7) is valid. A similar reasoning is 
available if instead of (7) we consider (8). 

By (7) we obtain 

(1 + r\n~k 

(H-r - m 
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650 RICHARD FOURNIER 

and because 0 < r < 1 we have 

(9) n - k^k. 

It also follows from (7) that 

! <s \ ^ p 
(1 4- rf(\ - r)n~k (1 - rf(\ 4 r)n~k 

1 - rz\kt\ 4 rzV 2 ^ 

and in view of (6) we must have 

T —r = p and q(z) = , 
(1 - r)k{\ 4 r f _ / c ^ W \ 1 - r I \ 1 - r . 

Then, by (9), 

1 - rjt\2( , |-*)/l 4 rx \ 2 ^ - / c ) 

1 - r 1 \ 1 4 r 

1 - rV\2("^) 

>c-n£r-
This last inequality, together with (6), contradicts the result of Lemma 3. 
This completes the proof of Lemma 4. 

We are now in position to translate our problem into the language of 
mathematical programming. Proposition 1 is equivalent to the following 
statement: 

"Let (p, 0j, 02,. . . , 0n) be a solution to the problem 

(10) 

minimize F(p, <?, , . . . , Bn) = log(p) + Re 2 l o g ( l + rê6>x) 
PK-A V = I 

under the constraints: 

Hx(p, 0U...,0„)= - log(p) - Re(_2 log(l + rS) ) S 0, 

H2(p, 0U...,0„)= - log(p) - R e ( 2 log(l - r ^ ) ) S 0, 
V=i 

//3(P,*„...,e„) , - p i o . 
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Then p = (1 + r2)~n/1 and 0 } Q {/, - i } . " 

It follows from Lemma 3 that the above problem has a solution for each 
x G (— 1, 1) with p > 0. Clearly the corresponding maximization problem 
has no solution. We compute 

j = 1, 2, . . . ,/!. 

7 = l , 2 , . . . , / i . 

8# , 1 dHx r sin(ft) 

3p p ' 9ft. ~ |1 + reWj\2' 

3/ / 2 1 

9p p' 

dH2 -r sin(ft) 

9ft. ~ |1 - r<#|2 ' 

Remark that 

3//j 3^2 

~9^~ = 1 ) ^ " «* sin ft = 0. 

Moreover we know by Lemma 4 that if (p, 0l9.. . , 0n) is a solution point of 
(10), there must exist an index j e ( 1 , 2 , . . . , n) such that sin(^) ¥> 0. 
Therefore the gradients VHX and Vi/2> evaluated at any solution point of 
(10), are linearly independent. We can apply the Fritz John Theorem ( [1], 
page 34) to obtain that there exist multipliers \ix and /i2 with the following 
properties (all functions are evaluated at a solution point): 

(11) 
[VF -+ /i, V Hx + /x2 V H2 = 0 

Uj â 0, JU2 ̂  0, / x ^ + /A2i/2 = 0 

and (11) is easily seen to be equivalent to 

(12) /i, ^ 0, M2 ^ 0, Mi + H = 1, 

„ „ . — rx sin(ft) r sin(ft) r sin(0/) 
(13) —^ + u, M^, - u9 Mf . = 0, / = 1, . . . , n, 
V J |1 + r ^ x | 2 ]|1 4- r ^ | 2 2|1 - r ^ | 2 J 

(14) /ij > 0 =» ^ = 0; JU2 > 0 => i /2 = 0. 

We now obtain 

LEMMA 5. Let x e (— 1, 1) and q e ^ ( r ) w/Y/z 

|^(x) | = inf \p(x) |. 

r * ^ | ? ( i ) | = \q(-i)\ = l. 

Proof. By (14) it is sufficient to verify that jUj > 0 and \x2 > 0. Assume 
for example that [x{ = 0; then by (12) ju2 = 1 and after selecting an index 
j for which sin(ft) ^ 0, it follows from (13) that 

-x _ 1 

Il + A l 2 "~ Il - r é ^ f 
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This is obviously impossible when x ^ 0. It is also impossible when 
— 1 < x < 0 because 

|1 4- rei6Jx\2 |1 - reiej\x\\2 

and 

à I t \ 1 „ /l + reien\ ^ 
R e - ^ > 0 rf/\|l - re"*/|z/ " |1 - reieJt\2 \\ - rë% 

if 0 < / < 1. Therefore /ij > 0. A similar reasoning would show that 
ju2 > 0. This completes the proof of Lemma 5. 

We are now able to prove an extension of Lemma 4: 

LEMMA 6. Let 

q(z) = p(\ - rzf\\ + rz)k>q(z) G <£(r) 

where 0 < p, 0 < m i n ^ j , k2) and q(z) is a polynomial of degree n — 
kx — k2. Then 

inf \p(x) | < \q(x) |, for all x G ( - 1, 1). 

Proof We may assume that 0 < r < 1 and /cj = k2 = 1. If the conclu­
sion is false then, by Lemma 5, |#(1) | = \q(~ 1) I = 1 and we can write, 
for some 0 G [0, 2*r), 

q(z) = W l Z ^ ) | g and |3(i) | = |§(-1) |. 
\ 1 — r I q(Y) 

We define a polynomial g* of degree n by 

\ 1 + j> / q{\) 

The polynomial g* has its zeros on \z\ = Mr and since 

q*(l) = 1 and \q*(-l)\ = ^ ( - 1 ) l = 1 
15(1) I 

we obtain q* e ^„(r). On the other hand 
2 „ 2 \ i ~ 

'*(x) ' = (TTT^J^ 
I?(*) 

< 

15(1) 

1 - rV\ |5( jc ) | 

1 - r2 !\q(l) 

= \q(x) 
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= inf \p(x) |. 
p*&n{r) 

This is impossible and the conclusion of the lemma must hold. 

The Fritz John Theorem also gives some important information con­
cerning the non-real zeros of an extremal polynomial. Let 

n 

q(z) = q(0) I I (1 + r&z) e 9>n{f) 
7 = 1 

and assume that 

\q(x) | = inf \p(x) | 

for some x e (— 1, 1) and q(0) > 0. Let 

/ = Olsin(^) * 0}. 

We know that J is non-empty and by (12), (13) 

-x iix 1 - Mi 
II + r A l 2 4 

II 4 rel$A2 II - rA2 
0, j e / , 

for some jUj G (0, 1). This last equation is equivalent to 

0 = (1 + r2)[-x(\ 4 r2) 4 (2/ij - 1)(1 4 r2x2)} 

4 2r[(/i1 - 1)JC(1 + r2) - (1 4 r V ) ]cos 0y 

i.e., cos(fy) is constant for all j e / . Having in mind the results given by 
Lemma 5 and Lemma 6, the extremal polynomial q(z) must be 

(15) q(z) 
(1 ± rzfjl ± réazf\\ ± re~'az)n 

(1 + rf\\ + reia\"~k 

where 0 ë k < n, a is a real number such that sin(a) # 0 and 

(HHÏ re 
1 4- re" 

H-fc 
= 1. 

In order to complete the proof of Proposition 1 we need to establish a 
certain inequality. Let 0 < k < n, 0 < r < 1 and a e R such that 

(16) (HHT 
1 - reu n-k 

1. 
H 4 reH 

We obtain 

LEMMA 7. For all x e (— 1, 1), 

(1 4 r 2 x V 2 

1TT7 < (£rf 
1 + re'ax 

1 + re'" 

n-A: 
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Proof. Define on [— 1, 1] the function 

G(x) = 
1 + r V 

(1 + rxfk,n\\ + reiax\2{]~(k/n)r 

Then, by (16), G(l) = G( — 1) and the inequality in Lemma 7 is equiva­
lent to 

(17) G(x) < G(l) for all x e ( - 1 , 1). 

The derivative of the non-constant function G has at least one zero in 
( - 1 , 1), because G(\) = G ( - l ) . On the other hand 

G'(x) - 2 r ( l - rx) 

G(x) (1 + r V ) ( l + rx)|l + rxe' ia\2 

2,.2x X (c„ + 2r(cos «)x + c„r x ) 

where 

ca = - + | l 

Since cos a ¥= 0, 

G'(*) = 0 < 

- cos(a). 
ni 

\x = 0 if c 

2r cos a 
1 + 

0, 

JC + r V = 0 if c„ # 0. 

Because 0 < r < 1, we conclude that G' has exactly one zero on (— 1, 1) 
and that (17) is just equivalent to G(0) < G (I); some computations show 
that G(0) < G(l) if and only if 

(18) 2(1 - r") 2\2kln-k 2\kln-kx <(1 +rLf,n~K\(\ - r) \2k/n-k + (1 + >*) 
2k/n-k 

and the truth of (18) follows easily from the inequality 

(1 - r2)2 < 1 - r4, 

valid for all r e (0, 1). This completes the proof of Lemma 7. 

We can now prove Proposition 1. Let q e &n(r) such that 

inf \p(x) | = M*) | and q(0) > 0. 

By (15), 

q(z) = 
(1 ± rz)k(\ ± réaz)\\ ± rg~l'flz)',~*~*» 

(1 + r)*|l + reia\n~k 
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= 1 

where 0 â k < n and (16) holds. If r = 1 then clearly k = 0; if 0 < r < 1 
and 0 < k, we obtain from Lemma 7 

and this contradicts the result of Lemma 3. Therefore k must vanish for all 
r e [0, 1] and by (16), 

Il - reu 

Il 4- reu 

which means that 

eia = ±i and q(0) = (1 + r 2 )~" / 2 . 

This completes the proof of Proposition 1. 

Proof of Theorem 2. Let 0 < r < 1 and / e S0; we shall prove 

(19) | / ( « ) | ^ ( 1
1 " t " / 2

) l ? 1 max( | / ( r) |, | / ( - r ) | ). 
1 + r x 

Since, for any / e S0, 

l i m m a x ( | / ( r ) | , | / ( - r ) | ) = | / | , 
r-»l 

it is clear that Theorem 2 is in fact a limiting case (let r —» 1) of (19). 
The set of all functions g of the type 

az 
#00 = • 

II (1 + e\f^ 
7 = 1 

where 

a e C, 0y e [0, 2TT), 0 ^ fy ^ 1 and 2 \ = 1, 
7 = 1 

is well-known to be dense in S0 endowed with the topology of uniform 
convergence on compact subsets of the unit disc; a simple application of 
Montel's criteria shows that this remains valid if the X- SLTC assumed to be 
rational numbers in [0, 1]. In other words, the set S0 defined by 

50 = / 
f(z) == 277̂  where n ^ 1 and p is a polynomial 

of degree n having its zeros on the unit circle 

is dense in S0. It will be sufficient to prove (19) assuming t h a t / e S0, i.e., 
we need to prove 
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(20) p + r V r ^ ^ J xe ( - 1 1 ) 
\ 1 + r 2 / m i n ( | / » ( r ) | , b ( - r ) | ) ' 

Since 

/>(rz) 

min( |p ( r ) | , | / » ( - r ) | ) W 

for each polynomial p of degree n having its zeros on the unit circle, the 
truth of (20) follows from Proposition 1. This completes the proof of 
Theorem 2. 

The result of Theorem 2 is sharp as can be seen from the functions 

az 
f(Z) = (1 + izf\\ - izfV-K> 

with a G C and \ e [0, 1]. We believe that equality can be attained only 
for these functions but we cannot prove it due to a limiting process used in 
the proof. It is however not difficult to prove that given r G. [0, 1] and 
x e (— 1, 1), the equality in (19) is possible within the class S0 if and only 
if the function / is as above, with rational X e [0, 1]. 

Conclusion. 1° Let 

5 = { / 6 S | V - / ( r ) / H ) e S } . 

We already noticed that S0 Q S but in fact S is larger than S0 since it 
contains all odd univalent functions and the spirallike functions (see [3], 
page 52, for a suitable definition). Remark however that S ^ S: the 
Fekete-Szego Theorem ( [3], page 104) asserts the existence of a function 

oo 

fo(z) ^ z + 2 anz
n G S 

n = 2 

such that 

(21) 

But 

1 2 
«3 ~ r«2 > 1. 

v-/o(z)/0(-z) = z + («3 - ~4y + 
is an odd analytic function and it cannot be univalent, by (21). 

We point out that some of our results can be extended to S. Let / e S 
with / ' (0 ) = 1- By the growth theorem for odd univalent functions we 
obtain 
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and 

max( | /(z) |, | / ( - z ) | ) S v V ( z ) | | / ( - z ) | â | z | z G £. 
1 + |z|2 

This implies in particular that | / | â 1/2, i.e., Corollary 1.1 can be ex­
tended to S. Now let 

oo 

f(z) ss 2 anz
n e S with l/l < oo. 

« = i 

As in the proof of Corollary 1.2, we obtain that laj ^ 2 | / | . Moreover it 
follows from de Branges Theorem [2] that 

\a„\ =§ n|a, | ^ 2« | / | , n iï 1 

and Corollary 1.2 is valid for S. Of course no such simple generalization 
of Corollary 1.3 is possible. 

2° The relation between starlike functions and non-vanishing poly­
nomials in the unit disc is an interesting fact. We shall prove here the fol­
lowing result, apparently stronger than Proposition 1. In what follows let 
0 < r ^ 1 and éPn°{r) denote the set of all polynomials p of degree n, hav­
ing all their zeros on or outside the circle \z\ = 1/r, and such that 

m i n ( | / > ( l ) U / K - l ) | ) ^ 1-

We obtain 

PROPOSITION 2. 

/i + r2x2\n/2 

P g &n°(r) =» \p(x) I ^ ( 1 + r 2 ) , a c e ( - 1 , 1 ) . 

Proof. We put p(z) = q(rz) where the polynomial q has all its zeros 
outside the open unit disc. If 

n 

q(z) s q(0) I I (1 + r/iz) and f(z) = —K^ 

then 

/ f'(z)\ 1 ^ /I - r.Sz\ 

RÀZ-~\ = - 2 Re S H > °> z G E 

\ f(z)l n£\ \\ + rje'%) 
because 0 < ç ^ 1. Therefore/ e S0 and by (19), for x e ( - 1 , 1), 
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1 
\2/n ~ T77Z7\~î27n \p(x) \lln \q(rx) 

f(rx) 

rx 

1 +rl / | / ( r ) | \f(-r) 
max 1 + r2x2 \ r 

1 + r2 / 1 1 
maxl ~ 1 + r V " ' " > ( ! ) |2/«'|/>(-l)|2 '" 

= 1 + r V 
This completes the proof of Proposition 2. 

3° Finally we point out the following results that can be obtained just as 
Proposition 1 and Theorem 2 were. The proofs are omitted: 

PROPOSITION 3. Let p(z) be a polynomial of degree n ^ 1 having all its 
zeros outside the open unit disc. Then 

min( \p(\) |, \p(- 1) | )\p(x) | ^ 2"/2\p(0) |2(1 + x2fn 

for all x Œ (— 1, 1). Equality is possible if and only if 

p(z) = p(0)(\ + iz)k(\ ~ iz)n~k where 0 ^ k ^ n. 

THEOREM 3. Letf e S0 with \f\ < oo. Then 

\f'(0)\2 \x\ 

2 | / | 1 + x 
^ \f(X)\, X G ( - 1 , 1 ) . 
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