
9

Matter models

This chapter provides a discussion of various matter models amenable to a

treatment by means of conformal techniques. These matter models can be used

as matter sources for the conformal Einstein field equations discussed in Chapter

8. The matter models to be considered are the electromagnetic field, radiation

perfect fluids and the conformally invariant scalar field. These matter models

share the property of having an energy-momentum tensor which is trace free.

This property leads to simple transformation laws for the equations satisfied by

the matter models. Moreover, the unphysical equations obtained by means of

these transformations are regular at points where the conformal factor vanishes.

9.1 General properties of the conformal treatment

of matter models

The fundamental object in the description of a matter model in general relativity

is its energy-momentum tensor T̃ab. The equations describing the model are

then given by

∇̃aT̃ab = 0. (9.1)

The energy-momentum tensor is related to the curvature of the spacetime via

the Einstein field equations; see Equation (8.4). Despite this connection, a

conformal transformation g = Ξ2g̃ does not directly imply a transformation

rule for the physical energy-momentum tensor T̃ab. Nevertheless, it is

convenient to define an unphysical energy-momentum tensor Tab when

rewriting Equation (9.1) in terms of geometric quantities derived from the

rescaled metric g.

9.1.1 The unphysical energy-momentum tensor

There is considerable freedom in a possible definition of Tab. Guiding principles

are simplicity in both the definition and the resulting form of the unphysical
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212 Matter models

version of Equation (9.1). Arguably, the simplest definition of the unphysical

energy-momentum tensor is one which is homogeneous with respect to the

conformal factor Ξ. Accordingly, set

Tab = Ξ−2T̃ab. (9.2)

It follows then that

gab∇aTbc = Ξ−4g̃ab∇̃aT̃bc − Ξ−5∇̃cΞg̃
abT̃ab. (9.3)

Hence, Equation (9.1) implies the equation ∇aTab = 0 only if

T̃ = 0, T̃ ≡ g̃abT̃ab.

This observation justifies definition (9.2) and the importance given in this chapter

to trace-free matter models. As a result of the homogeneous nature of the

transformation law in Equation (9.2), Tab is trace free if T̃ab is trace free.

In the case of matter models with T̃ab �= 0, define T ≡ gabTab, so that T =

Ξ−4T̃ . It follows from Equations (9.1) and (9.3) that

∇aTab = Ξ−1∇bΞT.

This is an equation which is formally singular at the points where Ξ = 0. Dealing

with this singularity is the essential problem faced in the analysis of general

matter models by means of conformal methods.

9.1.2 The rescaled Cotton tensor

As discussed in Chapter 8, the matter fields couple to the conformal Einstein field

equations through the rescaled Cotton tensor Tabc; compare Equations (8.22)

and (8.23). Recall that the physical Cotton tensor is given by Tabc = Ξ−1Ỹabc

where

Ỹabc = ∇̃aL̃bc − ∇̃bL̃ac;

compare Equation (8.21). One readily finds that

Tabc =
1

2
Ξ−1

(
∇̃aT̃bc − ∇̃bT̃ac

)
− 1

6
Ξ−1

(
∇̃aT̃ g̃bc − ∇̃bT̃ g̃ac

)
,

where it has been used that the physical Schouten tensor L̃ab is related to the

physical energy-momentum tensor via Equation (8.5b). In what follows, attention

will be restricted to the trace-free matter case so that

Tabc =
1

2
Ξ−1

(
∇̃aT̃bc − ∇̃bT̃ac

)
.

The latter can be reexpressed in terms of the unphysical connection ∇ and the

unphysical energy-momentum tensor Tab. A computation using the methods of

Chapter 5 yields

Tabc = Ξ∇[aTb]c +∇[aΞTb]c + gc[aTb]e∇eΞ. (9.4)
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9.2 The Maxwell field 213

From the above expression it follows that Tabc is regular whenever Ξ = 0 if Tab

is smooth at the conformal boundary.

Equation (9.4) can be expressed in terms of derivatives of the (conformal)

matter fields. This feature complicates the construction of suitable conformal

evolution equations as it introduces further derivatives of the fields into the

principal part of the equations. This difficulty can be overcome by introducing

evolution equations for the derivatives of the matter fields which cannot be

eliminated with the equation ∇aTab = 0. This analysis depends on the specific

properties of the matter model under consideration.

9.2 The Maxwell field

The electromagnetic or Maxwell field is the prototype of a relativistic matter

model that can be treated by means of conformal methods. The Maxwell field is

described by an antisymmetric tensor F̃ab – the Faraday tensor . In terms of

the latter, the source-free Maxwell equations are given by

∇̃aF̃ab = 0, (9.5a)

∇̃[aF̃bc] = 0. (9.5b)

Multiplying Equation (9.5b) by the volume form ε̃dabc, one obtains the alternative

expression

∇̃aF̃ ∗
ab = 0, (9.6)

where F̃ ∗
ab ≡ − 1

2 ε̃ab
cdF̃cd denotes the dual Faraday tensor . Now, introducing

the self-dual Faraday tensor

F̃ab ≡ F̃ab + iF̃ ∗
ab,

it follows from (9.5a) and (9.6) that

∇̃aF̃ab = 0. (9.7)

This last equation contains the same information as Equations (9.5a) and (9.5b).

The energy-momentum tensor of the electromagnetic field is quadratic in the

Faraday tensor. It is given by

T̃ab = F̃acF̃b
c − 1

4
g̃abF̃cdF̃

cd.

It can be readily verified that T̃ = 0. Making use of the dual F̃ ∗
ab one obtains the

alternative expressions

T̃ab =
1

2

(
F̃acF̃b

c + F̃ ∗
acF̃

∗
b
c
)

(9.8a)

=
1

2
F̃ac

¯̃Fb
c. (9.8b)

It can be readily verified that the Maxwell Equations (9.5a) and (9.5b) imply

that ∇̃aT̃ab = 0.
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Conformal transformation properties

The source-free Maxwell Equations (9.5a), (9.5b) and (9.6) are conformally

invariant. In order to see this, assume that (M, g) is a conformal extension

of a spacetime (M̃, g̃) with g = Ξ2g̃, and define the conformal (unphysical)

Faraday tensor via

Fab ≡ F̃ab. (9.9)

It follows from this definition that F ∗
ab = F̃ ∗

ab. Moreover, using the transfor-

mation laws between the connections ∇̃ and ∇ one finds that Equations (9.5a),

(9.5b) and (9.6) imply

∇aFab = 0, ∇[aFbc] = 0, ∇aF ∗
ab = 0, (9.10)

which shows the conformal invariance of the equations. Let ∇̂ be a Weyl

connection defined via ∇̂−∇ = S(f) with f a covector. A further computation

yields

∇̂aFab = 0, ∇̂[aFbc] = 0, ∇̂aF ∗
ab = 0.

Consistent with the transformation law (9.2) for the energy-momentum tensor

one finds that

Tab = FacFb
c − 1

4
gabFcdF

cd =
1

2
(FacFb

c + F ∗
acF

∗
b
c) .

Substituting the last expression in Equation (9.4) for the rescaled Cotton tensor

one obtains

2Tabc = ∇[aFb]dFc
d + Fd[a∇b]Fc

d +∇[aF
∗
b]dF

∗
c
d + F ∗

d[a∇b]F
∗
c
d

+∇[aΞFb]dFc
d +∇[aΞF

∗
b]dF

∗
c
d

+ gc[aFb]eFd
e∇dΞ + gc[aF

∗
b]eF

∗
d
e∇dΞ.

A direct inspection shows that the first four terms of the right-hand side

contain derivatives of the Faraday tensor which cannot be eliminated using

the (conformal) Maxwell Equations (9.10). Thus, it is necessary to consider

equations for the derivatives of Fab. A suitable equation can be obtained from the

commutator of covariant derivatives applied to Fab. More precisely, one has that

∇a∇bFcd −∇b∇aFcd = −Re
cabFed −Re

dabFce.

In view of this equation one introduces the auxiliary field Fabc ≡ ∇aFbc so that

∇aFbcd −∇bFacd = −Re
cabFed −Re

dabFce. (9.11)

By construction one has that

Fabc = Fa[bc], F[abc] = 0, F a
ac = 0.
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9.2 The Maxwell field 215

9.2.1 The spinorial form of the Maxwell equations

The spinorial treatment of the Maxwell field is a direct consequence of the

decomposition of spinors in irreducible components; see Section 3.1.6. The

spinorial formulation of the Maxwell equations offers a number of computational

advantages and makes more evident the similarities between the gravitational

and electromagnetic fields.

In what follows, let F̃AA′BB′ denote the spinorial counterpart of the Fara-

day tensor F̃ab. By exploiting the antisymmetry of F̃ab, it follows from Equation

(3.13) that there exists a symmetric spinor φ̃AB , theMaxwell spinor, such that

F̃AA′BB′ = φ̃AB ε̃A′B′ +
¯̃
φA′B′ ε̃AB , φ̃AB =

1

2
F̃AQ′B

Q′
. (9.12)

Using the decomposition (9.12) it follows that

F̃AA′BB′ = 2φ̃AB ε̃A′B′ ,

where F̃AA′BB′ is the spinorial counterpart of the self-dual Faraday tensor F̃ab.

Taking into account Equation (9.7) one obtains

∇̃A
A′ φ̃AB = 0. (9.13)

This last equation is known as the spinorial Maxwell equation. A further

computation using Equation (9.8b) shows that the spinorial counterpart of the

energy-momentum tensor takes the simple form

T̃AA′BB′ = φ̃AB
¯̃
φA′B′ .

Behaviour under conformal rescalings

The definition of the unphysical (conformal) Faraday tensor given in Equation

(9.9) suggests introducing the unphysical Maxwell spinor φAB as

φAB ≡ Ξ−1φ̃AB . (9.14)

The factor Ξ−1 in the above definition is necessary to compensate for the factor

Ξ picked up by the spinor ε̃AB in Equation (9.12). It follows from Equation (9.13)

and the transformation law of the connection upon conformal rescalings g = Ξ2g̃

given in Section 5.4 that

∇Q
A′φBQ = 0. (9.15)

That is, the transformation rule (9.14) makes the spinorial Maxwell Equation

(9.13) conformally invariant – this result was to be expected in view of the

equations in (9.10). One readily sees the similarities between Equation (9.15) and

the spinorial Bianchi identity ∇AA′
φABCD = 0. Consistent with Equation (9.2)

one finds that the spinorial counterpart of the unphysical energy-momentum

tensor is given by

TAA′BB′ = φABφ̄A′B′ .
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Equation (9.15) can be expressed in terms of a Weyl connection ∇̂ = ∇+S(f) as

∇̂Q
A′φBQ = fQ

A′φBQ.

In order to write a spinorial version of Equation (9.11) it is observed that the

action of the commutator of covariant derivatives on the spinor φAB is given by

∇AA′∇BB′φCD −∇BB′∇AA′φCD = −φQDRQ
CAA′BB′ − φCQR

Q
DAA′BB′ .

Letting ψAA′BC ≡ ∇AA′φBC , one obtains

∇AA′ψBB′CD −∇BB′ψAA′CD = −2φQ(CR
Q
D)AA′BB′ .

By construction, the auxiliary spinor ψAA′BC possesses the symmetries

ψAA′BC = ψAA′CB , ψQ
A′BQ = 0.

9.3 The scalar field

A scalar field φ̃ satisfying the wave equation

∇̃a∇̃aφ̃ = 0 (9.16)

is a convenient matter model to couple to the Einstein field equations. It provides

a way of incorporating dynamical degrees of freedom in spherically symmetric

configurations; see, for example, Choptuik (1993) and Gundlach and Mart́ın-

Garćıa (2007). This idea has been exploited in a number of analyses of cosmic

censorship and the formation of black holes through gravitational collapse; see,

for example, Christodoulou (1986) and Dafermos (2003, 2005).

Unfortunately, as a direct computation shows, Equation (9.16) does not

have good conformal transformation properties. This difficulty can be fixed by

considering a modified version – the so-called conformally invariant scalar

field equation

∇̃a∇̃aφ̃− 1

6
R̃φ̃ = 0, (9.17)

where R̃ denotes the Ricci scalar of the physical spacetime metric g̃. Letting, as

usual, g = Ξ2g̃ and defining the unphysical (conformal) scalar φ as

φ ≡ Ξ−1φ̃,

one finds, after a calculation using the transformation rule for the Ricci scalar

Equation (5.6c), that

∇a∇aφ− 1

6
Rφ = 0, (9.18)

where R denotes the Ricci scalar of g. An energy-momentum tensor for Equation

(9.17) is given by

T̃ab = ∇̃aφ̃∇̃bφ̃− 1

4
g̃ab∇̃cφ̃∇̃cφ̃− 1

2
φ̃∇̃a∇̃bφ̃+

1

2
φ̃2L̃ab. (9.19)
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A peculiarity of the above expression is the presence of the curvature terms

L̃ab in the right-hand side of the energy-momentum tensor. Using the Einstein

field Equations (8.4), the Schouten tensor can be reexpressed in terms of the

energy-momentum tensor, so that Equation (9.19) takes the form

T̃ab =

(
1− 1

4
φ̃2

)−1(
∇̃aφ̃∇̃bφ̃− 1

4
g̃ab∇̃cφ̃∇̃cφ̃− 1

2
φ̃∇̃a∇̃bφ̃+

1

12
(λ− T̃ )φ̃2g̃ab

)
.

Taking the trace of Equation (9.19) one finds that

T̃ ≡ g̃abT̃ab = −1

2
φ̃

(
∇̃a∇̃aφ̃− 1

6
R̃φ̃2

)
.

Thus, the energy-momentum tensor of Equation (9.19) is trace free if and

only if the conformally invariant wave Equation (9.17) is satisfied. A lengthier

computation using the commutator of covariant derivatives and the Bianchi

identity in the form ∇̃aL̃ab =
1
6∇̃bR̃ shows that

∇̃aT̃ab = ∇̃bφ̃

(
∇̃c∇̃cφ̃− 1

6
R̃φ̃

)
− 1

2
φ̃∇̃b

(
∇̃c∇̃cφ̃− 1

6
R̃φ̃

)
.

One concludes that T̃ab is divergence free if and only if Equation (9.17) holds.

Finally, using the transformation law for the Schouten tensor under conformal

rescalings, Equation (5.6b), one finds that

Tab = ∇aφ∇bφ− 1

4
gab∇cφ∇cφ− 1

2
φ∇a∇bφ+

1

2
φ2Lab,

so that Tab = Ξ−2T̃ab. It follows from the previous discussion that

∇aTab = 0, gabTab = 0.

Spinorial description

The straightforward spinorial counterpart of Equation (9.19) is given by

T̃AA′BB′ = ∇̃AA′ φ̃∇̃BB′ φ̃− 1

4
ε̃AB ε̃A′B′∇̃PP ′ φ̃∇̃PP ′

φ̃

− 1

2
φ̃∇̃AA′∇̃BB′ φ̃+

1

2
φ̃2L̃AA′BB′ .

Applying the decomposition formula (3.12) to ∇̃AA′ φ̃∇̃BB′ φ̃ and ∇̃AA′∇̃BB′ φ̃

one finds that

∇̃AA′ φ̃∇̃BB′ φ̃ = ∇̃A(A′ φ̃∇̃B′)Bφ̃+
1

4
ε̃AB ε̃A′B′∇̃PP ′ φ̃∇̃PP ′

φ̃,

∇̃AA′∇̃BB′ φ̃ = ∇̃A(A′∇̃B′)Bφ̃+
1

4
ε̃AB ε̃A′B′∇̃PP ′∇̃PP ′

φ̃,

where it has been used that

∇̃P (A′ φ̃∇̃P
B′)φ̃ = 0, ∇̃P (A′∇̃P

B′)φ̃ = 0.
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The above formulae, together with the wave equation (9.17), imply the following

alternative spinorial expression for the energy-momentum tensor:

T̃AA′BB′ = ∇̃A(A′ φ̃∇̃B′)Bφ̃− 1

2
φ̃∇̃A(A′∇̃B′)Bφ̃+

1

2
φ̃2Φ̃AA′BB′

where Φ̃AA′BB′ is the (physical) trace-free Ricci spinor. The unphysical spacetime

version of the above equation follows directly by removing the ˜ of the various

fields.

9.3.1 Equations for the derivatives of the scalar field

As in the case of the electromagnetic field, the coupling of the conformally

invariant scalar field to the conformal field equations through the rescaled Cotton

tensor Tabc involves derivatives of φ. Indeed, a calculation exploiting the fact that

∇[a∇b]φ = 0 shows that

∇[aTb]c =
3

2
∇[bφ∇a]∇cφ− 1

2
gc[b∇a]∇eφ∇eφ+ φ∇[aφLb]c

− 1

2
φ∇[a∇b]∇cφ+

1

2
φ2∇[aLb]c.

The terms in the second line of the preceding equation can be rewritten using

the commutator

∇[a∇b]∇cφ = −1

2
Re

cab∇eφ

and the Cotton Equation (8.23). Putting everything together in Equation (9.4)

and rearranging one obtains(
1− 1

4
φ2Ξ2

)
Tabc =

3

2
Ξ∇[bφ∇a]∇cφ− 1

2
Ξgc[b∇a]∇eφ∇eφ+ φ∇[aφLb]c

+
1

4
ΞφRe

cab∇eφ+
1

4
Ξφ2∇eΞR

e
cab+∇[aΞTb]c+gc[aTb]e∇eΞ.

The above expression contains first and second derivatives of φ which cannot be

eliminated using the wave Equation (9.18). Accordingly, field equations for these

derivatives need to be constructed.

In what follows, let φa ≡ ∇aφ, φab ≡ ∇a∇bφ. As ∇ is torsion free one has

that φ[ab] = 0 and one can write

φab = φ{ab} +
1

4
gabφe

e = φ{ab} +
1

24
gabRφ, (9.20)

where in the second equality one has used Equation (9.18) in the form φe
e = 1

6Rφ.

Regarding φa and φab as further field unknowns one obtains the field equations

∇aφ− φa = 0, ∇aφb − φ{ab} −
1

24
gabRφ = 0, ∇eφe −

1

6
Rφ = 0.
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To obtain equations for φab one considers the commutator of covariant derivatives

applied to ∇cφ in the form

∇[aφb]c = −1

2
Rd

cabφd.

Letting ψab ≡ φ{ab} and using the decomposition (9.20) one obtains

∇[aψb]c −
1

24

(
Rgc[aφb] + φgc[b∇a]R

)
= −1

2
Rd

cabφd.

Finally, an equation for the trace term φe
e is obtained by differentiating Equation

(9.18) so that

∇aφe
e − 1

6
(φaR+ φ∇aR) = 0.

9.3.2 Relation to other wave equations

Solutions to the conformally invariant wave Equation (9.17) on a spacetime

(M̃, g̃) are related to solutions of the standard wave equation on a conformally

related spacetime (M̀, g̀) through a transformation first discussed in Bekenstein

(1974): the scalar field φ̃ can be used to define a metric ĝ conformally related to

g̃ via

g̀ = Ξ̀2g̃, Ξ̀ ≡ 1− 1

4
φ̃2.

It follows from a direct computation that the scalar field

φ̀ ≡
√
6 arctan

1

2
φ̃

is a solution of the equation

∇̀a∇̀aφ̀ = 0.

As noticed in Bičák et al. (2010), this observation can be turned into a procedure

to construct solutions to the Einstein-scalar field equations out of vacuum static

solutions; see also Buchdahl (1959).

9.4 Perfect fluids

Perfect fluids constitute an important class of matter models for the Einstein

field equations. In the cosmological context, perfect fluids are used to describe

the matter content of the universe at a suitably large scale; see, for example,

Ellis et al. (2012). Given a spacetime (M̃, g̃), the energy-momentum tensor

of a perfect fluid with 4-velocity ũa, pressure p̃ and density �̃ is given by

T̃ab = (�̃+ p̃)ũaũb − p̃g̃ab, (9.21)

https://doi.org/10.1017/9781009291347.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.012


220 Matter models

with ũa satisfying the normalisation condition ũaũ
a = 1. The equations of motion

for the fields ũa, �̃ and p̃ are given by ∇̃aT̃ab = 0. This last equation gives four

equations for six unknowns. The normalisation of ũa can be used to eliminate

one of the components of the 4-velocity (usually the time component). To close

the system a phenomenological constitutive relation linking the pressure and the

density must be prescribed. A standard assumption made on perfect fluids is to

have the density and the pressure related to each other by means of a barotropic

equation of state p̃ = f(�̃) with f a smooth function of the density �̃. From

Equation (9.21) it follows that T̃ = �̃− 3p̃. Thus, the energy-momentum tensor

of a perfect fluid is trace free if and only if

p̃ =
1

3
�̃. (9.22)

This constitutive relation is known as the equation of state of radiation.

In what follows, the discussion will be restricted to perfect fluids satisfying the

equation of state (9.22). To discuss the perfect fluid in the conformally rescaled

spacetime (M, g) with g = Ξ2g̃ it is convenient to consider the following

unphysical conformal fields

ua ≡ Ξũa, � ≡ Ξ−4�̃, p ≡ Ξ−4p̃.

The above definitions are consistent with the transformation law for the energy-

momentum tensor of Equation (9.2). Moreover, it follows that p = 1
3�, so that

the unphysical energy-momentum tensor takes the form

Tab =
4

3
�uaub −

1

3
�gab with ∇aTab = 0. (9.23)

Moreover, one has that uau
a = 1, so that differentiating along ua one finds that

ua∇a(ubu
b) = 0.

From this expression it follows that if uau
a = 1 at some point in a flow line, then

uau
a = 1 everywhere along the flow line. From Equation (9.23) it readily follows

that

4

3
(uau

c∇c�+ �ua∇cu
c + �uc∇cua)−

1

3
∇a� = 0.

Contracting this equation, respectively, with ua and gab − uaub one obtains

ua∇a�+
4

3
�∇au

a = 0,

4

3
�uc∇cua +

1

3
uau

c∇c�−
1

3
∇a� = 0.

These equations are the conformal versions of the equation of energy

conservation and the equations of motion ; see, for example, Choquet-

Bruhat (2008). A discussion on how to use these equations to construct suitable

evolution equations for the fields � and the spatial components ui of the fluid

4-velocity can be found in the same reference.
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9.5 Further reading

A further matter model amenable to a treatment by means of conformal methods

is the Yang-Mills field. The Yang-Mills equations can be regarded as a suitable

generalisation of the Maxwell equations; see, for example, Frankel (2003) for a

discussion. The conformal field equations with matter source given by a Yang-

Mills field of arbitrary gauge group have been discussed in Friedrich (1991). The

discussion of the Maxwell field presented in this chapter is adapted from that

reference. A treatment of the conformal Einstein-Maxwell system by means of

Weyl connections is given in Lübbe and Valiente Kroon (2012).

The discussion of the conformal field equations coupled to the conformally

invariant wave equation was first given in Hübner (1995). An alternative

approach to the analysis of the conformal Einstein field equations with a scalar

field can be found in Bičák et al. (2010). In Friedrich (2015b) it has been shown

that the Einstein–massive scalar field system has good conformal properties if

the mass of the scalar field and the cosmological constant satisfy the relation

3m2 = −2λ.

Finally, the conformal Einstein-Euler equations have been analysed in Lübbe

and Valiente Kroon (2013b) and used to prove the future non-linear stability

of perturbations of Friedman-Lemâıtre-Robinson-Walker cosmological models

with a radiation fluid. Analyses of the Einstein-Euler system not making use

of conformal methods can be found in Rodnianski and Speck (2013) and Speck

(2012).

The purpose of this chapter has been to present a discussion of matter

models with properties which make them suitable sources for the conformal field

equations. However, conformal methods have also been used for other types of

constructions. As an example, one has Bičák and Krtouš (2001, 2002) where the

conformal invariance of the Maxwell equations has been exploited to construct

the analogue of the Born solution (describing the motion of a pair of uniformly

accelerated charges) in the de Sitter spacetime.
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