THE SUMMABILITY OF FORMAL SOLUTIONS OF FUNGTIONAL EQUATIONS

J. D. GRAY

(Received 6 January 1966, revised 4 July 1966)

In 1923 Nörlund [1] considered the difference equation

$$
\begin{equation*}
u(x+\omega)-u(x)=\theta(x) \tag{1}
\end{equation*}
$$

and showed that the formal solution of (1)

$$
\begin{equation*}
u(x)=c-\sum_{0}^{\infty} \theta(x+n \omega) \tag{2}
\end{equation*}
$$

obtained by iteration, although in general divergent, is in fact Abel summable to a solution of (1). He writes the arbitary constant c as

$$
\int_{a}^{\infty} \theta(s) d s
$$

and thus the "principal solution" of the difference equation is

$$
u(x)=\lim _{\lambda \rightarrow 0+}\left\{\int_{a}^{\infty} \theta(s) e^{-\lambda s} d s-\sum_{0}^{\infty} \theta(x+n \omega) e^{-\lambda(x+n \omega)}\right\}
$$

Nörlund showed further that the series (2) is summable to a solution by a large class of methods.

Bellman [2] solved the analogous problem for Fredholm integral equations of the second kind with both continuous and L^{2} kernels. The equation

$$
\begin{equation*}
u(x)=f(x)+\lambda \int K(x, s) u(s) d s \tag{3}
\end{equation*}
$$

has as a formal solution the familiar Neumann series and it is shown in [2] that if λ is not a characteristic value and if \mathscr{S} is a regular summability method which satisfies the following condition
G: " \mathscr{S} sums the geometric series $\sum_{0}^{\infty} z^{n}(z \neq 1)$ to $1 /(1-z)$ in some set of points $D=D(\mathscr{S})$ of the complex plane",
then \mathscr{S} sums the Neumann series to a solution of (3) for all $\lambda \in \Lambda(D)$, a set determined by D.

Bellman concludes with the remark ". . . it would seem that for those linear functional equations where a solution in the large is known 'a priori',
a summability theory of the formal solution . . . may be framed". In this note it is shown that for a large class of abstract functional equations this conjecture is valid.

Let X be an arbitrary Banach space and T a bounded linear transformation of X into itself. We call an open set $U T$-admissible if
(i) $U \supset \sigma(T)$, the spectrum of T; and
(ii) U has a finite number of components and the boundary of U consists of a finite number of disjoint rectifiable Jordan curves.

The general linear functional equation will be written as

$$
\begin{equation*}
(\lambda I-T) u=f \tag{4}
\end{equation*}
$$

and we assume throughout that $f \neq 0$. Now, as is well known [3], in any Banach Algebra \boldsymbol{A} with $T \in \boldsymbol{A}$ and $|\lambda|>\|T\|$, the resolvent $R(\lambda, T)$ has the expansion

$$
\begin{equation*}
\lambda^{-1}\left(I+\lambda^{-1} T+\lambda^{-2} T^{2}+\cdots\right) \tag{5}
\end{equation*}
$$

convergent in the norm topology, in this case, the uniform topology of operators. We are thus led to the prototype of formal solutions of (4)

$$
\begin{equation*}
u=\lambda^{-1} \sum_{0}^{\infty} \lambda^{-n} T^{n} f \tag{6}
\end{equation*}
$$

Suppose now that $\mathscr{S}=\left(c_{n, m}\right)_{n, m=0}^{\infty}$ is a regular summability matrix satisfying G (the following results will still hold if instead \mathscr{S} is a sequence-to-function transformation) and for all $z \in D$ consider the transformed partial sums of the geometric series

$$
\begin{align*}
t_{m}(z) & =\sum_{0}^{\infty} c_{n, m} \sum_{0}^{n} z^{\nu}, & m=0,1, \cdots \tag{7}\\
& =(1-z)^{-1} \sum_{0}^{\infty} c_{n, m}\left(1-z^{n+1}\right), &
\end{align*}
$$

then for m sufficiently large, say $m>m_{0}$, each of the series (7) converge and hence $t_{m}(z)$ is analytic in D. Now by regularity [4], we have

$$
\sum_{0}^{\infty} c_{n, m} \rightarrow 1 \quad \text { as } \quad m \rightarrow \infty
$$

and as \mathscr{S} satisfies condition $G,(1-z)^{-1} \sum_{0}^{\infty} c_{n, m} z^{n+1} \rightarrow 0$ for all $z \in D$. Further

$$
\left|t_{m}(z)-(1-z)^{-1}\right| \leqq|1-z|^{-1}\left\{\left|\sum_{0}^{\infty} c_{n, m}-1\right|+\left|\sum_{0}^{\infty} c_{n, m} z^{n+1}\right|\right\}
$$

and by the above, given any $\varepsilon>0$ there exists an $m_{0}=m_{0}(\varepsilon)$ such that

$$
\left|\sum_{0}^{\infty} c_{n, m}-1\right|<\varepsilon \quad \text { for all } m>m_{0}
$$

If now z is contained in some compact subset V of D, there is a constant $M>0$ such that $|1-z|^{-1}<M$, and further, given any $\eta>0$ there exists an $m_{1}=m_{1}(\eta)$ such that $\left|\sum_{0}^{\infty} c_{n, m} z^{n+1}\right|<\eta$ for all $m>m_{1}$. Hence we have that $t_{m}(z) \rightarrow \mathbf{1} /(\mathbf{l}-z)$ uniformly on any compact subset of D.

Now for all z in some T-admissible set U

$$
\lambda^{-1} t_{m}(z / \lambda) \rightarrow 1 /(\lambda-z)
$$

uniformly in z and for all $\lambda \in \Lambda(D)=\{w \mid U \subseteq w V\}$. So finally because of the T-admissibility of U we may apply the operational calculus for bounded linear operators [3] - and assert that for all $\lambda \in \Lambda(D)$

$$
\lambda^{-1} t_{m}(T / \lambda) \rightarrow R(\lambda, T)
$$

in the uniform operator topology. Therefore the series (5) is summable ($\mathscr{S}^{\boldsymbol{S}}$) to the resolvent of T and hence, for all $f \in X,(6)$ is summable to a solution of equation (4) - the desired result. Hence we have proven the

Theorem 1. Suppose \mathscr{S} is a regular summability method satisfying G, then for any T-admissible set U and any compact set $V \subseteq D$, the formal series (6) is summable to a solution of (4) for all $\lambda \in\{w \mid U \subseteq w V\}$.

In the case when X is a Hilbert Space and the convergence of (6) is considered in the weak topology, we see that the regularity of \mathscr{S} in the above theorem is not a necessary condition. For example take T to be selfadjoint and degenerate (that is, the range of T is a finite-dimensional subspace of X) and the result is a direct consequence of the Spectral Decomposition Theorem for such operators.

Note also that with $r(T)$ denoting the spectral radius of T, Theorem \mathbf{l} implies that the series (6) may be continued analytically across the boundary $|\lambda|=r(T)$ in such a way that the extension is a solution of (4). However [3], $R(\lambda, T)$ cannot be extended analytically into $\sigma(T)$ and so the method \mathscr{S} will lead to a representation of $R(\lambda, T)$ valid in a certain region of the resolvent set $\rho(T)$. For example, if \mathscr{S} represents Borel Summability we arrive at the familiar representation

$$
R(\lambda, T)=\int_{0}^{\infty} e^{-\lambda x} \exp (x T) d x
$$

valid in the Borel polygon of some T-admissible set $U .^{1}$
It may happen - with a given T - that for certain $u \in X R(\lambda, T) u$ is extendable into $\sigma(T)$ and hence deeper results might be expected by considering the problem in the strong topology of operators. Work in this direction is currently in progress.

Acknowledgements

I would like to thank my supervisor Professor G. Szekeres and the referee for their helpful criticism.

[^0]
References

[1] N. E. Norlund, 'Mémoire sur le calcul aux différences finies'. Acta Math. 44 (1923), 71-211.
[2] R. Bellman, 'The summability of formal solutions of linear integral equations'. Duke Math. J. 17 (1950), 53-65.
[3] E. Hille \& R. S. Phillips, Functional analysis and semi-groups (New York, 1958).
[4] G. H. Hardy, Divergent series (O.U.P. 1949).
University of N.S.W. Kensington N.S.W.

[^0]: ${ }^{1}$ A variety of methods satisfying condition G are to be found on page 190 of Hardy's book [4].

