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Abstract

The integral structure of a simple Lie algebra L of Chevalley type over a field F of fractions of
an integral domain D is studied. Sandwich relations for sufficiently large orders are obtained,
including a new general sandwich relation for orders of L in case D is an integrally closed
Noetherian domain. Generalizations of the principal results of Hyman (1966) in the case
when D is a ring of algebraic integers are obtained, using techniques developed by the author
and Stewart (1973) which are applied to certain orders in L that arise in a natural fashion
from the Chevalley basis.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 17B20; secondary 17 B 10,
17B45, 20G15, 20G05.

1. Introduction
Since Chevalley (1955) showed for a simple finite dimensional Lie algebra L over
the complex field the existence of a basis relative to which the structure constants
are integers, the arithmetic theory of Lie algebras has developed as an area of
considerable attention. In addition to playing a fundamental role in the con-
struction of finite simple groups, Chevalley bases have been a prominent part of
much recent work in algebraic group theory. To mention a few examples, Springer
(1966) has used the arithmetic of semisimple Lie algebras to obtain (under mild
restrictions on p) the existence of regular unipotent elements in semisimple
algebraic groups over algebraically closed fields of characteristic p (see also
Steinberg (1965)), and the ideal arithmetic of simple Lie algebras has been used
by the author (1971) to construct normal subgroups of certain algebraic groups
over rings and by Abe (1969) and Abe-Suzuki (1976) to classify the normal structure
of Chevalley groups over local rings and Dedekind domains.

The present paper explores the integral structure of a simple Lie algebra L of
Chevalley type over a field F which is the field of fractions of an integral domain D.
To study forms of L over D (that is, algebras A over D such that F®DA^L)
it suffices to study orders in L. Using to good advantage results of Stewart (1973)
we obtain sandwich relations for sufficiently large orders in L involving the orders
which arise naturally from the Chevalley basis for L (Theorem 1). Then application
of methods in the spirit of an earlier paper (1969) lets us obtain in rather direct
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fashion generalizations of the principal results of the (otherwise unpublished)
doctoral dissertation of M. Harvey Hyman (1966) (Theorems 2 and 4). Finally,
Stewart's results in combination with ours (1971) are used to obtain a new general
sandwich relation for orders in L in case D is an integrally closed Noetherian
integral domain (Theorem 3).

2. Background
In this section definitions of the main ideas of the present paper are given, as

well as some preliminary results which do not seem to be in the literature apart
from special cases in Hyman (1966).

Let D be an integral domain not of characteristic 2 or 3. In case we are dealing
with a Lie algebra of type An, we further assume that n +1 is not a multiple of the
characteristic of D. Let F be the field of fractions of D, and V a finite dimensional
vector space over F. We assume F=£ D, that is, D is not a field.

DEFINITION 1. A finitely generated Z>-module »§?£ V which spans V over F is
called a lattice in V.

DEFINITION 2. If L is a finite dimensional Lie algebra over the field F, then a
lattice 0 £ L is an order in L if it is closed under multiplication. (In a natural way
then we can regard 0 as a Lie algebra over the ring D.)

Henceforth we assume that L is a finite dimensional split (Jacobson, 1962)
simple Lie algebra over F, and H is a Cartan subalgebra. Then L has a basis
B = {er | r # 0} u {hlt A2, • • •, hn} made up of root vectors er and a basis for H satisfying

[er, e^\ = \ , an integral linear combination of the hit

[***,] = 0,
[enc4] = ±NTSer+s if r+s^0, where Nrs is 0 in case r+s is not a root and is

pn+1 otherwise, prs being the greatest integer i such that s—ir is a root,
[f>r,e8] = c(s,r)es, where c(s,r) = 2(s,r)ftr,r) is the Cartan integer of s and r
(see Chevalley, 1955).
The Chevalley order LD is the 2)-submodule of L generated by the Chevalley

basis B. For a more complete discussion of Chevalley bases, see Chevalley (1955),
Steinberg (1968) or Hurley (1969). An algebra L with such a basis B is said to be
of Chevalley type.

LEMMA 1. If D is a Dedekind domain and T is a linear transformation of L into
itself which leaves an order 0 invariant, then Trace TeD anddetTsD.

PROOF. Extend F to a field K which contains all the eigenvalues of T. Let DK

be the integral closure of D in K. Consider the extensions LK = K®FL,
TK=l®FT, and OK, the .Dg-module generated by 1 ®p0. We have TK: 0K-»• 0K,
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and TK has the same eigenvalues as T. Let x eLK be an eigenvector belonging to
any eigenvalue A. Now <PKnKx cannot be 0 since xeLK, the K-span of GK. Thus
GK n Kx is a torsion free finitely generated ZJg-module. Also,

TK(@K nKx) = X0K nKxc(PKn Kx,

hence by Lemma 22.4 of Curtis-Reiner (1962, p. 146) XeDK since DK is a
Dedekind domain by Zariski-Samuel (1958, p. 281). Thus A is integral over D.
So all eigenvalues of Tare integral over D. Then all the coefficients of the character-
istic polynomial of T (which are sums of products of the eigenvalues) are integral
over D by Zariski-Samuel (1958, p. 255) and are in F. Since D is a Dedekind
domain, it is integrally closed (that is, integrally closed in F), so all the coefficients
of the characteristic polynomial of T are actually in D. In particular then,
TraceTeD and dctTeD.

PROPOSITION 1. If D is a Dedekind domain, then L has infinitely many orders.

PROOF. Consider a nonzero element ae D which is not invertible. Then a,a2, a3,...
is a sequence of nonzero elements of D which are not invertible. We then have
anLD^>an+1LD. For inclusion is clear, and an+1LD = T(anLD) where

T: anLD->anLD

is given by T(x) = ax. Since d e t r = an is not invertible in D, T$GL(anLD) in
view of Lemma 1 above. For if T"1 e GL(anLD), then detT-1 = (detT)"1 = (a")"1

would be in D. Thus T is not onto, so the inclusion is proper. We then have an
infinite descending chain of orders LD^aLD^>a2LD=>a3LD^>... in L.

This result was obtained by Hyman (1966, p. 25) for the case of D a ring of
algebraic integers. We now focus attention on the Chevalley order LD. In many
cases the orders which contain this order will comprise a manageable collection.

DEFINITION 3. The superstructure of an order 0 is the collection of orders in L
which contain 0.

For Dedekind domains we can show that the superstructure of an order in L is
relatively simple.

PROPOSITION 2. Let D be a Dedekind domain of characteristic 0 or p where
pjfn+l ifL is of type An or Cn, p)(2n-\ if L is of type Bn, pjfn-l ifL is of
type Dn, and p^=5 ifL is of type E8. Let J§? be a lattice in L. Then every order 0
containing JSf is contained in a fixed lattice ££?*.

PROOF. Since the Killing form A" is nondegenerate on L (Jacobson, 1962, p. 70),
for any basis 5 = {»1,D2, ...,vr} of L made up of elements of £P, there is a dual
basis B* = {vf,»J,...,»*} such that K(Vi,vf)=Si} for i,j = l,2,...,r. Let
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=§?* = TH=IDV*
 a n d l e t ® b e a ny o r d e r i n L s u c h t h a t 02^?- For xe(9, write

^ = Si=i^i"*» dteF. Then if(x,»i) = A(S5-i<^»*»»i) = 4f N o w *e^> a n d s o

we have adx: 6-*-G, and adu,-: 0->0 since i^eJ§?c0. Thus adxoadv^: 0->0,
and adxoadty is a linear transformation of L. So by Lemma 1,

Trace (ad x o ad vt) = K(x, v}) -dfeD.

Thus x = Z?_i^»* e-SP* and we have SC^G^

Proposition 2 holds in particular if J£? is an order 0. If 2) is a ring of algebraic
integers in a finite extension K of (?, then Hyman (1966, p. 21) showed the super-
structure of such an 0 is actually finite.

Hyman's dissertation consisted mainly of a study of the superstructure of LD

in case D was the ring of algebraic integers of a finite extension of the rational
field (hence D was a Dedekind domain). His first theorem concerned the algebra
of type Alt in which case the superstructure of LD consists of five orders. These are
LD (with basis {e,h,f}), L'D (with basis {e,\h,f}) in which LD has index 2, and
three orders J(x, JK2, J(z, in which L'D has index 2. JKX has basis {e,\h,\f}\ Jl^
has basis {\e,\h,f}\ and J(z has basis {e,%(e+h), — \e—\h-\-\f). For a proof, see
Hyman (1966, pp. 67-69). Theorems 2 and 4 below generalize the remaining two
theorems of Hyman (1966) and are proved in a more direct manner here.

3. A sandwich relation for orders
Our first theorem gives upper and lower bounds for an order containing the

Chevalley order LD.

THEOREM 1. Let <9 be an order in L which contains LD. Then there is an integer k
such that

where J is the smallest D-submodule of F such that JLD contains G. The prime
factors of k are in the set {2,3,pv ••-,pm}, where the pt are the pfime divisors of
detC, the determinant of the Carton matrix C ofL.

PROOF. First, / i s well defined. We have in fact G^J'Ljy, if/' is the D-submodule
of F generated by 1 and all coefficients cr, Cj of the elements x of Q expressed
uniquely as F-linear combinations of the members of B, x — SS=i<:iAi+Sr<T^'
Next we observe that D satisfies the hypotheses for the ground ring in Theorem 3.1
of Stewart (1973). Then as in the proof of that result, for an appropriate integer k
there is an element of the multiplication ring of LD sending x to kcres and another
sending x to kCjhit for arbitrary roots r and s and arbitrary positive integers i and./.
For if we represent an arbitrary element of B by the generic symbol pa, then there
is a vap in the multiplication ring of Lz sending pa to k8a/lpp. If vap is expressed
as a sum of products of left and right multiplications by elements y in Lz, then
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vap sends £ da®pa to kBa^da®pp, where vap is the corresponding sum of products
of left and right multiplications by elements 1®J> in LD. Since @^LD, all the
kcres and kcjht belong to 0. Hence G^kJLD. The proof is then complete as soon
as we remark that k has only the factors specified by Proposition 4.1 of Stewart
(1973).

If D is a Noetherian integral domain (in particular a Dedekind domain), then
we remark that / in Theorem 1 is actually a fractional ideal (Curtis-Reiner, 1962,
p. 107). For (9 is a finitely generated D-module (since it is an order) and kJLD is
a submodule, hence also finitely generated if D is Noetherian. Thus JLD is a
finitely generated £)-module. But then / is a finitely generated D-module (or else
no finite number of elements of / would suffice to generate the coefficients of
elements in JLD), that is, J is a fractional ideal.

4. Superstructure of the Chevalley order
We now proceed to a detailed study of the orders 0 in L which contain the

Chevalley order LD.

DEFINITION 4. If D is an integral domain with quotient field F, then P represents
the lattice of weights of all representations ofLF. P has as Z-basis the fundamental
weights {w^w^, ...,wn} given by wi(hi) = 8ii. The lattice of D-coweights is
r>P± = {heH\w(h)eD for all weP}, which has basis {h^h^ ...,hn} over D. This
coincides with HD, the abelian algebra D ®z Hz, and we shall use the latter notation
frequently.

DEFINITION 5. PT represents the free abelian group generated by the roots of
L relative to H. Pr has Z-basis {rlsr2, . . . ,rn}, the set of simple roots. Recall
rt = EJLi c(ri> rj) Wy The lattice of D-coroots is

oPf = {h e H\ r(h) e D for every root r}.

We also need the lattice of D-coroots defined by replacing D by D in pPf where
D is the integral closure of D (that is, the integral closure of D in F, so that D = D
if D is integrally closed). The lattice ^ is labelled H'D in Hurley (1969, 1971).
L'D is the algebra D®ZL'Z where L'z = Ez © H'z, Ez the free abelian group on the
root vectors er.

LEMMA 2. Suppose that a.eF and the coweight hreHD. Then ahTeHD if and only
ifaeD.

PROOF. If aeD, then for any weight weP, we have w(ah^) — aw(h^)eD, since
h,.eHD = IJP-1. Conversely, if ahfGHj), then we can express oihr in terms of the
basis elements Af: ah,. = S g ^ c ^ , qeZ). Find weP such that w(hr) = 1. (The
existence of H> follows from the fact that r belongs to some simple system of roots,
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so has a corresponding fundamental weight w, or from Jacobson (1962, p. 140).)
Then apply w to ahr. We get a-1 = 2"= 1 c f n^) , and w{h^BD since weP,
hieHD = jyP^. Thus oceD.

LEMMA 3. Suppose that <xeFand r is a root. Then
(1) IfL is not of type Bn(n^2) or Ax, then we have <xhre pPjr if and only ifaeD.
(2) IfL is of type Bn, then for a long root r, ahfBjyPf if and only ifaeD, while

for a short root r, ahreDP^ if and only if 2a eD.
(3) IfL is of type Av then ahrej^^ if and only if2<xeD.
The same assertions hold if D is replaced by D.

PROOF. We have ahrej^^ if and only if s(oJiT) e D for all roots s, that is, if and
only if <xc(s, r)eD for all roots s. Suppose first that uhr e DP±. In the single root length
case, find a root s such that s + r is a root. We then have c(s,r) = — 1, so aeZ>. In
the general case we can imbed r into a simple system of roots. Then all the c(s, r) as
s varies over this simple system occur in some fixed column of the Cartan matrix.
In all cases save Ax, G2, and Bn, at least one entry in any column of the Cartan
matrix is —1, so choosing corresponding s we get <xc(s,r) = —aeD. In type G2,

( 2 —1 \
I and so if r = rx, then we have 2a and —3a in D

and hence a = — 2a+3a e D. (If r = r2, then the previous reasoning gives a e D.) In
type Bn, every column has a — 1 except for the last column, which corresponds to
the Cartan integers c(s, r) for the short simple root r. This means that if r is short,
then we can only conclude 2a e D, and if r is long, then as before a e D. The proof
of this half is now complete as soon as we remark that in type Ax the Cartan matrix
is (2). For the converse, if aeD, then clearly ahfE^^. In type Bn with r short, if
2a e D, then again imbed r into a simple system of roots. Since c(s, r) is linear in s, it
is sufficient to consider s ranging over this simple system. For either simple root s
not orthogonal to r, we have s(<xhr) = <xc(s, r) = + 2a e D. The case Ax is clear.
Finally, it is apparent that D can be replaced throughout by D.

LEMMA 4. Suppose that D is a Noetherian integral domain. Let heH belong to
an order <9 in L. Then he-^P^r, that is, h is a D-coroot.

PROOF. Consider the linear transformation aAh: L-+L. Then ad A leaves <S
invariant. Since L is split, the eigenvalues of ad A all belong to F, and are the values
r(h) for r a root of L relative to H. Then as in the proof of Lemma 1, with F playing
the role of K, we see that all the eigenvalues of ad A are integral over D. Thus
r(A) e D for all roots r, that is, A is a Z)-coroot.

We now have all the tools we need to generalize the main result of Hyman (1966)
on the superstructure ofLD.
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THEOREM 2. Let L be a simple Lie algebra of Chevalley type and rank at least 2
over F, the field of fractions of the Noetherian integral domain D. Let 0 be an
order in L which contains the Chevalley order LD. In case L is of type Bn or Cn,
assume additionally that 2 is invertible in D. Then LD^G^L^, where D is the
integral closure of D.

PROOF. In the non-symplectic cases, 5.1, 5.2, and 5.3 of Hurley (1969) show that
given any x = ^crer+he0, since each ere0 we can obtain each crere& by
multiplication by suitable root vectors es. Thus <9 n Fer is a direct summand of 0.
Now let Ar = {aeF\aere0nFer}. Then Ar is a D-submodule of F. The map
ai->aer establishes a D-module isomorphism between Ar and Gr\Fer. Since (3 is
a finitely generated D-module by definition, its direct summand OnFer is also
finitely generated. Thus Ar is a finitely generated Z)-module, and thus is a fractional
ideal. Then by Lemma 4, r(h)eD. So heL^. Also we have from crere(9 that
[crer,e_r] = crhre0. So by Lemma 4, crhTe^P^. Hence by Lemma 3 and our
assumption about 2, cre D. It now follows that x — h + YicrereL3-

Some restriction on 2 seems essential in the case of Bn even if D is a Dedekind
domain. For example, see Hyman (1966, p. 115) where the restriction that 2 be
unramified in F (recall that D is a ring of algebraic integers in that paper) allows
the theorem just proved to go through.

In case Cn if we remove the assumption that 2 is invertible, then we can only
conclude from x = h + ̂ lcreTe0 that csese0 for every short root 5, and 2cteteG
for every long root t. While the submodules AT and 2AS are finitely generated since
they are isomorphic to D-submodules <PnFer and 20nFes respectively of the
finitely generated module 0, we cannot conclude that heO and hence that heLj,.
Hyman's less direct approach does allow this difficulty to be overcome if D is a
ring of algebraic integers. See Hyman (1966, pp. 114-117).

COROLLARY. Let D be of rank at least 2. Let D be a Noetherian integrally closed
integral domain such that in type Bn and Cn 2 is invertible in D. Then for each order
<9~3.LD, there is a unique D-module M lying between the lattice HD = JJP1- and the
lattice H'D = DP± of coroots such that 6 = M®(@nED).

PROOF. In this case Z> = D and so L^ = L'D = ED®H'D — ED® oPjr. As the
proof of Theorem 2 shows, M = HD n (9 is a direct summand of 0 and is contained
in H'D = jyPf. Since <P^L

As a special case, we obtain Theorem 3 of Hyman (1966) in the non-symplectic
cases, and in all cases if 2 is invertible in D.
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THEOREM 3. Let L be of rank at least 2, D a Noetherian integrally closed integral
domain, and 0~3.LD an order in L. Then kL'D<^ 6^L'Dfor some integer k, assuming
again that 2 e D is invertible in case L is of type Bn or Cn.

PROOF. Such an order G is contained, in view of the Corollary to Theorem 2, in
L'D, and so is an algebra lying between LD and L'D. Then by 2.6 of Hurley (1971),
6 is an ideal in L'D whose intersection with ED is ED. As L'D = D ®ZL'Z and D is
commutative with identity, we can apply Theorem 3.1 of Stewart (1973) to conclude
that there is an integer k such that kJL'D<=, G<=iJL!D for the ideal J of D generated by
the coefficients of the elements of 0. Since 0 2 ED, J = (1) = D. Thus kL'Dc @^L'D.

From this and Proposition 4.1 of Stewart (1973), we have the following informa-
tion about the integer k.

COROLLARY. The integer k < Upt where {p{} is the set of prime divisors of det C
andm, the ratio of the squares of the lengths of the long to the short roots.

5. Integral orders
We now proceed to study integral representations of L.

DEFINITION 6. Let <P be an order in L. Let IT: L->End V be a representation of
L on the finite dimensional vector space V over F. (P is -n-integral if TT(0)£ EndJOf
for some lattice L in V. G is called an integral order in case <P is 7r-integral for
every representation it of L over F. An element x in L is -n-integral if n(x) e End^C
for some lattice 3?£ V. The element xeL is an integral element if it is ir-integral
for every representation vofL over F.

LEMMA 5. If heH is integral and D is a Noetherian integral domain, then
)vf(A) eD for every fundamental weight w{, and so heHjj = jjP1-.

PROOF. If h is integral, then for any representation IT ir(h) is an integral element.
In particular if -n is a representation with wt as a weight, then TT(/Z) has eigenvalue
Wi(h)eF since ir(h)v = Wi(h)v, for some weight vector v belonging to wt. If JSP is
a lattice in V such that 77(A)eEnd=Sf, then JfaFvcj? is a finitely generated
D-module of the form Av where A = {aeF\ave^} is finitely generated, as in the
proof of Theorem 2. Now iT(h)£?nFv^&'nFv and so w^A^A. Then
w$i)mA<=A for any positive integer m. So for any fixed aeA, we have Wj[h)maeA
and hence w$iynea~1A. Since A is finitely generated, so is a~xA. Thus
D[w^h)\^a~l A is a finitely generated D-module, since D is Noetherian. Hence by
Zariski-Samuel (1958, p. 254) w ^ e F i s integral over D, that is, Wi(h)eD.
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We are now in position to characterize integral orders in L which contain LD.
First recall that by Chevalley (1961), Kostant (1966) or Steinberg (1968, pp. 7-21),
for any representation n: JL-̂ -End V where V is a finite dimensional vector space
over F, there is a lattice Sf in V invariant under all TT^/ZM!) for ereB and m a
positive integer. In particular ££ is invariant under all ir(er) and hence under all
ir{hr) = ir([er, £_,]). Thus ^C is ^(L^-invariant. Hence we see that LD is integral
in the sense of Definition 6. We can say considerably more.

THEOREM 4. Suppose that D is a Noetherian integral domain of characteristic 0,
andL is of rank at least 2. If(S~2.LD is an integral order, then OsLp, provided that
in case L is of type Cn, 2 is invertible in D.

PROOF. Let x = h + ̂ crere(9. Then using ere(9 as multipliers, we obtain as
in Theorem 2 every crere0. Then [crer,e_r] = crhre@. So crhr is an integral
element, since 0 is integral. Then by Lemma 5, c^e^P-1-. Then by Lemma 2,
creD for each root r. Then x—£crer = /ie0 and so h is an integral element.
Hence by Lemma 5, he^Px = Hg and hence xeLp.

COROLLARY. IfL has rank at least 2, D is a Dedekind domain, and the hypotheses
of Theorem 4 hold, then (9 = LD. Thus in this case LD is a maximal integral order in L.

PROOF. In this case D = D since D is integrally closed, so we have LDc <Sc.i,D.
In particular if D is the ring of algebraic integers in a finite algebraic extension

K of Q we get Theorem 2 of Hyman (1966) in the non-symplectic cases, and the
full result in all cases if 2 e D is invertible.

We can extend Theorem 4 in a weakened form to the case of prime characteristic.

DEFINITION 7. Suppose that LF = F®ZLZ where L is simple over the complex
field. If D is of characteristic p with field of fractions F, then 0 £ L will be called a
partially integral order in case 0 is cr-integral for every representation a of LF

obtainable from a complex representation -n of L by reduction modulo p. An
element xeLF is a partially integral element if it is w-integral for every such a.

Thus LD is a partially integral order. The reasoning of Lemma 5 establishes the
following result immediately.

LEMMA 6. If heH is partially integral and D is Noetherian, then wt(h)eD for
every fundamental weight wt and so heHp = -fiP^-

The foregoing now enables us to carry over verbatim the proof of Theorem 4
(with "partially" prefixed to each occurrence of "integral") to establish the
following, which must be termed a partial result.
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THEOREM 5. Let L, D, F, and 0 be as in Definition 7 with L of rank at least 2.
If D is Noetherian and 0^LD is a partially integral order, then O^L^ provided that
2 e D is invertible in case L is of type Cn. In particular, if D is a Dedekind domain,
then LD is a maximal partially integral order.
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