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Overview of analytic methods for multivariate
GFs

We now return to the problem at the heart of this book: asymptotically ap-
proximating the coefficients of a convergent Laurent series expansion F(z) =∑
r∈Zd arzr through the Cauchy integral representation

ar =

(
1

2πi

)d ∫
T
z−r−1F(z) dz , (7.1)

for a suitable domain of integration T . We accomplish this by deforming T
and using residue computations to reduce the Cauchy integral into a finite sum
of local integrals that can be asymptotically approximated using the results of
Chapter 5. When this approach succeeds, which it does in generic situations,
it provides asymptotic formulae of the form

ar ≈
∑

w∈critical(r̂)

nwΦw(r) , (7.2)

where the sum is over a finite set of certain critical points w, each Φw is
an asymptotic series that can be computed to any desired accuracy algorith-
mically, and the coefficients nw are integers that may or may not be easy to
compute.

This textbook is designed so that combinatorialists can find easy-to-apply
results with hypotheses and conclusions that are comprehensible with a mini-
mum of cross-referencing to lengthy definitions, while readers with topologi-
cal background can see the larger framework behind the results using advanced
methods, such as those described in Chapters 4–6 and the appendices. In or-
der to achieve this goal, the current chapter gives an overview of our approach
and its relationship to the higher-level theories we draw on. Chapter 8 takes a
computational view of the same material, giving explicit descriptions of how
to compute the quantities appearing in the analysis using a computer alge-
bra system. This material out of the way, Chapters 9–11 give our asymptotic
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170 Overview of analytic methods for multivariate GFs

results for families of generating functions with increasingly complicated sin-
gular behavior, together covering most known examples of rational generating
functions in the combinatorial literature. Chapter 12 then gives a large variety
of examples and applications before Chapter 13 describes further extensions.

In order to guide intuition and introduce the high-level constructions to be
used in later chapters of the book, the current chapter begins by sketching the
analysis on some examples, showing how the computations in the simplest
case are a straightforward generalization of the univariate methods from Part I,
describing the limits of these methods, and illustrating why we require more
advanced techniques for our strongest results. After this we introduce the al-
gebraic and topological constructions necessary for our work, and prove the
theoretical results underpinning later chapters.

The computation of asymptotics is considerably simpler, and easier to ex-
plain, when the set of singularitiesV of F is smooth (meaning it is a manifold,
at least near points dictating asymptotics). Before going into technical details,
we illustrate the smooth case through extended examples in Section 7.1. Read-
ers who want to understand the method but not the details can quit after the
examples and skip to Chapters 8 and 9. In Section 7.2 we describe the theory
whenV is smooth, allowing readers to understand the smooth point formulae
of Chapter 9 without the greater overhead of stratified Morse theory.

Section 7.3 gives a parallel treatment of everything in the previous sections,
without the assumption that V is smooth. This involves the introduction of
stratified Morse theory to explain the corresponding notions of critical points
and quasi-local cycles for non-smooth varieties. The quasi-local cycles are de-
fined in terms of the tangential cycles γ j and homology generators β j for the
normal link at z j. Section 7.4 discusses the types of singular geometry that
arise frequently in combinatorial applications.

The results of (stratified) Morse theory describe the topology of a surface
using a height function mapping the surface to the real numbers. In classi-
cal Morse theory this height function is almost always assumed to be proper,
meaning the set of points with heights in a closed interval forms a compact
set. Unfortunately, we work in situations where the height function is usually
non-proper. To get around this difficulty, Section 7.5 introduces the concept of
critical points at infinity (CPAI) and critical values at infinity (CVAI), which
help characterize when the results of Morse theory we need apply without an
assumption of a proper height function. A fundamental lemma is stated con-
cerning the existence of certain deformations, provided there are no critical
values at infinity, and its proof is cited from the literature. This lemma is then
used to prove the theorems previously stated in the chapter.
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7.1 Some illustrative examples 171

Notational conventions
For the rest of this book we use the following notational conventions. Bold
quantities are reserved for vectors, such as z = (z1, . . . , zd), and we define z◦ :=
(z1, . . . , zd−1). The d-variate function F(z) is a quotient of coprime polynomials
P(z)/Q(z), with the denominator Q vanishing on the singular variety V =

VQ = {z ∈ Cd : Q(z) = 0}. We fix a component B of the complement of
amoeba(Q) and consider the Laurent series expansion F(z) =

∑
r∈Zd arzr

that converges on D = Relog−1(B). As in previous chapters, for w ∈ Cd
∗ we

use the notation T(w) for the torus T(w) = {z ∈ Cd : |z j| = |w j| for all j}.
The simplest and most common case, of a convergent power series expansion,
occurs when B is the component containing points of the form (−N, . . . ,−N)
for N sufficiently large, so thatD is a neighborhood of the origin.

Remark 7.1. Although we mainly study rational generating functions, most
of our results also hold for meromorphic functions. We point out as we go
which major results still hold for meromorphic functions, and the small ways
in which they differ from the rational case.

Given r ∈ Zd the d-form ω = z−r−1F(z)dz is the integrand of the Cauchy
integral (7.1), with domain of analyticityM = Cd

∗ \V. Unless otherwise stated,
we write |r| for the `1-norm |r| =

∑d
j=1 |r j| and as above define the normalized

vector r̂ = r/|r|. We seek to compute asymptotics for the series coefficients
ar as r → ∞ with r̂ varying over a compact set, typically around some fixed
direction.

7.1 Some illustrative examples

Example 7.2 (Binomial Coefficients). We start with perhaps the simplest non-
trivial bivariate rational function for our purposes: F(x, y) = 1/Q(x, y) with
Q(x, y) = 1 − x − y. The amoeba of Q is pictured in Figure 7.1 (see Chapter 8
for methods to compute amoebas). Because there are three components in the
amoeba complement, there are three convergent Laurent series expansions of
F(x, y). Consider the power series expansion F(x, y) =

∑
i, j≥0

(
i+ j

i

)
xiy j, corre-

sponding to the component of the amoeba complement that lies in the third
quadrant. Since

∑
i, j≥0

∣∣∣∣∣∣
(
i + j

i

)
xiy j

∣∣∣∣∣∣ =
∑
i, j≥0

(
i + j

i

)
|x|i|y| j =

1
1 − |x| − |y|

, (7.3)
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172 Overview of analytic methods for multivariate GFs

Figure 7.1 Amoeba of the function 1 − x − y.

this series expansion has domain of convergence D = {(x, y) ∈ C2 : |x| + |y| <
1}. For any a, b ∈ (0, 1) with a + b < 1 we can write

(
i + j

i

)
=

1
(2πi)2

∫
T(a,b)

1
1 − x − y

dxdy
xi+1y j+1

=
1

(2πi)2

∫
T(a,b)

1
1 − x − y

e−φ(x,y) dxdy
xy

,

(7.4)

where φ(x, y) = i log x + j log y. We aim to use residue computations to reduce
the two-dimensional integral (7.4) to a one-dimensional integral over some
path in the singular set V = {(x, y) ∈ C2 : x + y = 1}, and then compute a
saddle point integral. Thus, we set y = 1 − x in φ(x, y) and solve for a saddle
point, where the first derivative of the function vanishes. The equation

0 =
d
dx
φ(x, 1 − x) =

i
x
−

j
1 − x

implies x = i/(i + j). Hence, we aim to determine asymptotic behavior by
studying the Cauchy integral near (x∗, y∗) = (i/(i + j), j/(i + j)) ∈ V. For
this discussion we fix positive integers r, s > 0 and derive asymptotics of the

https://doi.org/10.1017/9781108874144.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108874144.012


7.1 Some illustrative examples 173

coefficient sequence (i, j) = n(r, s) as n→ ∞. To that end, define

I =
1

(2πi)2

∫
|x|=x∗

(∫
|y|=y∗−ε

1
1 − x − y

dy
yns+1

)
dx

xnr+1

Iloc =
1

(2πi)2

∫
N

(∫
|y|=y∗−ε

1
1 − x − y

dy
yns+1

)
dx

xnr+1

Iout =
1

(2πi)2

∫
N

(∫
|y|=y∗+ε

1
1 − x − y

dy
yns+1

)
dx

xnr+1 ,

where N = {x ∈ C : |x| = x∗ and arg(x) ∈ (−δ, δ)} is any arbitrarily small
neighborhood of x∗ in the circle {|x| = x∗}. As we will see in Chapter 9, both
I − Iloc and Iout grow exponentially slower than I, so (7.4) implies(

nr + ns
rn

)
= I = Iloc − Iout + exponentially negligible term.

Thus, we can use the (univariate) residue theorem to approximate
(

nr+ns
rn

)
by

Iloc − Iout =
1

(2πi)2

∫
N

(∫
|y|=y∗−ε

1
1 − x − y

dy
yns+1 −

∫
|y|=y∗+ε

1
1 − x − y

dy
yns+1

)
dx

xnr+1

=
−1

(2πi)

∫
N

Res
y=1−x

y−ns−1

1 − x − y
dx

xnr+1

=
1

(2πi)

∫
N

dx
xnr+1(1 − x)ns+1 .

Making the change of variables x = x∗eiθ results in the saddle point integral

Iloc − Iout =
x−rn
∗ y−sn

∗

2π

∫ δ

−δ

A(θ)e−nφ(θ),

where

A(θ) =
1

1 − x∗eiθ =
r + s

s
+ O(θ)

and

φ(θ) = r log(x∗eiθ)+ s log(1− x∗eiθ)−r log(x∗)− s log(y∗) =
r(r + s)

2s
θ2 +O

(
θ3

)
.

Theorem 4.1 from Chapter 4 then gives an asymptotic expansion(
nr + ns

nr

)
=

( r + s
r

)rn ( r + s
s

)sn
n−1/2

( √
r + s

2rsπn
+ · · ·

)
.

/
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174 Overview of analytic methods for multivariate GFs

The approach taken in Example 7.2 is known as the surgery method for
multivariate asymptotics. It works by performing an explicit deformation to
move the torus of integration in the Cauchy integral near a critical point, then
changing the radius in one coordinate to enclose singularities. The ordinary
(univariate) residue theorem, a localization argument, and the saddle point re-
sults from Chapters 4 and 5 then yield asymptotics.

Although this approach can be generalized successfully, as will be done in
Section 9.1 of Chapter 9, such explicit deformations require additional assump-
tions on the singularities where local behavior of F(z) determines asymptotics.
In particular, such singularities need to be minimal in the sense of Section 6.4,
meaning they lie on the boundary of the domain of convergence of the Lau-
rent expansion being considered. In fact, we require finite minimality, meaning
such singularities are minimal and only a finite number of other singularities
have the same coordinatewise modulus. Although this is usually not an unrea-
sonable assumption, in practice it can be very expensive to verify formally (see
Chapter 8 for more details).

Exercise 7.1. Suppose we perturb Example 7.2 by taking Qε(x, y) = 1 −
x − y − εy2 for some ε > −1. Let Dε = {(x, y) ∈ C2 : |x|, |y| < ρε} where
ρε =

(√
1 + ε − 1

)
/ε the positive root of Qε(x, x). When ε = 0, the function

1/Qε(x, y) is the function in (7.3), whose power series domain of convergence
contains D0 = {(x, y) ∈ C2 : |x|, |y| < 1/2}.

(a) As ε→ 0, determine the first two terms of the asymptotic behavior of ρε.
(b) When ε > 0, is there an easy way to see that 1/Q(x, y) is analytic on Dε?
(c) When −1 < ε < 0, can you show that 1/Q(x, y) is analytic on Dε?
(d) What can you say when ε ≤ −1?

We now study an example where the surgery method does not directly apply,
and sketch a more general topological method for multivariate asymptotics.
Although the topological method applies in a wider variety of situations, as its
name suggests it will require more advanced constructions from topology and
differential geometry. Our next example also illustrates how the topological
approach generalizes hands-on surgery in the smooth case to a topologically
characterized contour integration.

Example 7.3 (Non-Minimal Contributing Points). Consider the (1, 1)-diagonal
sequence an,n of the power series expansion

F(x, y) =
1

Q(x, y)
=

∑
i, j≥0

ai, jxiy j,
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7.1 Some illustrative examples 175

where Q(x, y) = (1 − x − y)(1 + 3x), so

ai, j =

i∑
k=0

(
k + j

k

)
(−3)i−k.

The singular set V = VQ is the union of the hyperplane V1−x−y from Exam-
ple 7.2 with the hyperplaneV1+3x. It contains the point (x∗∗, y∗∗) = (−1/3, 4/3)
on the intersection of the hyperplanes whereV is not a manifold.

SinceV still contains the hyperplaneV1−x−y, the point (x∗, y∗) = (1/2, 1/2)
identified in Example 7.2 is still of interest for the asymptotic analysis. Fur-
thermore, the topology ofV changes at the non-smooth point (x∗∗, y∗∗), so this
point is also of interest. The function φ(x, y) = log x + log y has nonvanish-
ing derivative when restricted toV1+3x, hence there are no other points where
we could restrict the Cauchy integrand to the singular variety and get a saddle
point integral.

As we will see later, asymptotics of the coefficient sequence an,n are still de-
termined by reducing to an integral near (x∗, y∗). However, unlike Example 7.2
we cannot simply move the contour of integration in the Cauchy integral

an,n =
1

(2πi)2

∫
|x|=ε1

∫
|y|=ε2

1
(1 − x − y)(1 + 3x)

dxdy
xn+1yn+1

to a torus {(x, y) : |x| = x∗, |y| = y∗ − ε} as we would cross the singular set
V at points where x = −1/3. To work around this, we expand y through the
singular variety, resulting in an integral over a tube aroundV1−x−y, reduce to an
integral on V1−x−y through a residue computation, and then move the contour
of integration to the saddle point.

For concreteness, we now take ε1 = ε2 = 1/10, although any positive values
satisfying 0 < ε1+ε2 < 1 and ε1 < 1/3 would work. Let T0 = {|x| = |y| = 1/10}
and, for any M > 0, define the map

KM : T0 × [0, 1]→ C2

(x, y, t) 7→ (x, y(1 + Mt)) .

Then KM is a homotopy from T0 to the torus T1 = {|x| = 1/10, |y| = (M+1)/10}.
As long as M > 10 then F(x, y) is analytic on T0 and T1, the image of KM does
not intersect the coordinate axes of C2, and this image intersects V in the set
C = {(x, 1 − x) : |x| = 1/10}. Furthermore, the image of KM intersects V
transversely, meaning the tangent planes of these sets jointly span C2 at their
common points. See Figure 7.2 for a visualization of the path of this homotopy
after taking the Relog map.

Because F(x, y) is analytic on C2 \ V, Stokes’s Theorem (Theorem A.24 in
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Figure 7.2 The amoeba of (1 − x − y)(1 + 3x). We start by integrating over the
torus defined by |x| = 1/10 and |y| = 1/10 and expand |y| to (M + 1)/10 >

11/10, resulting in an integral over a tubular neighborhood ofV. Taking a residue
reduces to an integral over a curve lying on the hyperplane 1 − x − y = 0 then,
avoiding the set of points where 1 + 3x = 0, we slide this contour to a curve
near the point (1/2, 1/2) on V together with points that do not affect dominant
asymptotics.

Appendix A) implies that the Cauchy integral over the boundary of any 3-cycle
in C2

∗ \ V is zero. In particular,

∫
T0

F(x, y)
dxdy

xn+1yn+1 =

∫
ν

F(x, y)
dxdy

xn+1yn+1 +

∫
T1

F(x, y)
dxdy

xn+1yn+1 , (7.5)

where ν is a tubular neighborhood of C: the union of circles normal to the tan-
gent plane of V with centers at the points of C (see Figure 7.3). Furthermore,
because (7.5) holds for any M > 10, and

∫
T1

F(x, y)
dxdy

xn+1yn+1 = O
(
10n(M + 1)−n) ,
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Figure 7.3 A visualization of the tubular neighborhood ν.

taking M → ∞ shows that the integral over T1 is zero for n > 0, and thus

an,n =
1

(2πi)2

∫
ν

F(x, y)
dxdy

xn+1yn+1 =
1

(2πi)2

∫
ν

1
(1 − x − y)(1 + 3x)

dxdy
xn+1yn+1 .

The tubular neighborhood ν is the union of circles with centers on C, and each
point of C corresponds to a simple pole of F(x, y), where 1 − x − y = 0, so a
generalization of the classical univariate residue theorem implies

an,n =
1

2πi

∫
|x|=1/10

Res
y=1−x

1
(1 − x − y)(1 + 3x)

dx
xn+1yn+1

=
1

2πi

∫
|x|=1/10

1
1 + 3x

dx
xn+1(1 − x)n+1 .

(7.6)

As in the last example, the integrand of (7.6) becomes a saddle point integral
near x = 1/2. The difference is that while we previously used a residue to
localize near the saddle point, this time we took a more “convenient” residue
and obtained a univariate integral away from the saddle point. Because we
are dealing with an integrand having a linear denominator, we can move our
domain of integration to pass through the critical point without much difficulty.
We now describe three methods for doing this, listed in decreasing order of
explicitness but increasing order of generality.

Method One: Because the only singularity of the integrand in (7.6) between
the circles |x| = 1/10 and |x| = 1/2 occurs at x = −1/3, the domain of in-
tegration in (7.6) can be replaced by the union of the circle |x| = 1/2 and a
sufficiently small clockwise circle around x = −1/3 (see Figure 7.4 left). The
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|x| =
1

10

Figure 7.4 Left: The circle |x| = 1/10 can be expanded to |x| = 1/2 by intro-
ducing a circle around x = −1/3. This results in an extra residue integral which
is exponentially negligible. Right: Alternatively, we can expand from |x| = 1/10
to hit x = 1/2 while stopping the increase in an arbitrarily small circle around
x = −1/3.

residue theorem then implies

an,n =
1

2πi

∫
|x|=1/2

1
1 + 3x

dx
xn+1(1 − x)n+1 +

1
2πi

∫
|x+1/3|=ε

1
1 + 3x

dx
xn+1(1 − x)n+1

=
1

2πi

∫
|x|=1/2

1
1 + 3x

dx
xn+1(1 − x)n+1 − Res

x=−1/3
(x + 1/3)−1 1/3

xn+1(1 − x)n+1

=
1

2πi

∫
|x|=1/2

1
1 + 3x

dx
xn+1(1 − x)n+1 −

1
3

(
9
4

)n+1

,

and a change of variables yields the saddle point approximation

an,n =
4n

2π

∫ π

−π

1
(1 + 3eiθ/2)(1 − eiθ/2)

e−niθ−n log(2−eiθ)dθ −
1
3

(
9
4

)n+1

=
4n

√
πn

(
2
5

+ O
(

1
n

))
.

Method Two: In general we cannot work around other singularities by tak-
ing residues in such an explicit manner. Although this means we cannot get
an explicit representation for error terms coming from other singularities, all
we really need to determine dominant asymptotics is to bound any potential
asymptotic contributions from these singularities. The only factor of the inte-
grand in (7.6) that depends on n is x−n(1− x)−n, so when n is large the modulus
of the integrand is well approximated by enh(x), where

h(x) = − log |x| − log |1 − x|.
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7.1 Some illustrative examples 179

Points with smaller height h make the integrand of (7.6) exponentially smaller,
so up to an exponentially negligible error we can ignore points with height
bounded below h(1/2) = log 4. Since h(−1/3) = log(9/4) we could proceed
by expanding the circle |x| = 1/10 to the circle |x| = 1/2 while stopping in
a tubular shape around x = −1/3 (see Figure 7.4 right). The integral over
the resulting curve can be truncated to a neighborhood of x = 1/2 in |x| =

1/2 while introducing an exponentially negligible error. The integral over this
neighborhood of x = 1/2 is again a saddle point integral.

Method Three: Although Method Two is more general than Method One,
it still requires that we know how to explicitly deform around V, which is
not always possible. We thus move to an even more general argument, which
will be fully described below. The key is to use the local geometry of V to
describe how to move the domain of integration |x| = 1/10 to heights below
h(1/2) = log 4, except in a neighborhood of x = 1/2, while avoiding V. This
is accomplished using a gradient flow. Writing x = a + ib for real variables a
and b, so that |x| =

√
a2 + b2, we see that

h(a, b) = h(a + ib) = − log
(
a2 + b2

)
/2 − log

(
(1 − a)2 + b2

)
/2.

We want to move an arbitrary point aθ+ ibθ = eiθ/10 on our starting circle |x| =
1/10 down to points on V of lower height with respect to h. Since (∇h)(a, b)
gives the direction of greatest increase of h, we want to locally move a point
(aθ, bθ) along the direction −(∇h)(aθ, bθ). In other words, we want to solve the
first-order differential system of equations(

a′θ(t)
b′θ(t)

)
= −∇h(aθ(t), bθ(t)), aθ(0) = cos(θ)/10, bθ(0) = sin(θ)/10

for aθ(t) and bθ(t). Figure 7.5 shows the trajectories of points under this (neg-
ative) gradient flow. Here it can be verified in a computer algebra system that
under the flow all points will go below height h(1/2) = log 4, except in a
neighborhood of x = 1/2. Near x = 1/2 the flow approaches a vertical line, ul-
timately resulting in a saddle point integral. The key reason this method can be
generalized is that techniques from Morse theory allow us to know when such
a flow exists, and characterize the resulting domains of integration, without
having to actually compute them.

/

In our last example the non-smooth point did not affect dominant asymp-
totics, but this will not always be the case.

Example 7.4 (Dealing with Multiple Points). Consider now asymptotics in the
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180 Overview of analytic methods for multivariate GFs

Figure 7.5 Left: The gradient flow of |x| = 1/10 at three points in time, plotted on
C2 \ {0, 1} when arranged by height h(x) = h(a + ib). Right: The curves under the
flow plotted in the complex plane.

main diagonal direction r = (1, 1) of the power series expansion of F(x, y) =

1/Q(x, y) with Q(x, y) = (1 − x − y)(1 − 3x). The factor 1 − x − y is the same
as in the above examples, but having the second factor change from 1 + 3x to
1 − 3x moves the non-smooth point to (1/3, 2/3). Because the height h(x, y) =

− log x − log y is now larger at (1/3, 2/3) than (1/2, 1/2), we can no longer
easily rule out the non-smooth point. In fact, following Method One from the
last example shows

an,n =
1

2πi

∫
|x−1/3|=ε

1
1 − 3x

dx
xn+1(1 − x)n+1 +

1
2πi

∫
|x|=1/2

1
1 − 3x

dx
xn+1(1 − x)n+1

= Res
x=1/3

(x − 1/3)−1 1/3
xn+1(1 − x)n+1 +

1
2πi

∫
|x|=1/2

1
1 + 3x

dx
xn+1(1 − x)n+1

=
1
3

(
9
2

)n+1

+ O(4n).

More generally, ifV is no longer a manifold then we compute a Whitney strat-
ification, partitioningV into a finite collection of manifolds such that the local
geometry of V is consistent near the points in any fixed element of the par-
tition. We then perform an analysis similar to the smooth case on each of the
manifolds, obtaining a set of equations for each manifold that characterizes
the points of interest for our asymptotic calculations. The asymptotic contri-
bution of such a point depends on the geometry near the singularity. In this
text we study singularities where V is locally smooth (in Chapter 9), looks
like the union of hyperplanes (in Chapter 10), or looks like a cone point (in
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7.1 Some illustrative examples 181

Figure 7.6 The gradient flow of |x| = 1/10 at three points in time, plotted on
C2 \ {0, 1} when arranged by height h(x) = h(a + ib). Left: The flow on V1−y−xy.
Right: The flow onV1−x−y−x2y.

Chapter 11). Studying flows on general algebraic varieties requires us to adapt
tools from stratified Morse theory. /

Exercise 7.2. Sketch the vector field −(∇ h)(a, b) on the right-hand side of
Figure 7.5.

Gradient flows form an important component of our analytic toolbox. In-
deed, rather than computing a flow for each example, standard results in Morse
theory usually guarantee the existence of flows that push domains of integra-
tion down to points where saddle point approximations can be computed. Un-
fortunately, these results require the height map to be proper (meaning that the
set of points with height in a closed interval is compact). Because this proper-
ness condition is usually not satisfied in our setting, it is possible for the desired
flows not to exist.

Example 7.5 (Critical Points at Infinity). Consider the diagonal sequences
an,n of the power series expansions of 1/A(x, y) and 1/B(x, y), where A(x, y) =

1−y− xy and B(x, y) = 1− x−y− x2y. The negative gradient flows of the circle
|x| = 1/10 on VA and VB are shown in Figure 7.6. Because y = 1/(x + 1) on
VA, the product xy = x/(x + 1) → 1 as x → ∞, and thus the height function
h(x, y) = − log |x|−log |y| → 0 as x→ ∞ onVA. Since h(x, y) can stay bounded
as (x, y) goes to infinity, the height function is not proper. As seen in the left
of Figure 7.6, the circle |x| = 1/10 stays at bounded height but never reaches a
saddle. In fact, VA contains no saddles, and we say that it has a critical point
at infinity.
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182 Overview of analytic methods for multivariate GFs

Similarly, because y = (1 − x)/(1 + x2) on VB, the height function h(x, y)
approaches zero as x → ∞ onVB. However, onVB the circle |x| = 1/10 does
flow to a saddle point of height greater than zero. Again we have a critical
point at infinity, but this time it is of lower height than an actual saddle point
on the variety. Thus, non-properness of the height function does not preclude
an asymptotic analysis, as we can ignore points of height bounded below the
saddle point if we care only about dominant asymptotic behavior. /

In Section 7.5 we discuss computable conditions, often satisfied in practice,
that imply the conclusions of Morse theory we require apply even without a
proper height function.

Exercise 7.3. Let Q(x, y) = 1− x−y− x2y2 and hr(x, y) = −r1 log |x|−r2 log |y|
be the height function corresponding to the r-diagonal sequence (ar1n, r2n).
Prove that when r = (2, 1) the height function hr(x, y) approaches a finite
limit as y → ∞ and x → 0, and evaluate the limit. Prove that when r = (1, 1)
the height function hr(x, y) has no finite limit as either x or y goes to infinity.

7.2 The smooth case

We now generalize the above argument to any rational function whose singular
varietyV is a complex manifold. The square-free part Q̃ of the polynomial Q
is the product of its distinct irreducible factors over the complex numbers, and
we say that Q is square-free if Q̃ = Q. We call z ∈ V a smooth point if ∇ Q̃(z)
is non-zero, and say that V is smooth if Q̃ and all its partial derivatives never
simultaneously vanish. The implicit function theorem implies that a smooth
singular variety can be viewed both as a (d−1)-dimensional complex manifold
and as a (2d − 2)-dimensional real manifold, and both of these viewpoints will
be beneficial. We introduce the square-free part of Q so that the converse also
holds.

Lemma 7.6. The inequality ∇ Q̃(z) , 0 holds for a point z ∈ VQ if and only
ifV is a smooth manifold in a neighborhood of z.

Proof Sketch The forward implication follows from the implicit function the-
orem. The converse, that ∇ Q̃(z) = 0 implies a geometric singularity, is harder
to prove. Let mx denote the maximal ideal of functions vanishing at x in the
ring of polynomial functions vanishing on V, and let nx denote the maximal
ideal of functions vanishing at x in the ring of germs of analytic functions at
x (as defined in Definition 10.42 below). Then ∇ Q̃(x) = 0 implies mx/m2

x

has dimension d rather than d− 1 (see [Sha13, Exercise 2.2 and Theorem 2.1])
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7.2 The smooth case 183

so that nx/n2
x has dimension d, and this property is invariant under bi-analytic

mapping. At any smooth point of a complex hypersurface there is a coordinate
neighborhood taking x to the origin and making the hypersurface into the coor-
dinate plane where z1 = 0. In this case n0/n2

0 has dimension d−1, which would
be a contradiction, hence V is not a complex manifold in a neighborhood of
x. A little more work showsV is not locally a C∞-manifold either. �

Our starting point, as always, is the multivariate Cauchy Integral Formula

ar =

(
1

2πi

)d ∫
T
z−r−1F(z) dz , (7.7)

which gives an exact representation for ar. We view this representation not as
a standard integral from multivariate calculus, but as the integral of the differ-
ential form ω = z−r−1F(z) dz over the d-chain T . The necessary background
on differential geometry and the basics of integration of forms is discussed in
Appendix A. Appendix B reviews concepts from algebraic topology, including
homology and cohomology classes. In particular, sinceM = Cd

∗ \V is the do-
main of holomorphicity for ω, the Cauchy integral depends only on the class
of T in the singular homology group Hd(M) and the class of ω in the singular
cohomology group Hd(M).

We break our argument into pieces, generally mirroring the final approach
to Example 7.3 above. In this chapter we mainly stick to theoretical consider-
ations; methods for computing the quantities that arise are discussed in Chap-
ter 8.

Step 1: Characterize critical points
We begin by defining the height function

hr(z) := −r · Relog z = −

d∑
j=1

r j log |z j| ,

which captures the magnitude of the Cauchy integrand∣∣∣z−r−1F(z)
∣∣∣ = e|r| hr̂ (z) ·

∣∣∣z−1F(z)
∣∣∣

as
∣∣∣z−1F(z)

∣∣∣ independent of |r|. The ordering hr gives to Cd
∗ does not change if

r is multiplied by a positive scalar, so our arguments about the height function
will hold whenever r is replaced by any positive multiple. This invariance
property means that an analysis of ar as r → ∞ with r̂ = r/|r| converging to
some fixed r̂∗ can usually be accomplished with the fixed height function hr̂∗ .
In particular, if r̂∗ is a fixed direction and hr∗ (x) < hr∗ (y) then, as r → ∞ with
r̂ → r∗, the Cauchy integrand is exponentially smaller at z = x than at z = y.
When r is understood we write simply h for hr.
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184 Overview of analytic methods for multivariate GFs

Definition 7.7. A smooth critical point z of the rational function F = P/Q in
the direction r̂ is a smooth point ofV∗ that is a critical point of hr̂ : V∗ → R as
a smooth mapping of real manifolds. The set of critical points in the direction
r̂ is denoted by critical(r).

The height function hr̂ is the real part of (a branch of) the analytic function
φ(z) = −r · log z, and the Cauchy–Riemann equations imply that the critical
points of F in the direction r̂ can also be computed as the critical points of
φ : V∗ → C as a (locally) holomorphic mapping of complex manifolds. In
particular, we have the following explicit definition of smooth critical points.

Lemma 7.8. Assume thatV is a smooth manifold and let Q̃ be the square-free
part of the denominator Q. Thenw ∈ Cd

∗ is a critical point in the direction r̂ if
and only if it satisfies the smooth critical point equations

Q̃(w) = rkw1Q̃z1 (w) − r1wkQ̃zk (w) = 0 (2 ≤ k ≤ d) , (7.8)

where Q̃z j denotes the derivative of Q̃ with respect to the variable z j.

Proof The point w is a critical point when Q(w) = 0 and the differential of
φ : V∗ → C is zero. Vanishing of this differential occurs exactly when the
differential of φ as a map from Cd

∗ to C projects to zero on the tangent space
ofV∗ at w. Since the tangent space toV∗ at w is the hyperplane with normal
(∇Q̃)(w), the differential of φ projects to zero if and only if (∇φ)(w) is parallel
to (∇Q̃)(w). These vectors are parallel if and only if all 2 × 2 minors of the
matrix (∇Q̃

)
(w)

(∇φ) (w)

 =

(
Q̃z1 (w) · · · Q̃zd (w)
−r1/w1 · · · −rd/wd

)
vanish. Vanishing of the minors simplifies to give the smooth critical point
equations. �

Remark 7.9. The smooth critical point equations (7.8) form a polynomial
system with d equations in d variables. It is therefore unsurprising that gener-
ically Q has a finite number of critical points (i.e., this holds for all polyno-
mials Q except for those whose coefficients come from a fixed algebraic set
depending only on the degree of Q). This follows directly from an algebraic
version of Sard’s Theorem, which can be found in [BPR03, Theorem 5.56];
see also [Mel21, Section 5.3.4] for an explicit derivation.

Exercise 7.4. Continuing Exercise 7.3, let r = (2, 1) and find the critical points
for hr on V. Compute the heights of these critical points and compare them
to the limit height for the sequence approaching infinity in Exercise 7.3. Is the
limit height larger than the heights of all critical points onV?

https://doi.org/10.1017/9781108874144.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108874144.012


7.2 The smooth case 185

Proposition 7.10. Singularity of the Hessian matrix for hr̂ in local coordinates
at a critical point for hr̂ on the smooth varietyV∗ is independent of the choice
of coordinatization ofV∗ as a complex manifold.

Proof At a point p where ∇ hr̂ vanishes, the chain rule under a coordinate
change Ψ simplifies to H ′ = JΨH , where H ′ is the new Hessian, H is the
old Hessian, and JΨ is the Jacobian matrix of Ψ at p. The claim follows from
nonsingularity of JΨ at p. �

Definition 7.11. A smooth critical point w of h is called a nondegenerate
critical point if the Hessian matrix for h in local coordinates aroundw is non-
singular.

This definition is generalized to non-smooth points in Definition 7.34 below.
Under our assumption that V is smooth, one of the partial derivatives of the
square-free part of Q is nonvanishing at w. Without loss of generality, we
assume that Q̃zd (w) , 0 is non-zero, so we can parametrizeV near w as zd =

g(z◦) = g(z1, . . . , zd−1) for some analytic function g defined in a neighborhood
of w◦. The critical point w is nondegenerate if and only if the Hessian matrix
of h(z◦, g(z◦)) with respect to z1, . . . , zd−1 has non-zero determinant at z◦ =

w◦. We say h is a Morse height function when all of its critical points are
nondegenerate.

Remark. Most topological works, such as [Mil63; GM88], study spaces using
Morse height functions. However, as discussed in Appendix C, as long as there
are finitely many critical points the basic Morse decompositions hold whether
or not h is Morse: the topology of the space is still generated by attachments at
the critical points. However, the description of the attachments becomes more
complicated for non-Morse height functions.

Step 2: Intersect the torus with the singular variety

The Cauchy integral representation (7.7) holds for any torus T = Relog−1(x)
with x in the component B of amoeba(Q)c corresponding to the convergent
Laurent expansion with coefficients ar. We want to replace the domain of in-
tegration T with a domain of integration close to V that “wraps around” the
singular variety, so we can use a residue computation in Step 3 below to reduce
to an integral “on”V.

If γ is any (d − 1)-chain in V∗ then the Collar Lemma (Lemma C.1 in Ap-
pendix C) shows how to construct the tube oγ around γ, which is a d-chain
in the domain M where the Cauchy integral ω is holomorphic. The tube oγ
can be viewed as a union of circles with centers at the points of γ, and the
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map γ 7→ oγ is well defined as a map from the homology group Hd−1(V∗) to
Hd(M).

Theorem C.2 of Appendix C implies that o : Hd−1(V∗) → Hd(M) is injec-
tive, and if T ′ is any torus contained inM then pulling back [T −T ′] ∈ Hd(M)
via o gives a well-defined class INT(T,T ′) ∈ Hd−1(V∗) known as the intersec-
tion class of T and T ′. By construction, [T ] − [T ′] = o INT(T,T ′) in Hd(M),
so that

ar =

(
1

2πi

)d ∫
T
ω =

(
1

2πi

)d ∫
o INT(T,T ′)

ω +

(
1

2πi

)d ∫
T ′
ω .

One can picture o INT(T,T ′) by imagining a continuous deformation of T to
T ′. If this deformation is sufficiently generic it will intersect V∗ transversely,
with the intersection yielding INT(T,T ′). The tube around INT(T,T ′) is thus
the chain that needs to be added to account for passing the deformation through
V∗. See Figure 7.7 for an illustration.

Figure 7.7 An intersection class of T and T ′ with respect toV.

If we pick a torus T ′ so that
∫

T ′ ω = 0 then we have succeeded in expressing
the Cauchy integral as an integral over a tube around a curve in V∗. Corol-
lary 6.29 implies the existence of such a torus, giving the following.

Proposition 7.12. Assume F is the ratio of coprime polynomials F(z) =

P(z)/Q(z). As r → ∞ in the direction r̂ there exists a torus T ′ such that
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T ′ ω = 0 for all but finitely many r, and

ar =

(
1

2πi

)d ∫
o INT(T,T ′)

ω (7.9)

whenever the integral over T ′ is zero. �

Exercise 7.5. Let Q(x, y) = 1 − x − y − x2y2, whose amoeba is shown in
Figure 7.8. When r = (1, 1), which components of amoeba(Q)c have hr un-
bounded from below, and which vertices of the Newton polygon for Q do these
regions correspond to under the relationship described in Theorem 6.18?

Figure 7.8 Amoeba of Q(x, y) = 1 − x − y − x2y2.

We can convert the d-dimensional integral in (7.12) to a (d−1)-dimensional
integral over the intersection cycle, which lies in V∗. This is accomplished
using the concept of multivariate residues (also called Leray residues). Ap-
pendix C.2 gives a summary of multivariate residues, but for this discussion
it is sufficient to note that the residue form Res(τ) of a meromorphic d-form τ

with singularities contained inV is a (d−1) form restricted toV. Theorem C.9
implies that

1
2πi

∫
oγ

τ =

∫
γ

Res(τ)

for any (d − 1)-chain γ inV∗ and holomorphic d-form τ onM.
In particular, combining the residue operator with Proposition 7.12 gives the

following.
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Proposition 7.13. If T ′ is a torus described by Proposition 7.12 then

ar =

(
1

2πi

)d−1 ∫
INT(T,T ′)

Resω. (7.10)

�

Exercise 7.6. Suppose d = 1 andV = VQ where Q(z) = 2− 3z + z2. Let T be
a circle of some small positive radius ε and T ′ be a circle of some large radius
M.

(a) What is the cycle INT(T,T ′)?
(b) What is the form Res(ω) when ω = Q(z)−1z−n−1dz?
(c) What is

∫
INT(T,T ′) Res(ω)?

(d) What is o INT(T,T ′)?
(e) Describe in words why o INT(T,T ′) is homologous to T−T ′ in H1(C∗\V).

Step 3: Determine a Morse-Theoretic Decomposition of the
Singular Variety

Having reduced the Cauchy integral to an integral over an intersection cycle
γ = INT(T,T ′) lying in the singular variety V∗, we now want to deform γ in
V∗ to represent the coefficient sequence of interest as a sum of saddle point in-
tegrals. Because we are currently assumingV is smooth, we could try to com-
pute such a representation by taking a gradient flow of γ onV with respect to
the height function hr̂. If γ can be deformed so that it lies in the neighborhood
of a nondegenerate critical point σ of hr̂, except for points of height at most
σ − ε for some ε > 0, then we can apply the saddle point techniques of Chap-
ter 5 to compute asymptotics (up to an exponentially negligible error, coming
from ignoring points of lower height).

Actually computing such a gradient flow on real examples is usually not
feasible. Fortunately, one of the most important consequences of Morse theory
is that under reasonable conditions there are only a finite number of possi-
bilities for the long-term behavior of such a flow. In particular, as detailed in
Appendix C and summarized here, if the flow does not stay at bounded height
while escaping to infinity onV∗ then we can flow γ until it gets locally “stuck”
on one of the critical points of hr̂.

Our results are phrased in the language of singular homology, reviewed
in Appendix B. Of particular use to us are the notions of relative homology,
which allows us to discuss homology near a critical point while ignoring points
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Figure 7.9 The curve γ is deformed to a curve γz locally draped over a saddle z
centered at a critical point for the height function. The tubes around γ and γz are
also pictured.

of lower height that do not affect dominant asymptotic behavior, and attach-
ments, which describe how to decompose the singular variety by joining to-
gether topologically simpler spaces. Our discussion here summarizes the main
points of the machinery developed in the appendices before applying them to
our situation.

Morse theory represents the topology of a manifold X equipped with a
smooth map h : X → R in terms of successive attachments. The smooth func-
tion h is referred to as a height function on X. As discussed above, we say h
is a Morse if its critical points are nondegenerate, and proper if the inverse
image of any closed interval is compact. Let X≤c denote the subspace of all
points z ∈ X with h(z) ≤ c and suppose that h is a proper Morse function. As
described in Section C.3 of Appendix C, Morse theory describes the change
in topology when the space X≤a is increased to X≤b using the language of at-
tachments. Moving from X≤a to X≤b is a homotopy equivalence (no change in
topology) unless h has critical values in [a, b]. When there is a single critical
point z with height in this interval, the topology changes via a topological at-
tachment: X≤b is homotopy equivalent to X≤a on which a λ-ball B is glued via
an attaching map φ : ∂B→ X≤a. The value of λ is the Morse index of the criti-
cal point z, which can be thought of as the dimension of the downward facing
part of the generalized saddle at z and computed in local coordinates using the
Hessian of h at z.

Figure C.3 in Appendix C shows how the decapitated unit sphere S ≤1−ε be-
comes the full unit sphere by the attachment of a cap and the north pole (Morse
index 2), while Figure C.5 in Appendix C shows how a contractible patch near
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the bottom of a torus becomes homotopy equivalent to a circle when a bridge
(homotopy equivalent to an arc) is added at the first Morse index-1 critical
point. These diagrams are reproduced here in Figure 7.10 for convenience.

Figure 7.10 Two examples of attachments.

We now specialize to the case where X = V∗ and h = hr̂ for some fixed
unit vector r̂. It is not true that h will always be proper, however we can work
around this difficulty. If σ ∈ V∗ is a critical point then the gradient (∇hr̂)(σ)
projects to zero on the tangent plane TσV∗ ⊂ Cd. Roughly speaking, a critical
point at infinity is a sequence of points z(k) ∈ V∗ going off to infinity such
that the projection of (∇hr̂)(z(k)) to Tz(k)V∗ approaches zero as k → ∞; the
associated critical value at infinity is the limit of hr̂(z(k)) as k → ∞. Critical
points at infinity are defined formally in Definition 7.42 below. Provided there
are no critical points at infinity, the classic results of Morse theory hold even
when the height function is not proper.

Lemma 7.14. Suppose hr̂ has no critical values at infinity in the interval [a, b].
If there are no critical values in [a, b] then the inclusion X≤a ⊆ X≤b is a ho-
motopy equivalence. If there is a single critical point z with critical value
hr̂(z) = c ∈ (a, b), then the pair (V≤b,V≤a) is homotopy equivalent to a λ-cell
relative to its boundary, where λ is the Morse index of the critical point z for
hr̂.

Exercise 7.7. What is λ in the attachment in the bottom row of Figure 7.10?

It is convenient to postpone the proof of Lemma 7.14 until the more general
setting when we no longer require V to be smooth. After establishing addi-
tional results below, Lemma 7.14 follows directly from Lemma 7.25, which
asserts the homotopy equivalence, and the identification of the attachment in
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Theorem 7.35(b). In the present smooth case, a nice simplification occurs: be-
cause the height function is the real part of a complex (locally) analytic func-
tion, every critical point z ∈ V∗ has Morse index d − 1.

Exercise 7.8. Prove that the real part of a complex analytic function defined
on an open set in Cd has Morse index d, then prove that the real part of such a
function restricted to a smooth hypersurface has Morse index d − 1. Hint: The
Cauchy–Riemann equations yield a lot of information about the eigenvectors
and eigenvalues of the Hessian.

This characterization of the index allows us to show that Hd−1(V∗) is homo-
logically a bouquet of (d − 1)-spheres, one quasi-local to each critical point. A
version of the following theorem, with the stronger assumption that h is proper
replacing the assumption of no CVAI, is stated and proved as Theorem C.39
in Appendix C (the appendices contain background material not specialized
to ACSV). The restriction that the critical values are distinct is removed in
Corollary 7.17.

Theorem 7.15. Assume that V is smooth, hr̂ is a Morse height function, and
there are no critical values at infinity (according to Definition 7.43 below).
Assume further that the critical values c j = hr̂(z j) are distinct and listed in
descending order.

(i) Each projection Hd−1(V∗)→ Hd−1(V≤c j+ε,V≤c j−ε) is surjective. In other
words, the relative homology generator at z j can be chosen to be an
absolute cycle.

(ii) Each inclusion V≤c ⊆ V∗ induces an injection on Hd−1. In other words,
there are no relations: no homology generator ever gets killed.

It follows that Hd−1(V∗) � Zm and that a basis γ1, . . . , γm for Hd−1(V∗) can be
chosen so that each γ j is a cycle on which hr̂ attains its maximum value at z j.

Proof Part (i) of Theorem 7.44 below extends the fundamental Morse Lemma,
namely homotopy equivalence ofM≤c as c varies in an interval with no critical
values (Lemma C.27) from the case where h is a proper Morse function to the
case where h need not be proper but there are no CVAI in the interval. Part (ii)
of Theorem 7.44 extends the smooth attachment theorem for a single critical
value c (Theorem C.28) from the case where h is a proper Morse function to
the case where h need not be proper but there are no CVAI in the interval.
Accordingly, the conclusions of Theorems C.38 and C.39 hold for this case,
via the same argument. Specifically, these follow from the identification of the
attachment and from the homology long exact sequence for the filtration of
pairs (M≤b j ,−∞), where b j are real numbers between each successive pair of
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critical values, b0 is above the highest critical value, and −∞ isMb for any b
less than the least critical value. See Section C.4 for details. �

Remark 7.16. The isomorphism Hd−1(V∗) �
⊕m

j=1 Hd−1(Vc j+ε,Vc j−ε) is not
natural. For each attachment at z j there is an arbitrary choice of an absolute
cycle γ j that projects to the generator of the homology group for the attach-
ment. The cycle γ j + α would do equally well for any cycle α supported on
Vc j−ε. One might say that the choice of γ1, . . . , γm, listed in decreasing order
of height, can be altered by an arbitrary upper triangular map, replacing γ j

by γ j +
∑

i> j biγi. This is the so-called Stokes phenomenon, illustrated in Fig-
ure 7.11: the saddle point integral from z j might pass on either side of zi as it
travels downward, with the integrals over the two choices of contour differing
by the integral over γi. Thus, for a cycle C the decomposition [C] =

∑m
k=1 nkγk

is not natural. It is important to note, however, that the leading coefficient n j∗ is
well-defined independent of the chosen basis {γ j}, where j∗ is the least index
such that n j∗ , 0.

Figure 7.11 Stokes’s phenomenon reflects the fact that a curve draped over the
higher saddle can descend on either side of the lower saddle, as shown here by
two possible branches. The difference between these two curves is a curve draped
over the lower saddle.

The simplifying assumption of distinct critical values is not important. To
get rid of this, we define the local homology pairVp,loc at a critical point p at
height c to be the pair (X,Y), where Y = V≤c−ε/2 and X is the union of Y with
the ball Bε(p) for ε > 0 sufficiently small (see Definition C.31 of Appendix C
for full details). Any such pairs are homotopy equivalent as long as ε is small
enough that the 2ε-balls about different critical points are disjoint.

Deformations defined in Appendix C show that if there is a unique critical
point p with height c ∈ [a, b] then, for small ε > 0, the local pair Vp,loc is
homotopy equivalent to the slab (V≤c+ε,Vc−ε). The benefit to replacing the
slab by the local pair occurs when there are multiple critical points sharing a
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critical value. If hr̂(p) = c for all p in some finite set E then

(V≤b,V≤a) '
⊕
p∈E

Vp,loc, (C.3.1)

giving the following.

Corollary 7.17. Replacing (Vc j+ε,Vc j−ε) by Vz,loc for each z, the conclu-
sions of Theorem 7.15 hold without the assumption of distinct critical values.
�

We end this subsection with some examples of this topological decomposi-
tion.

Example 7.18 (binomial coefficients). Recall that the binomial coefficients
ars =

(
r+s

r

)
have bivariate generating function F(x, y) = 1/(1−x−y). If r̂ = (r, s)

with r + s = 1 and r, s ∈ (0, 1) then as r varies from 0 to 1, the critical point
w(r̂) of F in the direction r̂ slides from (0, 1) to (1, 0). The homology group
H1(V∗) has a single generator γz∗ . The homology group H2(M) is cyclic as
well, generated by oγz∗ . /

Example 7.19 (Delannoy numbers). The Delannoy number generating func-
tion from Example 2.7 in Chapter 2 is 1/(1− x−y− xy). The situation is similar
to Example 7.18, except that as r varies from 0 to 1 the critical pointw(r̂) tra-
verses the arc the other way from (0, 1) to (1, 0), and there is another critical
point w′ traversing a hyperbola in the third quadrant. /

Exercise 7.9. Consider the amoeba of the denominator Q(x, y) = 1− x−y− xy
of the Delannoy generating function, shown in Figure 7.12.

(a) Compute the critical points w and w′ in the direction determined by r =

(2, 3), then draw dots where p = Relog(w) and p′ = Relog(w′) lie on the
amoeba.

(b) Find a path β, from the power series component of the amoeba complement
to a component where the Cauchy integral is zero, that enters the amoeba
at p and exits it at p′.

(c) Describe γ = Relog−1(β).
(d) State why [γ] = INT(T,T ′) in H1(V∗) and why

∫
γ

Resω is easy to esti-
mate, where

ω =
x−2n−1y−3n−1

1 − x − y − xy
dx ∧ dy .
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Figure 7.12 Amoeba for the Delannoy generating function Q(x, y) = 1−x−y−xy.
Each point interior to the amoeba is the image of precisely two points ofV under
Relog.

Result: a saddle point integral decomposition in the smooth case

Theorem 7.15 and Corollary 7.17 give a basis of Hd−1(V∗) consisting of cycles
that attain their maximum values at critical points. Vanishing of dhr̂ |V at z
is equivalent to z−r being in stationary phase at z for any (d − 1)-chain γ j

supported onV∗. Thus, combining Theorem 7.15 and Corollary 7.17 with the
integral representation in Proposition 7.13 gives the following, our ultimate
goal for generating functions with smooth singular varieties.

Theorem 7.20 (smooth saddle point integral decomposition). Assume that V
is smooth, hr̂ is a Morse height function, and that there are no critical values
at infinity (see Definition 7.43 below). Assume further that the critical values
c j = hr̂(z j) for 1 ≤ j ≤ m are listed in descending order. Then there exist
integers κ j ∈ Z and smooth chains of integration γ j with heights uniquely
maximized at z j, such that

ar =

m∑
j=1

κ j

(2πi)d−1

∫
γ j

z−r−1 Res(F(z) dz) . (7.11)

The integral in the jth summand is in stationary phase at z j. The least j such
that κ j , 0, and the homology class

∑
j′∈E κ j′γ j′ for all j′ such that z j′ has

height c j, are uniquely defined. �

There are two important tasks remaining: computing asymptotics of the sad-
dle point integrals and determining the integers κ j. While integral asymptotics
(in this smooth case) follow in a straightforward manner from the results of
Chapter 5, it can be very difficult to determine these unknown integers. We
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discuss both of these questions in Chapter 9, where we derive explicit asymp-
totic formulae for ar in terms of the generating function F(z). Readers who
are interested only in smooth asymptotics (and do not need to see the technical
discussion of critical points at infinity) may go directly to Chapters 8 and 9,
after a brief discussion about removing our simplifying hypotheses.

The requirement of no critical value at infinity is essential: when there are
critical points at infinity, asymptotics are in principle affected. Classifying
these cases and computing the asymptotics remains an open problem discussed
further in Chapter 13. Removing the smoothness assumption involves the ap-
paratus of stratified Morse theory, which we make use of in the next section.
The assumption that hr̂ is nondegenerate is not essential, however in its ab-
sence there is no longer a unique cycle γ j for each j. We handle this case, for
now, by two examples.

Example 7.21 (cubic degeneracy). The simplest degeneracy at a critical point,
a so-called monkey saddle, leads to two independent homology generators as
in Figure 7.13. /

Figure 7.13 Two homology generators associated with a monkey saddle.
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While critical points are generically nondegenerate, we now give one com-
binatorial example in which a critical point w is indeed degenerate and con-
tributes more than one generator.

Example 7.22 (bi-colored supertrees). Example 9.32 in Chapter 9 looks at
a rational generating function counting bi-colored supertrees (certain planar
binary trees that need not concern us here). The singular variety is the smooth
surface defined by the vanishing of Q(x, y) = x5y2 + 2x2y − 2x3y + 4y + x − 2.
When r̂ = (1/2, 1/2) then there are two nondegenerate critical points, u and v,
together with a critical pointw near which hr̂ is quartic (so doubly degenerate).
Accordingly there is one cycle γu, one cycle γv, and three cycles γ( j)

w which
may be configured all to enter w along the solid arc and exit along one of the
three dashed arcs shown in Figure 7.14. /

Figure 7.14 The supertree generating function yields two nondegenerate critical
points and one doubly degenerate critical point.

7.3 The general case via stratified Morse theory

We now drop the assumption that the singular varietyV is smooth. As detailed
in Appendix D, the correct notion for us is the concept of a Whitney stratified
space: every real or complex algebraic (or analytic) variety admits a Whitney
stratification, and the analytic constructions we require for asymptotics can
be built for stratified spaces. In this chapter we recount only the results from
Appendix D that we directly require. Although we typically assume that F is
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a rational function to simplify our presentation, the results discussed here hold
for general meromorphic functions with minor modifications.

Example 7.23. Figure 7.15 shows the zero setV of the polynomial Q = (z3 −

x2)(2 − x − y − z). We can split the variety V into a finite number of semi-
algebraic strata (defined by polynomial equalities and inequalities): two strata
of codimension 1,

S 1 =
{
x + y + z = 2 and z3 − x2 , 0

}
S 2 =

{
z3 − x2 = 0 and x + y + z , 2

}
\ {x = z = 0},

two strata of codimension 2,

S 3 =
{
z3 − x2 = 0 and x + y + z = 2 and (x, z) , (0, 0)

}
,

S 4 = {(x, z) = 0 and y , 2} ,

and one stratum of codimension 3 at the point

S 5 = {z3 − x2 = x + y + z − 2 = x = z = 0} = {(0, 2, 0)}.

Note that we introduce additional strata both to account for multiple irreducible
components ofV and to account for singularities in individual components. /

As described in Appendix D, it is usually not sufficient to partition V into
any general set of smooth manifolds – we must also make sure the elements in
such a partition “fit together nicely.” This concept is formalized by the notion
of a Whitney stratification, given in Definition D.3 of Appendix D. For the rest
of this chapter we fix a Whitney stratification of V, which is a partition of V
into manifolds {S α : α ∈ I} indexed by some partially ordered set I such that

(i) S α ∩ S β , ∅ if and only if S α ⊂ S β if and only if α ≤ β, and
(ii) if α < β, if the sequences {xi ∈ S β} and {yi ∈ S α} both converge to y ∈ S α,

if the lines `i = xi yi converge to a line `, and if tangent planes Txi (S β)
converge to a plane T , then both ` and Ty(S α) are contained in T .

We always take algebraic stratifications defined by polynomial equalities
and inequalities. In fact, we may assume that our Whitney stratification is de-
fined by a finite sequence of nested algebraic setsV = F0 ⊃ F1 ⊃ · · · ⊃ Fm =

∅ such that the connected components of the sets Fi \Fi+1 for all 1 ≤ i ≤ m−1
form the strata. If S is a stratum defined as a connected component of Fi \ Fi+1

then the dimension of the stratum S (respectively the codimension of the stra-
tum S ) is the dimension (respectively codimension) of Fi ⊂ C

d as an algebraic
set. Whitney stratifications exist for all algebraic (and analytic) varieties, and
algorithms to compute them are discussed in Chapter 8 and Appendix D.
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Figure 7.15 The zero set of Q = (z3 − x2)(2 − x − y − z).

Stratified critical points
A point p in a stratum S is said to be a (stratified) critical point for the height
function h = hr̂ if the restriction dh|S vanishes at p. Analogously to the smooth
case above, because h is the real part of φ(z) = −r · log z the Cauchy–Riemann
equations imply that p is a critical point if the gradient of φ lies in the normal
space to S at p. If S has codimension k then there exists an open set U ⊂

Cd containing p and irreducible polynomials g1, . . . , gk such that S ∩ U =

V(g1, . . . , gk) ∩ U (i.e., S is locally defined by the polynomials gi near p).
The point p is a critical point if and only if the gradient (∇φ)(p) lies in the
complex span of the gradients (∇ g1)(p), . . . , (∇ gk)(p). Although φ involves
logarithms, its gradient is a rational function, so we may compute stratified
critical point by solving polynomial systems. Computation of stratified critical
points is discussed at greater length in Chapter 8.

Recall from Chapter 6 that the logarithmic gradient of a differentiable func-
tion f at z ∈ Cd is the vector

∇log f (z) =
(
z1 fz1 , . . . , zd fzd (z)

)
, (7.12)

with the word logarithmic coming from the fact that the logarithmic gradient
of f (z) at z = exp(x) is the gradient of ( f ◦ exp)(z) at z = x. If p is a smooth
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point of the algebraic hypersurface defined by the vanishing of Q, then the
vanishing of dhr̂ |V at p is equivalent to the direction vector r̂ being parallel
to (∇log Q)(p). More generally, vanishing of dhr̂ |S at p is equivalent to r̂ lying
in the space spanned by the logarithmic gradients of the functions g j locally
defining the stratum S at p.

Figure 7.16 The point z on a stratum S defined by the vanishing of two trans-
versely intersecting smooth sheets in three dimensions is a critical point in the
direction r̂ if r lies in the log-normal plane to S at z.

Example 7.24. If V is the union of two transversely intersecting smooth
sheets defined by the vanishing of two polynomials g1 and g2 then z is a critical
point onVg1 \Vg2 in a direction r̂ if r is parallel to (∇log g1)(z), and the anal-
ogous criteria holds for critical points on Vg2 \ Vg1 . A critical point z on the
intersection stratum S = Vg1 ∩Vg2 , pictured in Figure 7.16, has r lying some-
where in the log-normal plane spanned by (∇log g1)(z) and (∇log g2)(z). /

Exercise 7.10. Describe the set of directions r ∈ R2
∗ such that dhr̂ |S = 0 at a

point (x, y, z) of the codimension 2 stratum S 3 in Example 7.23.

Obstructions are critical points
The fundamental lemma of Morse theory, described in Lemma 7.14 above,
states that, in the absence of critical values at infinity, critical values are the
only places the topology of the sublevel sets of a manifold can change. The
fundamental lemma of stratified Morse theory says that (stratified) critical val-
ues are still the only places the topology of M≤c and V≤c can change, and
thus are the only places obstructions to pushing down cycles of integration
can occur. Lemma 7.14 also specifies the nature of the attachment at a critical
point, but since this requires a more lengthy explanation, we state the stratified
version of Lemma 7.14 without describing the attachment. As a reminder, we
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postpone the formal definitions of critical points at infinity and critical values
at infinity until Definition 7.42 below.

Lemma 7.25. If hr̂ has no critical values (including at infinity) in [a, b], then
the inclusionM≤a ⊆ M≤b is a homotopy equivalence. The same is true of the
inclusionV≤a ⊆ V≤b.

Remark 7.26. The fact that stratified critical values isolate all the topological
change inV∗ may be less surprising than the fact that they do so inM.

Let p be a stratified critical point for hr̂ in some stratum S . Mirroring our
definition ofVp,loc above, we let

Mp,loc := (M≤c−ε ∪ B2ε(p),M≤c−ε) ,

for any sufficiently small ε > 0, which is defined up to homotopy equivalence.
The simplifying assumption of distinct critical values often fails in ACSV,

for example if there is a pair of complex conjugate critical points, necessitating
one further definition. Let c be a critical value, let p1, . . . ,pm be the critical
points at height c, and assume ε is sufficiently small so that the balls B2ε(pi)
are disjoint.

Definition 7.27 (all attachments at height c). Under the setup above, the total
attachment pair at height c is

(Mc+,Mc−) :=

M≤c−ε ∪

m⋃
j=1

B2ε(p j),M≤c−ε

 . (7.13)

By disjointness of the balls B2ε(p j), this is a direct sum in the category of pairs

ofMp j,loc, hence the homology H∗(Mc+,Mc−) is the direct sum
m⊕

j=1

H∗(Mp j,loc).

Lemma 7.28. Suppose hr̂ has no critical values at infinity in [a, b] and has a
single critical value c in [a, b], occurring in the interior (a, b). Then the pairs
(M≤b′ ,M≤a′ ) are naturally homotopy equivalent for any a ≤ a′ < c < b′ ≤ b.

Lemmas 7.25 and 7.28 are taken from [BMP22]; a sketch of the proof is
reproduced in Section 7.5.

Building by attachment
We now fit together the attachments at critical points of all possible heights.
This involves classical topological facts, and works without knowing the ho-
motopy type of any individual attachment.

Let c1 > c2 > · · · > cm denote the critical values in the interval [cm,∞)
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Figure 7.17 Building M via successive attachments at the critical values c1 >

c2 > · · · > cm. In this case we attach three bumps toMcm− around critical points
at height cm, then attach a single bump, and so on until attaching two final bumps.

and assume there are no CVAI in [cm,∞). For each j let c j− denote c j − ε

where ε > 0 is sufficiently small so that there are no critical values or CVAI in
[c j−ε, c j), and let c j+ denote c j+εwhere ε > 0 is sufficiently small so that there
are no critical values or CVAI in (c, c j + ε]. Intuitively, we think of building up
the spaceM from the spaceMcm− by successive attachment. First, we attach
(Mcm+,Mcm−) to arrive at the space Mcm+, which, by Lemma 7.28, is homo-
topy equivalent to the spaceMcm−1−. Next we attach the pair (Mcm−1+,Mcm−1−).
Repeating this until the pair (Mc1+,Mc1−) has been attached, we have built the
spaceMc1+, which is homotopy equivalent toM≤b for all sufficiently large b,
and hence toM itself. This process is illustrated in Figure 7.17. The “bump”
N(p) near a point p is the intersection of M with a ball of sufficiently small
radius δ. Shrinking ε if necessary, (Mc j− ∪N(p),Mc j ) has the homotopy type
of the local pairMp,loc discussed above.

Each attachment has a long exact homology sequence. Because all of the
spaces involved are cell complexes of real dimension at most d (see Section D.4
of Appendix D), the homology groups Hk of dimension k ≥ d+1 vanish. Thus,
the long exact sequence for any j ≤ m always begins

0→ Hd(Mc j−)→ Hd(Mc j+)→ Hd(Mc j+,Mc j−)→ · · · . (7.14)

Definition 7.29. For each critical point p at height c j, let G(p) denote the
image in Hd(Mc j+,Mc j−) of the map projecting Mc j− ∪ N(p) to the pair
(Mc j− ∪N(p),Mc j ), as in Figure 7.17. In other words, G(p) are those relative
d-homology classes, once the bumpN(p) near p is added, that are represented
by absolute cycles. We further define G = G(c j) :=

⊕
h(p)=c j

G(p).
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The sequence (7.14) gives rise to the short exact sequence

0→ Hd(Mc j−)→ Hd(Mc j+)→ G → 0 . (7.15)

As we are working with coefficients in C, there is no torsion, hence the short
exact sequence implies a (not natural) direct sum

Hd(Mc j+) � Hd(Mc j−) ⊕ Hd(Mc j+,Mc j−) . (7.16)

Assuming Lemmas 7.25 and 7.28, we have proved the following.

Theorem 7.30. Suppose there are no critical values at infinity above height a
and finitely many critical values c1 > · · · > cm in [a,∞). Then the homology of
M is given by

Hd(M) � Hd (M<a) ⊕
⊕
p

G(p) ,

where G(p) is defined in Definition 7.29 and the sum is over critical points p
such that hr̂(p) ≥ a. If there are no critical values at infinity and finitely many
critical values then

Hd(M,M−∞) �
⊕
p

G(p)

where M−∞ denotes M≤a for any a less than the least critical value, and the
sum is over all critical points. �

Description of the attachments
Next we describe the attachment cycles forM. We could also develop the at-
tachment cycles forV∗ in the stratified setting, however our asymptotic results
don’t need them so we skip this extra step.

The key to understanding attachments in Whitney stratified spaces is a lo-
cal product structure described in Theorem D.9 of Appendix D, which follows
from the famous (and somewhat difficult) Thom’s Isotopy Lemma (Lemma
D.16 in Appendix D). The Isotopy Lemma says that for a fixed stratum S of
dimension j and any point p ∈ S there is a neighborhood of p where the space
V looks like R j × N where N is the normal slice of the strata (see Defini-
tion 7.32 and Figure 7.18 below).

What does the local product structure imply for our attachments? Let p ∈ S
be a critical point for the height function h, and consider S as a complex mani-
fold of dimension i (where it has dimension j = 2i as a real manifold). Because
h is the real part of (a branch of) an analytic function, it is harmonic and all
critical points have Morse index i. Thus, when S is arranged by height near
p there is an i-dimensional part that ‘bends downwards’ and an i-dimensional
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part that ‘bends upwards’. By the local product structure, the pair for the at-
tachment ofM at p is (homotopy equivalent to) the product of a pair (Bi, ∂Bi)
in the tangent space to S and a pair (L,L ∩M≤c−ε), where c is the height of
p, the constant ε > 0 is sufficiently small, and L denotes the normal link (the
intersection ofM with the normal space to S at p in a suitable small neighbor-
hood of p, described in Definition 7.32 below).

Figure 7.18 An example of an attachment given by the product of a torus with an
arc (a relative 3-torus).

Example 7.31. Figure 7.18 shows an example of an attachment on a stra-
tum S 1 with complex dimension 1 defined by the intersection of two trans-
versely intersecting smooth sheets. In one direction it curves down, as shown;
in the other direction it curves up (this is not shown). The level set defined
by h(z) = c − ε is the horizontal line and the pair (B1, ∂B1) is the black arc
modulo its endpoints. The normal link is the complement of two intersecting
complex lines in complex 2-space, which is homotopy equivalent to a 2-torus.
The 2-torus can be drawn arbitrarily close to p, so it can be chosen as an abso-
lute cycle and the pair (L,L ∩M≤c−ε) is simply (L, ∅) ' L. The attachment
pair is obtained by sliding the 2-torus along the black arc from one endpoint
to the other, with the second element in the pair being the starting and ending
positions. Because an arc modulo its boundary is a circle, this means the at-
tachment is a 3-torus, manifested as a 2-torus times an arc that localizes to a
1-torus. /

Formal statement of the attachments
The following definitions and results are special cases of material in Sec-
tion D.3 of Appendix D. Attachments are defined in the category of (homotopy
types of) topological pairs, as are both the tangential and normal Morse data.
Products in this category are defined by

(A, B) × (C,D) = (A ×C, A × D ∪ B ×C) , (7.17)
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and the homology of a product obeys the usual Künneth formula for homology
with complex coefficients,

Hk(U × V) =

k⊕
j=0

H j(U) × Hk− j(V) . (7.18)

For the spaceM, we define the Morse data for the attachment at a critical point
p ∈ V∗ by the following steps.

Definition 7.32 (Morse data). Let S be a stratum of complex codimension k
containing a critical point p at height c.

(i) The tangential Morse data T (p) at p is the homotopy type of the pair
(Bd−k, ∂Bd−k) consisting of a ball of codimension k modulo its boundary.
A representative of this class is the unstable manifold for the negative
gradient flow induced by hr̂ on V (the set of points that flow into the
critical point under the positive gradient flow, see [HPS77, Section 4]
or [Con78a]).

(ii) The normal plane Np(S) to S at p is the (complex) orthogonal comple-
ment of the tangent space Tp(S).

(iii) The normal slice N at p is the mutual intersection of V, a sufficiently
small ball about p, and the normal plane Np(S).

(iv) The normal linkL(p) is the mutual intersection ofM, a sufficiently small
ball about p, and N.

(v) The normal Morse data L(p) is the pair (L(p)≥c,L(p)=c), where L(p)=c

is the intersection of the normal link with the real codimension 1 surface
where hr̂(z) = c.

(vi) The Morse data at p is the product of the tangential and normal Morse
data.

The following result, which is the main result in the monograph [GM88], is
stated as Theorem D.21 in Appendix D.

Theorem 7.33. The homotopy type of the attachment pairMp,loc is the Morse
data at p. �

Theorem 7.33 yields a general topological decomposition of Hd(M,−∞),
which is a stratified version of Theorem 7.15.

Definition 7.34. A critical point p in direction r̂ on a stratum S is called a
nondegenerate critical point on S if hr̂ |S is nondegenerate in the sense of
Definition 7.11 (meaning the Hessian for hr̂ |S in local coordinates around p is
nonsingular).
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Theorem 7.35. Fix r̂ and assume there are no critical values at infinity. Let
z1, . . . ,zm enumerate the stratified critical points of V∗ in (weakly) decreas-
ing order of the height function hr̂, where the stratum containing z j has com-
plex codimension k j. If all critical points are quadratically nondegenerate then
there are cycles γ1, . . . , γm on V∗, along with a basis β j,1, . . . β j,s j for the k j-
homology of the normal Morse data, with the following properties.

(a) hr̂ achieves its maximum on γ j at z j;
(b) γ j ' (Bd−k j , ∂Bd−k j );
(c) A basis for the integer homology group Hd(M,−∞) can be formed by cy-

cles σ j,i = γ j × β j,i which, for fixed j, form a basis for G(z j).

Proof Theorem 7.33 and part (i) of Definition 7.32 imply (a) and (b). Com-
paring parts (v) and (vi) of the definition with Theorem 7.30 gives (c). The
fact that {σ j,i} is an integer homology basis follows from the lack of torsion in
Hd(M), which follows from the fact thatV∗ andM have the homotopy type of
a d-dimensional cell complex (see Theorem D.23), with no boundaries in di-
mension d. Because the Morse theoretic results identify the homotopy type of
the attachments, not just the relative homology groups, the cycles σ j,i generate
homology with both integer and rational coefficients. �

While this theorem may look somewhat abstract, its power lies in its gener-
ality, and typical applications can be simple. For instance, in Figure 7.19 we
have a surface V with complementM := C2

∗ \ V where H2(M) has one gen-
erator local to a critical point in a stratum of complex dimension 0 and two
quasi-local to critical points in strata of dimension 1; the former has a 2-torus
for its normal link, while the latter have normal links of dimension 1 which
may be taken to be topological circles.

A further generalization removes the assumption of quadratic nondegener-
acy. We do not use this generalization in this text, as we directly compute
integral manipulations for the few quadratically degenerate cases that arise.

Corollary 7.36. Without the assumption of quadratic nondegeneracy of hr̂ at
each critical point p, a modified version of Theorem 7.35 still holds. Instead of
a pair (B, ∂B) consisting of a ball and its boundary, the tangential Morse data
is replaced by a more general collection of (d − k j)-cycles {γ j,k : 1 ≤ k ≤ r j}

where r j is the rank of Hd−k j (V≤c,V≤c−ε). Consequently, the basis in part (d)
of Theorem 7.35 is instead formed by cycles γ j,k × β j,i for 1 ≤ j ≤ m with
1 ≤ k ≤ r j and 1 ≤ i ≤ s j.

Exercise 7.11. LetM be a manifold of real dimension d in Rn for d < n. Many
classical Morse-theoretic analyses use the height function h(x) = d(p,x),
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Figure 7.19 Critical points and their normal and tangential homology generators.
On the right are two index-1 smooth critical points with tangential relative ho-
mology generators γ and normal homology generators β � S 1. On the left is an
isolated self-intersection point γ of V, thus a zero-dimensional stratum, pictured
with a two-dimensional normal link homotopy equivalent to (and in the picture
homeomorphic to) a 2-torus.

where d is distance and p is a fixed point in Rn \ M. Explain why this is not
a good Morse function to use if trying to establish the “bouquet of spheres”
result for smooth varieties – described before Theorem 7.15 above – via The-
orem 7.35(b).

7.4 Geometry

Theorems 7.15 and 7.35 allow us to express the Cauchy integral for coefficients
as a finite sum of integrals localized near critical points (up to negligible error).
Asymptotically approximating these integrals depends on the geometry of the
singular set near the critical points, after which the coefficients nz appearing
in (7.2) must be determined. To make this process more concrete, and give an
idea of its implications for coefficient asymptotics, we discuss some special
cases arising often in combinatorial examples. These situations are covered in
great detail in Chapters 9–11.
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Smooth points
As seen above, the quasi-local cycle σw corresponding to a smooth critical
point w is a tube oγw around a (d − 1)-chain γw in V∗ such that hr̂ is maxi-
mized on γw at w.

Figure 7.20 A quasi-local cycle near a smooth point.

The residue form is a complex (d−1)-dimensional saddle integral of the type
discussed in Chapter 5. Assuming quadratic nondegeneracy, the asymptotic
formula for the contribution to ar from the integral over σw has the form

Φw(r) = wr · |r|−(d−1)/2 ·
(
C(r̂) + O

(
|r|−1

))
, (7.19)

where C(r̂) is a constant arising from saddle point asymptotics and, as usual,
|r| = |r1| + · · · + |rd |. As r̂ varies, the critical point w varies smoothly except
for bifurcation values where hr̂ becomes quadratically degenerate. The ampli-
tude C also varies smoothly with r̂ away from bifurcation values where the
topology may change, which are also points where the coefficient nw in (7.2)
may change. The values of r̂ for which hr̂ is quadratically degenerate can be
computed using the methods of Section 8.4 in Chapter 8. Removing “bad”
directions partitions the set of directions into open cones over which the esti-
mate (7.2) is uniform over compact subsets.

Transverse multiple points
When Q(z) =

∏k
j=1 Q j(z) is a product of (potentially non-polynomial) ana-

lytic functions in a neighborhood of some w ∈ C and the zero sets of Q j are
smooth and intersect transversely at w, then we call w a transverse multiple
point; see Figure 7.21. Note that every smooth point is trivially a transverse
multiple point.

The quasi-local cycle σw defined by such a point w is the product of a k-
torus βw and a (d − k)-chain γw. The torus βw is a product of circles about w
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Figure 7.21 Left: A singular variety containing only transverse multiple points
(including smooth points). Right: A singular variety with smooth points, a ray of
(non-smooth) transverse multiple points, and a non-transverse multiple point (the
origin of that ray).

in the complex normal space to each divisor Q j. The chain γw is supported in
the stratum defined as the common intersection of the varieties defined by the
factors vanishing at w, and achieves its maximum height atw.

Example 7.37. If p is the common intersection of all three surfaces on the left
of Figure 7.21 then d = k = 3 and the stratum of p is zero-dimensional. In this
case σp = βp is a three torus defined by the product of circles about p in each
of the three complex normal spaces to the surfaces. /

Example 7.38. Let V be the union of two complex hypersurfaces in dimen-
sion three. Any point w on the stratum S defined intersection of these two
hypersurfaces is a (non-smooth) transverse multiple point. The stratum S has
codimension k = 2 and the homology of the normal link is generated by a
2-torus βw. /

There is a theory of multiple residues for transverse multiple points, not too
much more difficult than the residue forms already introduced, and asymptotics
for an integral over a quasi-local cycle may be computed rather neatly using
this approach. Such residues can be used even when the denominator is irre-
ducible as a polynomial but locally factors into power series that converge in a
neighborhood of the critical pointw and each define smooth analytic varieties
that intersect transversely at w (see, for instance, Example 10.4 in Chapter 10
for such a situation). The d-dimensional Cauchy integral over γw × βw is re-
duced by residue computations to a (d−k)-dimensional integral over γw. When
d = k the resulting residue integral is simply a function of r, while if k < d
then the integral over γw is asymptotically approximated via the saddle point
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method. Ultimately, we typically obtain an asymptotic formula of the form

Φw(r) = wr · |r|−(d−k)/2 ·
(
C(r̂) + O

(
|r|−1

))
, (7.20)

where again w varies smoothly with r̂ away from quadratic degeneracies and
certain cone boundaries, and the value w(r̂) is constant over a set of r̂ of
dimension k−1. Since a smooth point is a special case of a transverse multiple
point with k = 1, (7.19) is a special case of (7.20).

Figure 7.22 The logarithmic gradients of two transversely intersecting sheets at a
critical point p decompose the first quadrant of R2 into three cones.

Example 7.39. Figure 7.22 illustrates two transversely intersecting smooth
curves defined by the vanishing of two-dimensional functions Q1(x, y) and
Q2(x, y) that meet at a single point p. There are two one-dimensional strata
S 1 = V(Q1) \ p and S 2 = V(Q2) \ p, containing points on exactly one of the
curves, together with a zero-dimensional stratum containing only p. Given r̂
there is at most one critical point z j on each stratum S j, and hr̂ is quadratically
nondegenerate for any r̂ in the positive quadrant. As r̂ varies from x = (1, 0)
to y = (0, 1) it crosses through two “bad” directions, given by the logarithmic
gradients N1 = (∇log Q1)(p) and N2 = (∇log Q2)(p) shown emanating from p.
The zero-dimensional stratum p remains fixed, but the critical points z j move
smoothly with r̂ on their respective strata S j. As r̂ crosses the log-normal di-
rection N2 the critical point z2 collides with p, then when r̂ crosses N1 the
point z1 collides with p. The positive quadrant in R2 can thus be broken into
three regions: the cone R1 defined by the positive real span of x and N2, the
cone R2 defined by N2 and N1, and the cone R3 defined by N1 and y. It turns
out that nz1 = nz2 = 1 on all regions, but np is equal to one on R2 and zero
on R1 ∪ R3. Accordingly, the asymptotic expansion expressed in (7.2) changes
across the boundaries of these regions. /
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Multiple and arrangement points
When varieties intersect tangentially instead of transversely, the resulting in-
tegrals are more challenging to asymptotically approximate. However, if the
intersection lattice for smooth sheets of the variety coincides with the intersec-
tion lattice for the tangent planes of these sheets then non-transversality can
be handled combinatorially. Such a point is called an arrangement point, after
hyperplane arrangements such as the one in Figure 7.23.

Figure 7.23 When V is a hyperplane arrangement, all points are arrangement
points.

Exercise 7.12. For which of the polynomials Q1(x, y, z) = z(x−y)(x−y+z−x2)
and Q2(x, y, z) = z(x − y)(x − y + z − xyz) is the origin an arrangement point?

The generators βp, j for the normal link of an arrangement point are the same
as for a transverse multiple point, only there are more of them.

Example 7.40. Figure 7.24 shows a case where d = 2 and k = 3. Here three
one-dimensional sheets intersect pairwise transversely in a point p. Instead of
one two-torus βp there are two tori βp,1 and βp,3, where βp,1 is the product of
circles about p inV2 andV3, and βp,3 is the product of circles about p inV1

andV2. One might have expected a third torus βp,2, a product of circles about
p in V1 and V3, and indeed there is such a torus, however this final torus is
not linearly independent of the first two because βp,1 − βp,2 + βp,3 = 0 in the
relevant homology class. /

A similar multivariate residue computation as in (7.20) leads to a formula of
the form

Φw(r) = wr · |r|−(d−k)/2 ·
(
Pr(w) + O

(
|r|−1

))
, (7.21)

where Pr(w) is a polynomial of degree at most m − k with m the number
of sheets intersecting at w and k the codimension of the stratum containing
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Figure 7.24 Quasi-local cycles at an arrangement point with d = k = 2.

w. This approach also works when Q has repeated factors, provided that m is
counted with the right multiplicity. Further details are given in Chapter 10.

Cone points
Beyond the above cases are critical points near which V does not look like a
union of smooth sheets. We give a general analysis only in one case, namely
whenV is locally diffeomorphic to a cone

∑d
j=1 z2

j = 0. Such an isolated singu-
larity is called a cone point singularity, and is illustrated in Figure 7.25. Cone
points arise, among other places, in statistical physics.

Figure 7.25 Two examples of cone point singularities.

Chapter 11 is devoted to the analysis of cone-point singularities. For any
isolated singularity w we have d = k, so the stratum containing w is zero-
dimensional, the cycle γw is just a point, and σw = βw. General theory de-
rived in [ABG70] indicates what to expect for the leading asymptotic term of∫
βw
z−r−1P(z)/Q(z) dz at an isolated singularity w: it is given by the inverse

Fourier transform of the reciprocal of the leading homogeneous term of Q near
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w. For a cone point, the inverse Fourier transform yields an asymptotic contri-
bution

Φw(r) = C(w) · q̃(r)1−d/2 ·
(
1 + O

(
|r|−1

))
, (7.22)

where q̃ is the dual quadratic form in r-space to the quadratic leading term of
Q at w.

Example 7.41. The so-called cube grove creation generating function, ana-
lyzed in Example 11.43 of Chapter 11, is the rational function

F(x, y, z) =
1

1 + xyz − (1/3)(x + y + z + xy + xz + yz)
. (7.23)

The variety V is smooth except at the single point (1, 1, 1) where, after an
orthogonal affine change of variables and a translation of the origin to (1, 1, 1),
the denominator of F looks asymptotically like the quadratic cone 2xy + 2xz +

2yz = 0. The asymptotic formula given in Corollary 11.44 implies

arst ∼
1
π

[
rs + rt + st −

1
2

(r2 + s2 + t2)
]−1/2

when (r, s, t) lies inside the dual to the tangent cone to the denominator of
F. /

For more general isolated singularities, analysis via inverse Fourier trans-
forms lead to asymptotic contributions of the form

Φw(r) = wr · |r|−d−κ ·
(
C(r̂) + O

(
|r|−1

))
, (7.24)

which are valid as r̂ varies over the open dual cone to the tangent cone toV at
w, and uniform if r̂ is restricted to any compact subcone. The constant κ is the
homogeneous degree of F at w.

Exercise 7.13. Give a simple reason why cone points can never be multiple
points.

Examples from the literature of these further variants include isolated singu-
larities where Q is locally homogeneous of degree three [KP16] or four [BP21],
or where V is the union of a quadratic cone with a smooth sheet passing
through the cone point [BP11].

The first two of these examples are illustrated in Figure 7.26. Figure 7.27
shows the final example, where V is locally the union of a quadratic cone
and a smooth sheet; an asymptotic formula is derived in [BP11]. In general
asymptotics for this sort of geometry would be expressed in terms of an elliptic
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Figure 7.26 Isolated singularities of degree greater than 2.

integral, but in this case there is an explicit formula (see Theorem 11.49)

arst ∼
1
π

arctan

 √1 − 2r̂2 − 2ŝ2

1 − 2ŝ

 .
A plot of this limiting behavior against r̂ is shown on the right side of Fig-
ure 7.27.

Figure 7.27 Left: A singular set consisting of a cone and a smooth sheet. Right:
Asymptotic behavior of the corresponding coefficient sequence.

Exercise 7.14. Which of the two graphs in Figure 7.26 have arrangement
points that are not smooth points?
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7.5 Deformations

Finally, we end this chapter with a treatment of critical points and critical val-
ues at infinity. After giving a rigorous definition of such points we show how, in
their absence, to construct the deformations that prove Lemmas 7.25 and 7.28.
These two lemmas then imply Theorems 7.15 and 7.30.

7.5.1 Critical points at infinity

As described above and in Appendix C, the results of Morse theory typically
require a proper height function so that certain gradient flows are guaranteed
to reach points of low height, except when they get stuck near critical points.
This properness condition is often satisfied in classical contexts by studying
compact spaces, however our singular varieties are not compact and we often
have non-proper height functions.

Our goal, therefore, is to formulate weaker but still sufficient conditions for
there to be no topological obstructions to deforming our Cauchy integral to
points of low height, proving results like Lemma 7.14 and Theorem 7.35 above.
A considerable stream of topological research has gone into defining bifurca-
tion values, at which the height function is not a locally trivial fibration and the
topology of the space changes. While exact conditions for these topological
obstructions remain murky, we care only about pushing down domains of in-
tegration to lower height, and may thus proceed by generalizing our definition
of critical points (and critical values) to include “points at infinity.”

We begin by defining the binary relation R ⊆ Cd
∗ × CP

d−1 that holds for a
pair (z, r̂) when the differential dhr̂ |S of the height function hr̂ restricted to
the stratum S containing z vanishes at z. To facilitate computation we view r̂
as an element of CPd−1.

Definition 7.42 (CPAI). Let R be the closure in CPd ×CPd−1 of the relation R.
A critical point at infinity (CPAI) in the direction r̂∗ is a limit point (z∗, r̂∗) in
R of points (z, r̂) ∈ R such that z∗ < Cd

∗ . When necessary we refer to our usual
notion of critical points (not at infinity) as affine critical points to distinguish
them from critical points at infinity.

In other words, a critical point at infinity in the direction r̂∗ is a limit, lying
either at infinity or on a coordinate plane, of a sequence z(k) of critical points
contained in strata S k such that the projection of r̂∗ to the tangent space of Nk

at z(k) converges to zero as k → ∞ (i.e., r̂∗ lies in the “limit normal space” of
the sequence z(k)) – see Figure 7.28.

To track the heights of CPAIs, given r̂ ∈ CPd−1 we define the ternary relation
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Figure 7.28 A sequence of points moving out to infinity, such that the logarith-
mic gradient of Q approaches the vector v pointing straight up. This sequence
witnesses a critical point at infinity in the direction v.

T (r̂) ⊆ Cd
∗ × CP

d−1 × R containing elements (z,y, η) such that (z,y) ∈ R and
hr̂(z) = η.

Definition 7.43 (CVAI). Let T ⊆ CPd×CPd−1×R be the closure of the ternary
relation T in CPd × CPd−1 × R. We call η a critical value at infinity (CVAI) if
some point (z∗, r̂∗, η) is in T and z∗ < Cd

∗ .

7.5.2 Vector fields and flows

The results we prove in this section are based on [BMP22, Theorem 1].

Theorem 7.44 (homotopy equivalences in the absence of CVAI). Fix a direc-
tion r̂ and a Whitney stratification {S α : α ∈ I} of (Cd

∗ ,M).

(i) If there are neither affine critical values nor CVAI in the interval [a, b]
then the inclusion ofM≤a intoM≤b is a homotopy equivalence. The same
is true replacingM by any stratum S ofV∗.

(ii) If there are no CVAI in [a, b] but there is a single affine critical value c ∈
[a, b] and it corresponds to the set of critical points z1, . . . ,zm then there
is a stratified flow deforming any chain C in M down to a chain in the
union of M<c with sufficiently small balls about each zi. When [c − ε, c +

ε] ⊆ (a, b), this induces a homotopy equivalence between (Mc+ε,Mc−ε)
and the direct sum of attachment spaces Mz,loc defined in Section 7.3
above (see also Definition C.31 and Figure C.6 in Appendix C).

The first part of Theorem 7.44 directly implies Lemma 7.25. The main work
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in proving Theorem 7.44 comes from establishing the following result, which
requires bounding elements of a vector field. Although general stratified spaces
do not come equipped with Riemannian metrics, we deal only with spaces
embedded in Cd � R2d and the norm of any vector or covector refers to the
norm inherited from this embedding.

Lemma 7.45 ([BMP22, Lemma 2]). Suppose a < b are real numbers such that
hr̂ has no CVAI in the interval [a, b] and one affine critical value in c ∈ [a, b],
not at either endpoint. Then there is a vector field v on Cd

∗ ∩ h−1
r̂ [a, b] with the

following properties.

(i) v is smooth on strata and continuous on Cd
∗;

(ii) v is tangent to strata;
(iii) v is a controlled vector field in the sense of [Mat70, Section 9];
(iv) v is bounded;
(v) v has unit downward speed, meaning dhr̂(v) ≡ −1.

The first, relatively easy, step in establishing Lemma 7.45 is to show that
|dhr̂ | is bounded away from zero except near critical points.

Lemma 7.46 ([BMP22, Lemma 1]). Suppose h is a Morse function on a strat-
ified space V∗ ⊆ Cd

∗ , with no CVAI in [a, b]. Then, excluding an arbitrarily
small neighborhood N of critical points, the differential dh has its magnitude
bounded away from zero, meaning |dh| ≥ δ(N) > 0.

Proof It suffices to prove the result when dh is restricted to an arbitrary
stratum S . Let S [a,b] denote the elements of S with height in [a, b] and let
L = Rd × (R/2πR)d denote the logarithmic parametrizing space for Cd

∗ via
the exponential map exp : L → Cd

∗ . In this parametrization, hr̂ becomes
h̃ = hr̂ ◦ exp. This parametrization is useful because dh̃ is the constant vec-
tor r̂ (formally, dh̃ =

∑d
j=1 r jdx j + 0dy j is a constant with respect to the

embedding in L obtained from the embedding in Cd
∗ , pulled back via exp).

We use tildes to denote inverse images under this parametrization, meaning
˜critical = exp−1[critical] is the inverse image of the set of critical points

of the Morse function h.
Assume towards a contradiction that the norm of the tangential differential is

not bounded from below on S̃ [a,b]\N , whereN is a neighborhood of ˜critical

in L, and let x̃k be a sequence in S̃ [a,b] \ N for which |dh̃S̃ (x̃k)| goes to zero.
This sequence has no limit points whose height lies outside of [a, b] and no
limit points in ˜critical[a,b]. There are also no affine limit points outside of
˜critical, because if x → y with y in a substratum S̃ y then |dh̃S̃ y

(y)| ≤
lim infx→y |dh̃S̃ (x)| since the projection of the differential onto a substratum is
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at most the projection onto S̃ . By compactness, {xk}must have a limit pointx ∈
CPd. It follows from ruling out noncritical points, and affine stationary points
with heights inside or outside of [a, b], that x lies at infinity. The sequence
therefore defines a CPAI of height c, contradicting the hypothesis and proving
the lemma. �

With Lemma 7.46 in hand, we outline the proof of Lemma 7.45 before re-
turning to Theorem 7.44.

Sketch of proof of Lemma 7.45 This lemma for proper height functions is the
usual Morse theoretic construction of stratified gradient-like vector fields, as
found in standard references [GM88; ABG70]. It is proved by using a partition
of unity to piece together the unit-speed downward gradient of hr̂ restricted
to each stratum and then extended to a neighborhood of the stratum in Cd

∗ via
the local product structure. Property (v), unit downward speed, then follows
from Lemma 7.46. In the nonproper case, the biggest headache is extending to
the product; this was the motivation for the notion of control data, developed
in [Mat70]. When hr̂ is not proper, there is no a priori guarantee that the de-
scent rate divided by the magnitude of the vector remains bounded away from
zero, even locally. This is because the Whitney condition fits these C∞ strata
in a way that is in principle only C0. In fact, Mather’s argument contains the
seeds of a proof for this fact, which is accomplished via some linear algebra
and further explicit use of the Whitney conditions. See [BMP22, Lemma 2] for
full details. �

Proof of Theorem 7.44 Let v be the vector field constructed in Lemma 7.45,
altered so as to be zero on M≤a. This vector field defines a flow Φ(x, t) such
that

•
d
dt

Φ(x, t) = v(x) when hr̂(x) ∈ (a, b];

• Φ(x, t) is defined for 0 ≤ t ≤ hr̂(x) − a and, for t in this range, hr̂(Φ(x, t)) =

hr̂(x) − t;
• the map ψ(x) = Φ(x, b − a) is a continuous map on M≤b with range M≤a

and fixingM≤a.

It follows from these properties that the inclusion ι : M≤a → M≤b is a ho-
motopy equivalence: ψ ◦ ι is the identity map onM≤a while ι ◦ψ is homotopic
to the identity map onM≤b via the homotopy Φ onM≤b × [0, b − a]. This is
sufficient to imply conclusion (i) of Theorem 7.44, and also proves the weaker
version of (ii) found in [BMP22], namely that any cycle in M≤b may be de-
formed to lie in the union of M≤c−ε with arbitrarily small neighborhoods of
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each critical point. However, this argument does not imply that the deforma-
tion is induced by a homotopy equivalence.

To that end, let κ(x) = min{|x − z| : z ∈ critical} denote distance to the
critical set. For s > 0, define a new vector field vs by

vs(x) =


v(x) κ(x) ≥ s

ρ(κ(x))v(x) κ(x) ∈ [s/2, s]

0 κ(x) ≤ s/2

,

where ρ is a smooth nondecreasing function with ρ(s/2) = 0 and κ(s) = 1.
Fix ε > 0 with [c − ε, c + ε] ⊆ (a, b) and let Φs(x, t) denote the flow defined

similarly to Φ but with vs in place of v. Let τ(x) = Φs(x, 2ε) denote the time
2ε map for the flow Φs. Because h = hr̂ is nonincreasing along Φs, points in
M≤c−ε remain inside M≤c−ε, hence the flow defines a homotopy equivalence
between the pairs (Mc+ε,Mc−ε) and (X,Mc−ε), where X = τ[Mc+ε].

Define a modified height function g = h ◦ τ. We claim that g has the same
critical points as h in h−1([c−ε, c+ε]). To see this, first observe that trajectories
of Φs are either rest trajectories at points in the set V0 = {x : vs(x) = 0} or else
never enter V0. Indeed, this follows from the fact that vs is tangent to all strata,
smooth on every stratum, and that trajectories of a flow defined by a smooth
vector field cannot merge. Inside V0, the height functions h and g are equal,
and hence have the same critical points. Outside V0, the differential dg|S can
never vanish because dg|S (v) < 0; this follows from the fact that for v ∈ S , the
map dg(v)(x) = d(h ◦ τ)(v)(x) sends v to dh(Dτ(v)). On trajectories, the map
Dτ carries vs ∈ Tx(S ) to ρ(τ(x)) ∈ Tτ(x)(S ), where ρ(τ(x)) > 0. Thus

dg(vs)(x) = ρ(τ(x))dh(vs)(τ(x)) = −ρ(τ(x)) < 0 ,

showing that dg|S is nonvanishing outside V0 and proving the claim.
The map τ takes all points ofM≤c+ε intoM≤c−ε, except possibly for those

whose trajectories come within distance s of the critical set within time 2ε.
Because v is bounded, trajectories coming within s of the (finite) critical set
within time 2ε are all contained in some compact set K, independent of s ∈
[0, 1]. Therefore, the difference X \ Mc−ε is bounded and g is a proper height
function on the pair (X,Mc−ε), in the sense that the inverse image of a compact
set in X \Mc−ε is compact.

We may now apply the results of stratified Morse theory (see Theorem D.21
in Appendix D). The result is that the pair (X,M≤c−ε) is homotopy equivalent
to the direct sum of pairs (N(z) ∪ Mc−δ,Mc−δ) as z varies over the critical
points of height c and N(z) can be chosen to be arbitrarily small neighbor-
hoods of these, after which δ is chosen sufficiently small. We have seen, in
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addition, that each cycle in X may be deformed into the union ofMc−δ and the
neighborhoods N(z) by running the flow vs, hence the homotopy equivalence
is induced by this flow. Finally, having shown that the flow induces a homotopy
equivalence between (Mc+ε,Mc−ε) and (X,Mc−ε), we can pick s sufficiently
small and N(z) and δ so that δ < ε, finishing the proof of part (ii). �

Notes

The rigorous foundation of the main theorems of this book in the framework of
Morse theory is new to the second edition. Before the appearance of [BMP22],
Morse-theoretic results were not available because hr̂ is not, in general, a
proper function. Therefore, in the first edition, Morse theory was used only as
a motivation and individual results were obtained via hands-on deformations
and surgeries, informed by Morse theory but proved as special cases, tailored
to the individual hypotheses.

Asymptotic formulae in the presence of smooth strictly minimal points first
appeared in [PW02], followed by formulae for strictly minimal multiple points
in [PW04]. Results proving the irrelevance of non-critical minimal points were
derived in [Bar+10], and then in greater generality in [BP11], with an overview
presented in [Pem10]. The proof sketch of Lemma 7.6 was suggested to us by
Tony Pantev.

The second part of Theorem 7.44 is an improvement on the result originally
published in [BMP22]. There, it was shown that cycles may be pushed down
into the union of levels below the critical value and neighborhoods of the crit-
ical points, but not that this union is homotopy equivalent to the space at a
level above the critical value. The sticking point is that the latter requires a
deformation remaining at all times within the union, which requires geometric
facts developed at length throughout [GM88]. The present proof avoids this by
using the results of [BMP22] to eliminate escape to infinity, then finishing by
using results of [GM88] as a black box.

Additional exercises

Exercise 7.15. When d = 2, the map Relog : V∗ → Rd is locally one-to-one at
most points. We say that amoeba( f ) is a doublet if Relog−1(x) has cardinality
precisely 2 for all x in the interior of amoeba( f ). Give a proof by picture that
if amoeba( f ) is a doublet then there is a natural isomorphism κ between the
reduced homology group H̃0(amoeba( f )c) and H1(V∗), defined by κ([x′] −
[x]) = INT(T(x),T(x′)).
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Exercise 7.16. Let Q(x, y) = 5 − x − x−1 − y − y−1 and F(x, y) = 1/Q(x, y).

(a) Sketch amoeba(Q) and mark a point in each component of amoeba(Q)c.
(b) Recall that the Fourier series of F is the series F̂(x, y) =

∑
a,b∈Z ca,bei(ax+by),

where

ca,b =
1

(2π)2

∫ π

−π

∫ π

−π

F(x, y)e−in(ax+by)dxdy.

The Fourier series F̂ is related to the Laurent expansion of F corresponding
to one component of amoeba( f )c. Identify this component, and describe
the relation.

(c) Prove that amoeba(Q) is a doublet.
(d) Let x = (0, 0) and x′ = (0, 2). Show that x and x′ are in different

components of the complement of amoeba(Q), and describe or sketch
INT(T(x),T(x′)).

(e) Find all critical points ofV∗ in the direction r = (1/3, 2/3) and mark them
on your sketch from part (a).

(f) Deform the intersection cycle γ you found in part (d) until its highest and
lowest points are critical points in direction r = (1/3, 2/3). At which of
these points is the phase hr̂ maximized on γ?

(g) What does your result tell you about the coefficients of the Fourier series
for F?

Exercise 7.17. For Q(x, y, z) = z(x − y)(x − y + z − xyz), as in Exercise 7.12,
state the dimension of the stratum containing the origin, describe the normal
link, and describe the local homology group H3(Mp,loc) when p is the origin
and r is a direction of your choice (as usual,M = Cd

∗ \ VQ).
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