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Abstract
We present a combinatorial proof for the existence of the sign-refined grid homology in lens spaces and a self-
contained proof that ∂2

Z
= 0. We also present a Sage programme that computes ĜH(L(p, q), K;Z) and provide

empirical evidence supporting the absence of torsion in these groups.

1. Introduction

Ozsváth and Szabó’s Heegaard Floer homology [20] is undoubtedly one of the most powerful tools of
recent discovery in low-dimensional topology. It has far-reaching consequences and has been used to
solve long-standing conjectures (for a survey of some results see e.g. [21], [13] and [12]).

Roughly speaking, it associates1 a graded group to a closed and oriented 3-manifold Y , the Heegaard
Floer homology of Y , by applying a variant of Lagrangian Floer homology in a high dimensional
manifold determined by a Heegaard decomposition of Y .

Soon after its definition, it was realised independently in [19] and [24] that a null-homologous knot
K ⊂ Y induces a filtration on the complex whose homology is the Heegaard Floer homology of Y .
Furthermore, the filtered quasi-isomorphism type of this complex is an invariant of the couple (Y , K),
denoted by HFK(Y , K).

The major computational drawback of these theories lies in the differential, which is defined through
a count of pseudo-holomorphic disks with appropriate boundary conditions. Nonetheless, a result of
Sarkar and Wang [26] ensures that – after a choice of a suitable doubly pointed Heegaard diagram H
for (Y , K) – the differential can be computed directly from the combinatorics of H. If, moreover, Y is a
rational homology 3-sphere admitting a Heegaard splitting of genus 1 (i.e. Y = S3 or Y is a lens space
L(p, q)), the homology HFK(Y , K) admits a neat combinatorial definition, known as grid homology.

Grid homology in S3 was pioneered by Manolescu, Oszváth and Sarkar in [14], and for lens spaces
by Baker, Hedden and Grigsby in [2]; as the name suggests, both the ambient manifold and the knot
are encoded in a grid, from which complex and differential for the grid homology can be extracted by
simple combinatorial methods.

After establishing the necessary background, in Section 2 we will present the definition of grid homol-
ogy in lens spaces as given in [2]; here, we produce a purely combinatorial proof that ∂2 = 0. Note that
the analogous proof in [2] is indirect and relies on the well-definedness of the analytic theory.

The grid homology in lens spaces from [2] is only defined over F2. We provide a lift to integer
coefficients by proving the existence and uniqueness for sign assignments of grid diagrams. A sign

1 There are actually many different variants of the theory, which we ignore presently; in the following sections, we will define some
variants which will be relevant to our discussion.
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Figure 1. Top-bottom identifications for a 3-dimensional grid for L(3, 1) on the left and L(3, 2) on the
right.

assignment is a coherent choice of sign for each term appearing in the differential of the grid chain
complex.

Theorem 1.1. Sign assignments exist on all grids representing a knot K ⊂ L(p, q) and can be described
combinatorially. Moreover, for a fixed grid diagram, the sign-refined grid homology does not depend on
the choice of a sign assignment.

The proof of this theorem is the content of Section 3. The sign refinement of the theory is carried on
using a group theoretic reformulation of sign assignments due to Gallais [10].

Note that the theory developed in this paper is not sufficient to establish the fact that the sign-refined
grid homology is an invariant of links in lens spaces (the analogous result in [2] follows from an iso-
morphism with the analytical theory). This flaw has however been addressed more recently in the paper
[28] by Tripp, where invariance of grid homology with integer coefficients is proved.

Finally, in Section 4 we present some computations and examples, together with a description of the
programme used to make them. An interactive online version of this programme is freely available on
my homepage [4]. With this tool, we are able to show that small grids (see the discussion in Section 4)
have torsion-free grid homologies:

Proposition 1.2. The sign-refined grid homology of knots with small parameters is torsion-free.

This result provides empirical evidence for the absence of torsion in the knot Floer homology of
knots in lens spaces. Analogous results for knots in the three sphere have been found by Droz in [9].

2. Grid homology in lens spaces
2.1. Representing knots with grids

In what follows p, q will always be two coprime integers, and the lens space L(p, q) is the (closed,
oriented) 3-manifold obtained by −p

q
surgery on the unknot©⊂ S3; to avoid confusion, a knot K in a

3-manifold Y will usually be denoted by (Y , K).

Definition 2.1. Consider a n× pn grid in R2, consisting of the segments α̃i = (tnp, i) and β̃j = (j, tn)
with i ∈ {0, . . . , n}, j ∈ {0, . . . , np} and t ∈ [0, 1]. A twisted grid diagram for L(p, q) is the grid on
the torus given by identifying β̃0 to β̃pn, and then α̃0 to α̃n according to a twist depending on q (see
Figure 1):

αn � (s, n)∼ (s− qn(mod pn), 0) ∈ α0.

Here s ∈ [0, pn]; the condition (p, q)= 1 guarantees that after the identifications the planar grid becomes
a toroidal grid.

Call α= {αi} and β = {βi} with i ∈ {1, . . . , n} the n horizontal (respectively vertical) circles obtained
after the identifications in the grid.

We can encode a link L in L(p, q) by placing a suitable version of the X’s and O’s for grid diagrams
in S3: let X= {Xi} and O= {Oi}, with i= 1, . . . , n be two sets of markings. Put each one of them in the
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Figure 2. The link obtained by joining X’s and O’s in a grid for L(3, 2) of grid dimension 5. Boxes are
delimited by thicker black lines.

little squares2 of G \ (α ∪ β) in such a way that each column3 and row contains exactly one element of
X and one of O, and each square contains at most one marking. By rows and columns here we mean the
regions of a grid – homeomorphic to annuli – bounded by two consecutive α or β curves, respectively.

Now join with a segment each X to the O which lies on the same row, and each O to the X which lies
on the same column (keeping in mind the twisted identification); with this convention, we can encode
an orientation4 for the link. To get an honest link, just remove self-intersections by converting each
self-intersection to an overcrossing of the vertical segments over the horizontal ones (as in Figure 2).

The grid together with the markings is known as a multipointed Heegaard diagram for (L(p, q), K)
and

|αi ∩ βj| = p ∀i, j ∈ {1, . . . , n}.

Remark 2.2. There are two possible ways to connect each Xi to the corresponding O marking on the
same row/column, but the isotopy class of the resulting link does not depend upon the possible choices.
Indeed, the two links given by these different choices for each row/column are isotopic. This follows at
once from the fact that the two possible arcs connecting two markings on the same row/column are – by
construction – related by a slide along a meridional disk of the Heegaard decomposition of L(p, q). In
other words, the two arcs form a decomposition of the boundary of a disk that defines the given Heegaard
splitting.

The integers n, p and q will be called the parameters of the grid diagram G; the p squares of
height/length n obtained by cutting the torus along α1 and β1 (in the planar representation of the grid)
are called boxes. It is worth to point out that the case in which p= 1 and q= 0 gives as expected a usual
grid diagram for a link in S3. We will often deliberately forget the distinction between planar and toroidal
grids, according to the motto ‘draw on a plane, think on a torus’.

Remark 2.3. Exchanging the role of the markings in a grid representing a knot K produces a grid
diagram for the same link with the opposite orientation on each component.

The following result is a consequence of [2, Theorem 1.1] and [6, Section 2].

Proposition 2.4. Every link in L(p, q) can be represented by a grid diagram; two different grid represen-
tations of a link differ by a finite number of grid moves analogous to Cromwell moves for grid diagrams
in S3:

• Translations: these are just vertical and horizontal integer shifts of the grid (respecting the
twisted identifications).

• (non-interleaving) Commutations: if two adjacent row/columns c1 and c2 are such that the
markings of c1 are contained in a connected component of c2 with the two squares containing
the markings removed, then they can be exchanged.

• (de)Stabilisation: these are the only moves that change the dimension of the grid. There are 8
types of stabilisations, as shown in Figure 3. Destabilisations are just the inverse moves.

2 For concreteness, think of the markings as having half-integral coordinates in the planar grid.
3 Beware! In a twisted toroidal grid, a column ‘wraps around’ a row p times.
4 Note that this convention is the opposite of the one used in [22], but agrees with the one of [2]; see also Remark 2.3.
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Figure 3. Some examples of grid moves; in the top row of the figure, we see four different kinds of
stabilisations (there are other four where the roles of the markings are exchanged). In the middle, a
schematic example of a row commutation. The bottom part of the figure displays an example of vertical
translation in a grid of dimension 2 for a knot in L(3, 1).

Figure 4. Under the bijection described in Definition 2.5, the white generator corresponds to
((14)(23), (2, 1, 1, 1)), and the black to ((34), (0, 0, 1, 2)) ∈S4 ×Z4

3.

The homology class of a knot K ⊂ L(p, q) can be read directly from the grid; we just need to keep
track of the signed number of intersections of the knot with a meridian of the torus. With the orientation
conventions, we have established (so that vertical arcs connect O’s to X’s):

H1(L(p, q); Z) � [K]= #{α1 ∩K} (mod p).

If G is a grid of parameters (n, p, q), we call n the dimension or grid number of G. The term minimal
grid number will be used when referring to the isotopy class of a knot (L(p, q), K); in this case, we mean
the quantity

GN(K)=min{n |G is a grid with parameters (n, p, q) representing K}.

2.2. Generators of the complex

In the following, we are going to define two different versions (sometimes also known as flavours) of the
grid homology for knots in lens spaces. They can both be defined by slight variations in the complex,
the ground ring or the differential we will introduce below. For clarity, we are going to restrict ourselves
to F=Z2 coefficients until the next section and to knots throughout the paper.

Definition 2.5. Given a grid G of dimension n representing a knot K ⊂ L(p, q), the generating set for G
is the set S(G) comprising all bijections between α and β curves. This corresponds to choosing n points
in α ∩ β such that there is exactly one on each α and β curve. There is a bijection

S(G)←→Sn ×Zn
p

which can be described as follows: since we fixed a cyclic labelling of the α and β curves, it makes sense
to speak of the m-th intersection between two curves, with 0≤m≤ p− 1; so if the l-th component of a
generator lies on the m-th intersection of αl and βj, then the permutation σ ∈Sn associated will be such
that σ (l)= j and the l-th component of Zn

p will be m (see Figure 4).
If x ∈ S(G), we can thus write x= (σx,

(
xp

1, . . . , xp
n

))
; we will refer to σx as the permutation component

of the generator and to
(
xp

1, . . . , xp
n

)
as its p-coordinates.
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Figure 5. A representation of the action of Cp,q for (p, q)= (3, 1) and (3, 2) (on the left and right,
respectively).

S(G) can be endowed with a (Q, Q, Zp)-valued grading. The first two degrees are known as Maslov
and Alexander degrees. The last one is the Spinc degree; since it is preserved by the differential
(Proposition 2.11), it will provide a splitting of the complex into p direct summands. All these degrees
are going to be defined in a purely combinatorial way.

Definition 2.6. Let A and B denote two finite sets of points in R2; let I(A, B) be the number of pairs

((a1, a2), (b1, b2))⊂ A× B,

such that ai < bi for i= 1, 2.
Denote by X(p, n) (respectively Y(p, n)) the set of n-tuples (respectively pn-tuples) of points contained

in the n× pn (respectively pn× pn) rectangle in R2 whose bottom vertices are (0, 0) and (pn, 0); then
define

Cp,q : X(p, n)−→ Y(p, n)

as the function sending a n-tuple {(ci, bi)}i=1,...,n to the pn-tuple

{(ci + nqk (mod np), bi + nk)} i= 1, . . . , n
k= 0, . . . , p− 1

.

In order to avoid notational overloads, we are going to write x̃ instead of Cp,q(x); one example of such a
function is described in Figure 5.

We can then define the Maslov degree as follows:

M(x)= 1

p

[I (̃x, x̃)− I (̃x, Õ
)− I(Õ, x̃

)+ I(Õ, Õ
)]+ d(p, q, q− 1)+ 1 (1)

In the equation above, d(p, q, q− 1) is a rational number known as the correction term of L(p, q) asso-
ciated with the (q− 1)-th Spinc structure; as explained in [18, Prop. 4.8], it can be computed recursively
as follows:5

• d(1, 0, 0)= 0

• d(p, q, i)=
(

pq−(2i+1−p−q)2

4pq

)
+ d(q, r, j) where r and j denote the reduction of p and i (mod q).

Similarly, the Alexander grading can be defined as:

A(x)= 1

2p

[I(Õ, Õ
)− I(X̃, X̃

)+ 2I(X̃, x̃
)− 2I(Õ, x̃

)]+ 1− n

2
(2)

By slightly modifying the differential we will introduce in the next section, A can be demoted to
a filtration on the complex, rather than a degree. The complexes we are going to consider should be
thought of as the graded objects associated with this filtration.

5 A user-friendly online calculator for these correction terms can be found at [4].
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Figure 6. A grid for the knot considered in Example 2.9, and the grid obtained after a destabilisation.
Confront the computations in this example with Remark 2.19.

Remark 2.7. Note that equation (2) is not the standard formula used to define A; here we are using the
fact (see [8, Sec. 2]) that in a grid of dimension n for a knot in S3

I(x, J)− I(J, x)= n,

with J =O or X, and x is any generator in S(G).

Now call
(
aO

1 , . . . , aO

n

)
the p-coordinates of the generator whose components are in the lower left

vertex of the squares which contain a O marking. The Spinc degree of x= (σx, (a1, . . . , an)) ∈ S(G) is
defined as:

S : Sn ×Zn
p −→Zp

S(x)= q− 1+
n∑

i=1

(
ai − aO

i

)
(mod p) (3)

We are implicitly using a canonical identification between Spinc(L(p, q)) and Zp (cf. [18, Sec. 4.1]).
It is clear from the definition that the Alexander grading depends on the placement of all the markings,

while M and S only on the position of the Os.
Let R= F[V1, . . . , Vn] denote the ring of n-variable polynomials with F coefficients, and R̂=

R/{V1 = 0}. These V variables6 are graded endomorphisms of the complex; their function is to ‘keep
track’ of the O markings in the differential.

We can now define at least the underlying module structure of the complexes we are going to use in
what follows:

Definition 2.8. The minus complex GC−(G) is the free R-module generated over S(G). The hat complex
ĜC(G) is the free R̂-module generated over S(G). Extend the gradings to the whole module by setting
the behaviour of the action for the variables in the ground ring:

A(Vx)= A(x)− 1
M(Vx)=M(x)− 2
S(Vx)= S(x)

where V is any of the Vi.

Example 2.9. In this example, we are going to exhibit the generating set of the grid G on the left of
Figure 6, in the 0-th Spinc structure, which we are going to denote by S(G, 0). S(G, 0) consists of four
elements (see also Figure 7):

a= F[− 1
4 ,− 1

4 ], b= F[− 1
4 ,− 1

4 ], c= F[ 3
4 ,− 1

4 ], d= F[− 5
4 ,− 5

4 ]

The notation F[a,b] denotes a generator having (M, A)= (a, b) bi-degree.

6 We adopt here the convention of [22], in order to stress the difference between the endomorphisms of the complex (the Vi’s) and
the induced map on homology, which will be denoted by U.
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Figure 7. The generating set S(G, 0), with the bi-degree (M, A), on the axes is displayed on the left. On
the right instead, we have the underlying modules for the complexes ĜC(G, 0)=GC−(G, 0) with axes
labelled by powers of the V variables and Alexander degree. The dots represent generators over F.

2.3. The differential

As already mentioned in the introduction, grid homology hinges upon Sarkar and Wang’s main result in
[26]; in their terminology, (twisted) grid diagrams are nice (multipointed, genus 1) Heegaard diagram
for L(p, q), so the differential of CFK can be computed combinatorially. In this setting, the holomor-
phic disks of knot Floer homology’s differential take the milder form of embedded rectangles on the
grid.

Consider two generators x, y ∈ S(G) having the same Spinc degree; if the permutations associated with
x and y differ by a transposition, then the two components where the generators differ are the vertices of
four immersed rectangles r1, . . . , r4 in the grid; the sides of the ri’s are alternately arcs on the α and β
curves. We can fix a direction for such a rectangle r, by prescribing that r goes from x to y if its lower
left and upper-right corners are on x components. Therefore, if x and y are two generators in the same
Spinc degree, and differing by a single transposition, there are exactly two directed rectangles from x
to y.

Definition 2.10. Given a grid G, and x, y ∈ S(G), call Rect(x, y) the set of directed rectangles connecting
x to y; we will denote by

Rect(G)=
⋃

x,y∈S(G)

Rect(x, y),

the set of all directed rectangles between generators in G. Similarly, Rect◦(G) is going to be the set of
empty rectangles, that is those r ∈ Rect(x, y) such that Int(r)∩ x=∅.

Note that by assumption if r ∈ Rect◦(x, y), then it does not contain any point of y either, so in particular
it is embedded in the torus composed by the grid.

One example of two rectangles is displayed in Figure 8. If x, y ∈ S(G), then |Rect(x, y)| ∈ {0, 2}, and
we will prove in Proposition 2.11 that it can be non-zero only for generators in the same Spinc degree
which differ by a single transposition. On the other hand, with the same hypothesis on the generators,
|Rect◦(x, y)| ∈ {0, 1, 2}.

If r1 ∈ Rect(x, y) and r2 ∈ Rect(y, z), we can consider their concatenation r1 ∗ r2, which we call a poly-
gon connecting x to z through y. We are going to denote by Poly(x, z) the set of polygons connecting x to
z, and by Poly◦(x, z) the empty ones. If P is an empty rectangle or polygon, denote by Oi(P) the number
of times (with multiplicity) that the i-th O marking appears in P. Note that for a grid diagram of a knot
in either S3 or a lens space, we have Oi(P) ∈ {0, 1, 2}.
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Figure 8. Two directed rectangles connecting x (white) to y (black) in a grid of parameters (4, 3, 1).
Only the horizontal one (in blue) is empty.

Figure 9. The non-equal p-coordinates of the generators compensate each other.

The differential on GC−(G) and ĜC(G) is just going to be a count of empty rectangles, satisfying
some additional constraints according to the flavour chosen. For the two flavours of grid homology
considered here (keep in mind that for ĜC we set V1 = 0), we keep track of the O markings contained
in the rectangles, by multiplying with the corresponding variable Vi:

∂(x)=
∑

y∈S(G)

∑
r∈Rect◦(x,y)

r∩X=∅

(
n∏

i=1

VOi(r)
i

)
y (4)

Proposition 2.11. Given a grid diagram G of parameters (n, p, q), the modules GC−(G) and ĜC(G)
endowed with the endomorphism ∂ are chain complexes, that is ∂2 = 0 in both cases. Moreover, ∂ acts
on the tri-grading as follows:

1. S(∂(x))= S(x)
2. M(∂(x))=M(x)− 1
3. A(∂(x))= A(x)

Remark 2.12. This Proposition is implicit in [2], and it can be seen as a direct consequence of
Theorem 1.1 therein; however, some of the considerations in this proof will be useful in the following
section. Moreover, this proof will rely only on combinatorics, showing that the result can be obtained
without any reference to the holomorphic theory of [19] and [24].

Proof. We begin by examining the behaviour of the degrees under the differential; condition (1) is
easy to prove: by equation (3), the only relevant part of a generator x for the computation of S(x) is
given by its p-coordinates. If y appears in the differential of x, call ax

i , ay
i , ax

j and ay
j the p-coordinates

where x and y differ. If ax
i = k and ax

j = l, with k, l ∈Zp, then (since by hypothesis they are connected by
a rectangle) ay

i = k+ t and ay
j = l− t modulo p for some t ∈ {0, . . . , p− 1} (as shown in Figure 9); so

S(x)= S(y).
Let’s now see what happens for the other two degrees; if x and y are generators in G connected by an

empty rectangle r, directed from x to y, then their lifts x̃ and ỹ will differ in 2p positions, according to
the pattern suggested in Figure 10.
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Figure 10. The difference between the functions I(x, ∗) and I(y, ∗) for two generators (in black and
white respectively) whose permutations differ by a transposition. The shading indicates the upper-right
regions considered in the computation of the function I.

This implies that the corresponding I function will change accordingly:

I (̃x, x̃)= I (̃y, ỹ)+ p

I (̃x, Õ)= I (̃y, Õ)+ p
n∑

i=1

Oi(r)

I(Õ, x̃)= I(Õ, ỹ)+ p
n∑

i=1

Oi(r)

Moreover, the same result holds with X markings instead of O’s. Then from equation (4), we get for (2)
and (3), respectively:

M(∂(x))=
∑

y∈S(G)

∑
r∈Rect◦(x,y)

r∩X=∅

(
n∑

i=1

−2Oi(r)

)
M(y)

A(∂(x))=
∑

y∈S(G)

∑
r∈Rect◦(x,y)

r∩X=∅

(
n∑

i=1

−Oi(r)

)
A(y)

A substitution using equations (1) and (2) defining the Maslov and Alexander degrees yields (2) and (3).
We are left to show that ∂2 = 0; we thus need to study the possible decompositions in rectangles of

polygons connecting two generators.
We will prove the result for the minus flavoured complex, since the analogous result for the hat version

follows immediately. From equation (4), we can compute

∂2(x)=
∑

z∈S(G)

∑
ψ∈Poly◦(x,z)
ψ∩X=∅

N(ψ)

(
n∏

i=1

Vi
Oi(ψ)

)
z (5)

where ψ is a polygon connecting x to z, and N(ψ) is the number of possible ways of writing ψ as the
composition of two empty rectangles r1 ∗ r2, with r1 ∈ Rect◦(x, y) and r2 ∈ Rect◦(y, z) for some y ∈ S(G).

Note that a polygon P connecting two generators is empty if and only if both the rectangles P is made
of are empty as well. In order to complete the proof, we need to show that N(ψ)≡ 0 (mod 2), that is,
there is an even number of ways (in fact exactly 2) to decompose into rectangles a fixed ψ that appears
in the squared differential ∂2. We can also take advantage of the proof in [22, Lemma 4.4.6] to reduce
the number of cases to examine; as a matter of fact, if a polygon ψ does not cross one of the α curves,
we can cut the torus open along it, and think of the polygon as living in a portion of an np× np grid for
S3. Thus, we only need to worry about polygons that intersect all α circles.

There are then four possibilities to be considered a priori, according to the quantity M = |x \ (x∩ z)| ∈
{0, . . . , 4}, as schematically shown in Figure 11.

If M = 0, that is x= z, the only possible polygons are thin rectangles, called α and β degenerations
or simply α/β-strips (see e.g. Figure 17). These are strips of respectively height or width 1 (otherwise
they would not be empty). We are not concerned with these strips, since each of them contains exactly
one X marking; hence, they do not contribute to the differential.
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Figure 11. A representation of the possibilities for M (in a grid of dimension 4). The circles correspond
(from larger to smaller) to the components of generators x, y and z. Two circles are concentric whenever
the corresponding components of the generators coincide, and the i-th row shows the relative position
for the components of the generators lying on αi.

Figure 12. When M = 4, we can consider the two rectangles (from white to black) in either order, by
choosing a suitable intermediate generator y (gray).

This is not true for the filtered versions of these complexes (see [22, Ch. 13]). Nonetheless, the poly-
gons that cannot be split in two different ways cancel each other out nicely in that case as well. As an
aside, we note here that there is only one way to decompose such a strip into two rectangles (one starting
from x, and one arriving to it).

The case M= 1 can be dismissed too, since rectangles only connect generators which differ in exactly
two points.7

If M = 4, that is, the corners of the two rectangles are all distinct, we can apply the same approach
of [22, Ch. 4]; there are two ways of counting them, as shown in Figure 12.

Basically, the two decompositions correspond to taking the two rectangles in either order. We remark
that one rectangle might wrap around the other, but the number of decompositions does not depend on
this wrapping.

The case M= 2 needs a bit more care, since it has no S3 counterpart (see [22, Ch. 4]). In this case,
the two rectangles must share part of 2 edges. There are two possibilities to consider:

1. the rectangle starting from x does not cross all α curves. Up to vertical/horizontal translations,
it can be placed in such a way that it does not intersect the boundary of the planar grid.

2. the rectangle starting from x intersects all the α curves at least once.

Either way, the second rectangle joining the intermediate generator to z must end and start on the
same α curves of the first rectangle; the configurations in both cases are shown in Figure 13, together
with their decompositions.

Lastly, if M= 3 we can again distinguish two possibilities as in the previous case; the combinatorially
inequivalent configurations are shown in Figure 14, together with their two decompositions.

Example 2.13. We continue here the computations of the grid from Example 2.9: we can now complete
the picture by adding the differentials and computing the various homologies. We have (cf. Figure 15):

∂(a)= ∂(b)= 0
∂(c)= a+ b
∂(d)= V1a+ V2b

7 And a product of two non-trivial and distinct transpositions is never a transposition.
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Figure 13. Relevant combinatorial possibilities for M = 2 on a grid for L(3, 1). On each row, the two
possible decompositions are shown. Again we adopt the convention x, y, z = white, grey and black dots,
showing only the appropriate components.

Figure 14. Some configurations for the M= 3 case. The complete combinatorial classification up to
wrapping is presented in Figure 20.

It is then an easy task to compute the grid homologies in the two flavours:

ĜH(G, 0)= F〈a〉 ∼= F[− 1
4 ,− 1

4 ]

GH−(G, 0)= F[V1] 〈a〉 ∼= F[U][− 1
4 ,− 1

4 ]

2.4. The homologies

From the definitions given up to now, it might seem strange that the homology of such a complex could
be an invariant of the smooth isotopy type of a knot, since even the ground ring depends on the dimension
of a grid representing it; Theorem 2.15 below ensures however that GH− and ĜH are quasi-isomorphic to
a finitely generated F[U] and F-modules, respectively (see e.g. Figure 15). The algebraic reason behind
this is the content of the following Proposition:

Proposition 2.14. Let G be a grid of parameters (n, p, q) for a knot K. Then, the action of multiplication
by Vi on the complex GC−(G) is quasi-isomorphic to multiplication by Vj.

Proof. See [22, Ch. 4].

Theorem 2.15. (Thm. 1.1 in [2]) The homologies

GH−(G)=H∗(GC−(G), ∂),
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Figure 15. On the left the complex ĜC(G, 0) and on the right the complex GC−(G, 0), for the grid G from
Example 2.9, the dotted line corresponds to multiplication by V2, and the dashed one to multiplication
by V1. Non-trivial elements in homology are circled in red.

and

ĜH(G)=H∗(ĜC(G), ∂),

regarded as (Q, Q, Zp) graded modules over the appropriate ring are invariants of the knot (L(p, q), K).
Moreover, (GC−(G), ∂) is quasi-isomorphic to a finitely generated F[U] module, where U acts as any
of the Vi, and (ĜC, ∂) is quasi-isomorphic to a finitely generated F module.

Due to this theorem, we will sometimes make the notational abuse of writing ĜH(L(p, q), K) instead
of ĜH(G), G being a grid of parameters (n, p, q) representing K.

Remark 2.16. Since the differential preserves the decomposition of the complex in Spinc structures
(Proposition 2.11), we can write

GH−(L(p, q), K)=
⊕
s∈Zp

GH−(L(p, q), K, s),

ĜH(L(p, q), K)=
⊕
s∈Zp

ĜH(L(p, q), K, s),

and according to Proposition 2.11, the endomorphism U induced in homology by any of the Vi acts as

U : GH−m(L(p, q), K, s, a)−→GH−m−2(L(p, q), K, s, a− 1)

where GH−m(L(p, q), K, s, a) is the homology in tri-grading (m, a, s) ∈ (Q, Q, Zp

)
.

We can finally state the main result from [2]:

Theorem 2.17. (Thm. 1.1 of [2]) Let G be a grid for a knot K ⊂ L(p, q). There is a graded isomorphism
of F[U] and, respectively, F tri-graded modules:

HFK−(L(p, q), K)∼=GH−(G),

ĤFK(L(p, q), K)∼= ĜH(G).
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Remark 2.18. Knot Floer homology is known (see e.g. [19, Thm. 7.1]) to satisfy a formula8 for the
connected sum of two knots in rational homology 3-spheres; if (Y , K)= (Y0, K0)#(Y1, K1), then

HFK− (Y , K, s)∼=
⊕

s0+s1=i

HFK− (Y0, K0, s0)⊗F[U] HFK− (Y1, K1, s1) (6)

In each connected 3-manifold Y , the isotopy class of the homologically trivial unknot© is unique (since
it bounds an embedded disk and manifolds are homogeneous); thus, we can think of a local knot K, that
is, a knot contained in a 3-ball inside Y as the connected sum

(Y , K)= (Y ,©)#(S3, K ′),

for some knot K ′ in S3. It is then a straightforward computation to show that the grid homology of the
unknot©⊂ L(p, q) is:

GH−(L(p, q),©)=
⊕
s∈Zp

F[U][d(p,q,s),0]

ĜH(L(p, q),©)=
⊕
s∈Zp

F[d(p,q,s),0].

So, by equation (6)

GH−(L(p, q), K)=
⊕
s∈Zp

GH−(S3, K ′)[d(p,q,s),∗].

In other words, the grid homology of a local knot is completely determined by the homology of the same
knot viewed as living in S3 (and in particular its Alexander degrees are integers).

Remark 2.19. A simple knot in L(p, q) is a knot admitting a grid of dimension 1, (see also [11] and [25]).
It is easy to show that in each lens space L(p, q), there is exactly one simple knot in each homology class;
for m ∈H1(L(p, q); Z), denote this knot by Tp,q

m . If G is the dimension 1 grid representing a simple knot
in L(p, q), then |S(G)| = p, and there is exactly one generator in each Spinc degree. Therefore, there is
no differential (since ∂ preserves the Spinc degree), so the homologies of Tp,q

m are as follows:

GH−
(
Tp,q

m

)∼=⊕
s∈Zp

F[U][d(p,q,s),A(xs)]

ĜH
(
Tp,q

m

)∼=⊕
s∈Zp

F[d(p,q,s),A(xs)]

where A(xs) is the Alexander degree of the unique generators in degree s. As in [2], we say that these
knots are Floer simple (or U-knot in the terminology of [18]), meaning that the rank of the grid homology
(over the appropriate ground ring) is exactly one in each Spinc degree.

3. Lift to Z coefficients

The complexes we have used until now were defined to work with F as base ring; in particular, the proof
of Proposition 2.11 relied on the parity of polygon decompositions to ensure that (GC−, ∂) is in fact a
chain complex. This section is devoted to prove Theorem 1.1, by exhibiting a combinatorial extension
of the previous construction to integer coefficients. This was first done in the combinatorial setting for
S3 in [15] (see also [17]).

We will adopt the group theoretic approach first developed in [10] to define a sign function on rect-
angles, whose properties are precisely tuned to have ∂2 = 0. We note here that knot Floer homology can

8 We do not specify here the various conventions involved for Spinc structures in general, since in what follows we will only deal
with Y = S3, L(p, q), see [19, Sec. 7] for a detailed account.
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be defined in the analytic setting with integer coefficients [19], but it is currently not known whether it
coincides with its combinatorial counterparts.

A natural question to ask is to what extent the theory can change under such a change of coefficients;
at the time of writing, there is no example of a knot in S3 whose knot Floer homology with Z coefficients
exhibits torsion (see Problem 17.2.9 of [22]). Even in the lens space case, the computations displayed
in section 4 seem to suggest an analogous situation (see also the discussion in [22, Sec. 15.6]).

It is convenient to define signs on Rect(G), rather than directly on Rect◦(G); moreover, the signs will
not depend on the choice of a knot, but just on the parameters of the grid.

Definition 3.1. Given a grid diagram G, a sign assignment on G is a function

S : Rect(G)−→{±1}

such that the following conditions hold:

1. If r1 ∗ r2 = r3 ∗ r4 then S(r1)S(r2)=−S(r3)S(r4)
2. If r1 ∗ r2 is a horizontal annulus (α-strip), then S(r1)S(r2)= 1
3. If r1 ∗ r2 is a vertical annulus (β-strip), then S(r1)S(r2)=−1

We will prove in Theorem 3.7 that sign assignments actually exist on twisted grid diagrams and deal
with problems related to their uniqueness later on.

We can now show how such a sign S can be used to promote ĜC(G) and GC−(G) from F[V1, . . . , Vn]
to Z[V1, . . . , Vn] complexes.

To see why the properties given in the previous definition are indeed the right ones, fix a sign
assignment S for G and define

∂S(x)=
∑

y∈S(G)

∑
r∈Rect◦(x,y)

r∩X=∅

S(r)

(
n∏

i=1

Vi
Oi(r)

)
y,

Let us examine the coefficient of a generator z �= x in ∂2
S(x); each polygon connecting x to z can be decom-

posed in two ways (as seen in Proposition 2.11). The pairs corresponding to inequivalent decompositions
of the same polygon cancel out due to condition (1) on S .

If instead x= z, there are exactly 2n possible ways of connecting a generator to itself with empty
polygons, which are α and β degenerations; as noted before, all of these strips contain one X marking,
so they do not contribute to the differential.

In order to prove the existence of a sign assignment, we are going to adopt the approach used in
[22], which relies on the paper [10] of Gallais regarding the so-called Spin extension of the permutation
groups, introduced in the next definition.

Definition 3.2. The Spin central extension of the symmetric group Sn is the group S̃n generated by the
elements

〈z, τ̃i,j|1≤ i �= j≤ n〉,

subject to the following relations:

• z2 = 1 and z̃τi,j = τ̃i,jz for 1≤ i �= j≤ n
• τ̃ 2

i,j = z and τ̃i,j = z̃τj,i

• τ̃i,jτ̃k,l = z̃τk,lτ̃i,j for distinct 1≤ i, j, k, l≤ n
• τ̃i,jτ̃j,kτ̃i,j = τ̃j,kτ̃i,jτ̃j,k = τ̃i,k for distinct 1≤ i, j, k≤ n
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Figure 16. The generalised transpositions associated with these two rectangles are τ̃ij and τ̃ji = z̃τij.

Figure 17. An α-strip of height 1. Only the relevant components of the generators are shown.

Remark 3.3. The name Spin central extension is justified by the fact that this group can be derived as
a Z/2Z extension of Sn induced by the short exact sequence

1−→Z/2Z−→ S̃n
π−→Sn −→ 1. (7)

Here, π is the surjective homomorphism defined by π (z)= 1 and π (̃τi,j)= τi,j.

Definition 3.4. A section for S̃n is a map

ρ : Sn −→ S̃n

such that π ◦ ρ = IdSn . We will make a slight notational abuse and also call sections the maps

ρ : Sn ×Zn
p −→ S̃n ×Zn

p

given by considering the product of a section with the identity map on Zn
p.

We are going to define a map

ϕ : Rect(G)−→ S̃n ×Zn
p (8)

that associates to a rectangle r ∈ Rect(x, y) an element in S̃n ×Zn
p, enabling us to ‘compare’ the genera-

tors that compose the vertices of r. If the elements of x and y in the bottom edge of r belong, respectively,
to βi and βj, the first component of ϕ(r) is given by the generalised transposition τ̃i,j. The second com-
ponent of ϕ is given by the difference between the p-coordinates of x and y. The two generators differ
only in two components, so necessarily(

ax
1 − ay

1, . . . , ax
n − ay

n

)= (0, . . . , 0,±k, 0, . . . , 0,∓k, 0, . . . , 0),

for some k ∈ {0, . . . , p− 1}.

Remark 3.5. To simplify the proof of the next theorem, we observe here that the generalised permutation
part of the map ϕ does not depend on the eventual ‘wrapping’ of a rectangle on the grid, while the Zn

p

part does.

Example 3.6. Consider the rectangles R in the left part of Figure 12; the value ϕ(R) associated is
(̃τ1,3, (0,−1, 0, 1, 0)) for the horizontal one and (̃τ4,5, (0, 0, 0, 0)) for the vertical. Note also that swap-
ping the order of the column’s indices changes the associated generalised transposition, as indicated in
Figure 16.
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Given a section ρ, we can build a sign assignment as follows:

Sρ(r)=
{

1 if ρ(x)ϕ(r)= ρ(y)

−1 if ρ(x)ϕ(r)= zρ(y)
, (9)

for r ∈ Rect(x, y). The operation on S̃n ×Zn
p consists in the product of permutations on the first factor

and addition on the p-coordinates.

Theorem 3.7. For any given section ρ on S̃n, the function Sρ defined above is a sign assignment.

Proof. First, we deal with α-strips; suppose R1 ∈ Rect(x, y), R2 ∈ Rect(y, x) are such that R1 ∗ R2 is an
α-strip. Then, we have

ϕ(R1)=
(̃
τi,j, (0, . . . , k,−k, . . . , 0)

)
ϕ(R2)=

(̃
τj,i, (0, . . . ,−k, k, . . . , 0)

)
,

for some indices i, j and integer k.
So if

ρ(x)ϕ(R1)= ρ(y),

then

ρ(x)= ρ(x)ϕ(R1)ϕ(R2)= ρ(y)ϕ(R2)

which implies S(R1)= S(R1)= 1.
If instead we had

ρ(x)ϕ(R1)= zρ(y) ⇒ S(R1)=−1

then

zρ(x)= ρ(y)ϕ(R2) ⇒ S(R2)=−1

In both cases, S(R1)S(R2)= 1.
Next, we examine the behaviour of signs for β-strips. As in the previous case, there is only one

other possible generator y that induces a decomposition of an annulus starting from x. The permutation
components of the two rectangles R1 ∈ Rect(x, y) and R2 ∈ Rect(y, x) are both τ̃i,j. So if

ρ(x)ϕ(R1)= ρ(y)

ρ(x)z= ρ(x)ϕ(R1)ϕ(R2)= ρ(y)ϕ(R2),

which implies S(R1)S(R2)=−1.
The centrality of z in S̃n tells us that the case with S(R1)=−1 is identical.
Now, given a general polygon P= r ∗ r′ connecting two generators x �= x′, we can easily prove that

Definition 3.2 implies

ρ(x′)= z
1−S(r)S(r′ )

2 ϕ(r)ϕ(r′)ρ(x). (10)

To show this, assume r ∈ Rect(x, w) and r′ ∈ Rect(w, x′) for some intermediate generator w. Then, by
equation (9), it is immediate to see that ϕ(r)ϕ(r′)ρ(x) is equal to either ρ(w)ϕ(r′) or zρ(w)ϕ(r′), according
to whether S(r)= 1 or S(r)=−1, respectively. In the same way, ρ(w)ϕ(r′) is equal to either ρ(x′) or
zρ(x′), this time according to the value of S(r′). The factor z

1−S(r)S(r′ )
2 in equation (10) compensates the

possible appearance of z factors.
According to the proof of Proposition 2.11, each polygon which is not an α/β-strip can be written as

the concatenation of two distinct pairs of rectangles; so we just need to check for all possible polygons

P= r(x, y) ∗ r(y, x′)= r(x, w) ∗ r(w, x′),
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Figure 18. The generalised permutations associated with the green and blue rectangles are τ̃ij and τ̃kl,
respectively.

Figure 19. The generalised transpositions τ̃ij and τ̃ji are associated with the two decompositions in the
M = 2 case.

that the following identity holds:

ϕ(r(x, y))ϕ(r(y, x′))= zϕ(r(x, w))ϕ(r(w, x′)), (11)

where y �=w are two auxiliary generators which differ by only one transposition from x and z. All we
need to do is verify equation (11) in the cases M = 2, 3, 4 from the proof of Proposition 2.11 (recall that
we already considered M = 0, and M= 1 was discarded).

It is easy to check that the generalised permutations associated with polygons corresponding to the
M = 3 case are the same of [22, Ch. 15] in the S3 case; in particular, this is true even when the rectangles
wrap around the grid (see Figure 20), since the generalised permutation part does not depend on the
p-coordinates of the generators.

The case M= 4 is immediate: as shown in Figure 18
The permutations associated with the two decompositions are such that equation (11) becomes

exactly the third relation defining S̃n.
Lastly, we deal with M= 2; the generalised transpositions associated with r(x, y) and r(y, x′) are τ̃ij and

τ̃ji. For the two rectangles r(x, w) and r(w, x′) on the right in Figure 19, the associated transposition is τ̃ij in
both cases. So in particular, this implies that if S(r(x, y))S(r(y, x′))=−1 then S(r(x, w))S(r(w, x′))= 1
and vice versa. Therefore, equation (11) is always satisfied, and we are done.
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Figure 20. The four relevant combinatorial possibilities for the M= 3 case in the S3 setting. Remember
that the eventual wrapping of one rectangle over the other does not change the relations in S̃n.

Figure 21. The white and black generators have the same permutation component, but the polygon
connecting them admits two distinct decompositions. In particular, it cannot be an α/β-strip.

Remark 3.8. It is worth noting that the trivial choice for signs – that is, treating each rectangle just as
a generalised permutation, without keeping track of p-coordinates (like in the S3 setting) – cannot dis-
tinguish a β degeneration from other polygons which admit two distinct decompositions into rectangles,
as shown in Figure 21.

Definition 3.9. A section ρ : Sn ×Zn
p −→ S̃n ×Zn

p is said to be compatible with a sign assignment S if
for any pair x, y of generators, and any r ∈ Rect(x, y)

ρ(y)=
{
ρ(x)̃τ (r) if S(r)= 1

zρ(x)̃τ (r) if S(r)=−1
,

is satisfied.

Proposition 3.10. Given a sign assignment S , there are exactly two compatible sections.

Proof. Sections were defined in Definition 3.4 to be extensions of algebraic sections of the short exact
sequence (7) via the identity on theZn

p component (for a grid of dimension n). Therefore, the statement is
equivalent to proving the existence of exactly two compatible sections ρ : Sn −→ S̃n. This is precisely
the content of [22, Prop 15.2.13], so we can conclude.

Now, for the uniqueness of sign assignments, denote by Gauge(G) the group of maps

v : S(G)−→Z/2Z

Gauge(G) acts on sections as follows:

ρv(x)=
{
ρ(x) if v(x)= 1

zρ(x) if v(x)=−1
. (12)

https://doi.org/10.1017/S0017089523000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089523000058


Glasgow Mathematical Journal 475

This action is free and transitive; Gauge(G) also acts on the set of sign assignments: if S is a sign on
a grid G and v ∈ Gauge(G), define Sv(r)= v(x)S(r)v(y) for r ∈ Rect(x, y).

As in the S3 case, it is easy to show that there is only one sign assignment on a grid, up to this action
of Gauge(G). The uniqueness now follows by noting that if S1 and S2 are two sign assignments on a grid
G, then S2 = Sv

1 for some v ∈ Gauge(G), and the map
f :
(
GC−(G), ∂S1

)−→ (
GC−(G), ∂S2

)
given by f (x)= v(x)x is an isomorphism (of tri-graded R-modules). This concludes the proof of
Theorem 1.1.

4. Computations
4.1. The programmes

It becomes immediately apparent that the work needed to actually compute ĜH(G) for grids with dimen-
sion greater than 3 is not manageable by hand.9 So the author developed several programmes in Sage
[27] capable of computing the hat flavoured grid homology of links in lens spaces. The computation can
be made with Z coefficients, provided that the grid dimension is less than 5.

By using this tool, we were able to verify that all knots with a grid representative whose parameters
satisfy the following conditions are r-torsion-free (r≤ 17):

• for n= 2, p≤ 12
• for n= 3, p≤ 6
• for n= 4, p≤ 4
• n= 5, p≤ 2

The programmes can be freely used interactively online at my homepage [4] or downloaded and
used on a local Sage distribution. We recall here that there are several programmes that compute the
grid homology/knot Floer homology of knots in the 3-sphere. In particular, M. Culler’s Gridlink [7]
includes code by J.A. Baldwin and W.D. Gillam [3] that computes ĜH, and there is a more recent
programme by Ozsváth and Szabó [23] that can quickly compute ĤFK for knots with relatively high
crossing number.

4.2. Grid homology calculator

The input consists of the grid parameters (n, p, q), followed by two strings of length n determining the
positions of the X and O markings. We encode the markings with a string of length n for each kind; to
the i-th marking (from the bottom row), we associate the number of the small square containing it (from
the left, and starting from 0). As an example, the knot in Figure 2 is encoded as X= [12, 1, 8, 5, 9] and
O= [6, 3, 0, 9, 12].

The output consists of the following:

• (Optional) A drawing of the chosen grid
• The hat grid homology10 ĜH(G, s; Z) for each s ∈ Spinc structure and its decategorification.
• Whether the knot is rationally fibred, the homology class and its rational genus (see

[16, Sec. 1] for the definitions).
• (Optional) A long list of the generators with their bi-grading.
• (Optional) A drawing of the grid for the lift of the knot to S3, together with its (univariate)

Alexander polynomial and the number of components of the lift.

9 The generating set for a grid with parameters (n, p, q) has n!pn elements!
10 If the grid dimension is greater than 5, it returns the F version.
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Figure 22. The knot in L(3, 1) described by X, O= [0, 1], [3, 4].

Basically, the programme creates the generators S(G) and computes their degrees; afterwards, it
checks for empty rectangles and creates the matrices of the differentials.

Rather than computing the module ĜC(G), we adopt the simpler approach of computing yet another
version of the grid homology, known as tilde flavoured homology, G̃H(G).

The complex is simply the free Z module generated over S(G), and the differential counts only those
empty rectangles that do not contain any marking:

∂̃(x)=
∑

y∈S(G)

∑
r∈Rect◦(x,y)
(X∪O)∩r=∅

S(r)y

where S is a sign assignment.
Using the handy group theoretic capabilities of Sage, the relations in S̃n (for n≤ 5) were encoded in

a matrix associated with the differential.
A minor technical hurdle here is represented by the fact that the tilde flavoured version is not directly

an invariant of the knot represented by the grid. This can be easily seen, for example, by computing
G̃H(G) in any Spinc degree, for the grids of Example 2.9. However, the hat version can nonetheless be
recovered from it:

Proposition 4.1. (Prop. 4.6.13 of [22]) Given a grid G of dimension n representing the knot K ⊂ L(p, q),
there is a graded isomorphism

G̃H(G)=H∗(G̃C(G), ∂̃)∼= ĜH(L(p, q), K)⊗W⊗(n−1),

where W =Z[0,0] ⊕Z[−1,−1].

After computing the homology G̃H(G), the programme ‘factors out’ the tensor product dependent
on the size of the grid and prints the requested information.

4.3. A small example

Knot theory (and hence grid homology) in lens spaces is quite more complex than its 3-sphere counter-
part: besides the fact that knots need not be homologically trivial, they also can be non-trivial for very
small grid parameters. As an example, define

f (p)=min{dimension of a grid representing a non-simple knot in L(p, q)}.
Then, f (1)= 5 (this is the trefoil in S3), f (2)= 3 and f (p> 2)= 2 (for this last case see Figure 22).

Example 4.2. We sketch here the computation for the various flavours of grid homology in the case of
the knot in Figure 22. The generating set S(G, s) in each Spinc degree s ∈ {0,±1} has 6 elements, which
we will denote x0

s , . . . , x5
s for s= 0, 1. We do not need to compute the s=−1 complex, as this is quasi-

isomorphic to the s= 1 one (this follows from the existence of an involutive operation on the set of Spinc

structures, see for example [19, Sec. 3] for a detailed account).
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We can now list the generators, with their bi-degree and differential:

Generator (M, A) Differential
Spinc degree= 0
x0

0

(
3
2
, 1
)

∂
(
x0

0

)= 0

x1
0

(
1
2
, 0
)

∂
(
x1

0

)= (V1 − V2)x0
0

x2
0

(
1
2
, 0
)

∂
(
x2

0

)= (V2 − V1)x0
0

x3
0

(− 1
2
,−1

)
∂
(
x3

0

)= V2

(
x1

0 + x2
0

)
x4

0

(− 1
2
,−1

)
∂
(
x4

0

)= V1

(
x1

0 + x2
0

)
x5

0

(− 3
2
,−2

)
∂
(
x5

0

)=−V1x3
0 + V2x4

0

Spinc degree= 1

x0
1

(
7
6
, 0
)

∂
(
x0

1

)=−x1
1 + x2

1

x1
1

(
1
6
, 0
)

∂
(
x1

1

)= 0

x2
1

(
1
6
, 0
)

∂
(
x2

1

)= 0

x3
1

(
1
6
,−1

)
∂
(
x3

1

)= x4
1 − x5

1

x4
1

(− 5
6
,−1

)
∂
(
x4

1

)= V2x1
1 − V1x2

1

x5
1

(− 5
6
,−1

)
∂
(
x5

1

)= V2x1
1 − V1x2

1

Since G̃C(G, 0) has no differentials,11 the homology coincides with the complex. In Spinc degree 1
instead, the tilde homology is generated by x1

1 and x4
1, so G̃H(G, 1)∼=Z[ 1

6 ,0] ⊕Z[− 5
6 ,−1].

The computation of the minus flavour is just slightly more involved; GH−(L(3, 1), K, 0) is composed
by a copy of Z[U] generated by x0

0, plus two U-torsion components, generated by x1
0 + x2

0 and x3
0 + x4

0.
Altogether

GH−(L(3, 1), K, 0)=Z[U][ 3
2 ,1] ⊕Z[ 1

2 ,0] ⊕Z[− 1
2 ,−1].

In the last case, we get

GH−(L(3, 1), K, 1)=Z[U][ 1
6 ,0],

generated by x1
1. The hat homology can be obtained either by factoring out the tensor product withZ[0,0] ⊕

Z[−1,−1] from the tilde flavour or deleting all dotted differentials in the minus complex of Figure 23, then
computing the homology.

ĜH(L(3, 1), K, i)=
{
Z[ 3

2 ,1] ⊕Z[ 1
2 ,0] ⊕Z[− 1

2 ,−1] if i = 0
Z[ 1

6 ,0] if i=±1
(13)

This particular knot is interesting for several reasons: firstly, it is the smallest non-trivial or simple
knot in any lens space. More importantly, it can be also proved that, despite being null-homologous, it
is not concordant (or even almost concordant, see [5]) to a local knot. Finally, the group GH−(G, 0) is
isomorphic (up to a shift in the Maslov grading) to the knot Floer homology of the trefoil knot in S3;
this in no accident and a rather more general statement is [1, Thm. 1.2].

11 Recall that its differential can be obtained by ∂ , setting all Vi variables to 0.
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Figure 23. The complexes G̃C(G, i) (on the left) and GC−(G, i) (on the right) for i= 0, 1. Red dashed
lines denote multiplication by V1, while blue dotted lines denote multiplication by V2.
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