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This paper presents a comprehensive investigation into flow past a circular cylinder
where compressibility and rarefaction effects play an important role. The study
focuses on steady subsonic flow in the Reynolds-number range 0.1–45. Rarefaction,
or non-equilibrium, effects in the slip and early transition regime are accounted for
using the method of moments and results are compared to data from kinetic theory
obtained from the direct simulation Monte Carlo method. Solutions obtained for
incompressible continuum flow serve as a baseline to examine non-equilibrium effects
on the flow features. For creeping flow, where the Reynolds number is less than unity,
the drag coefficient predicted by the moment equations is in good agreement with
kinetic theory for Knudsen numbers less than one. When flow separation occurs, we
show that the effects of rarefaction and velocity slip delay flow separation and will
reduce the size of the vortices downstream of the cylinder. When the Knudsen number
is above 0.028, the vortex length shows an initial increase with the Reynolds number,
as observed in the standard no-slip continuum regime. However, once the Reynolds
number exceeds a critical value, the size of the downstream vortices decreases with
increasing Reynolds number until they disappear. An existence criterion, which
identifies the limits for the presence of the vortices, is proposed. The flow physics
around the cylinder is further analysed in terms of velocity slip, pressure and skin
friction coefficients, which highlights that viscous, rarefaction and compressibility
effects all play a complex role. We also show that the local Knudsen number, which
indicates the state of the gas around the cylinder, can differ significantly from its
free-stream value and it is essential that computational studies of subsonic gas
flows in the slip and early transition regime are able to account for these strong
non-equilibrium effects.

Key words: compressible flows, rarefied gas flow, vortex flows

1. Introduction

Flow past a stationary circular cylinder is a classical problem in fluid mechanics.
Although the geometric configuration is relatively simple, the physics associated
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Non-equilibrium effects on flow past a circular cylinder 655

with the flow around the cylinder exhibits a range of important phenomena, such
as flow separation with attached eddies and the formation of the well-known vortex
street. Consequently, the problem has attracted much attention involving theoretical,
experimental and computational investigations. Early theoretical work was concerned
with uniform flow past a circular cylinder and focused on the steady, low-speed
viscous flow of an incompressible fluid where the flow characteristics depend solely
on the Reynolds number, Re. These theoretical studies, which were focused on
low-Reynolds-number or ‘creeping flow’ solutions, where Re� 1, can be traced back
to the pioneering work of Stokes (1851). In his work, Stokes neglected the inertia
terms and reformulated the Stokes equation in the form ∇4ψ = 0 to derive a solution,
where ψ is the streamfunction (Basset 1888; Lamb 1911; Bairstow, Cave & Lang
1922; Apelt 1961; Happel & Brenner 1983). Although this approach works for a
sphere, if the steady motion of a cylinder is considered, not all conditions can be
satisfied and this led to the famous Stokes paradox, where a steady solution to the
problem is not possible (Basset 1888). Oseen (1910) resolved the paradox by noting
that the inertial terms need to be taken into account and proposed a linearised set of
equations that partially accounted for the inertial terms. Lamb (1911) subsequently
developed a solution to Oseen’s equations that was valid for small Re. Following
the work of Oseen and Lamb, a series of asymptotic analyses of different orders
were developed (Kaplun 1957; Proudman & Pearson 1957; Underwood 1969; Skinner
1975; Keller & Ward 1996). Despite significant progress in developing theoretical
solutions to the Navier–Stokes equations, it has proved extremely challenging and
results are generally limited to low-Reynolds-number flows.

As noted by Tritton (1988), when Re� 1 the flow around the cylinder is symmetric,
both upstream and downstream. However, as the Reynolds number increases beyond
unity and exceeds some critical value, Reonset, which is around 3–7 (Sen, Mittal &
Biswas 2009), the fluid undergoes a steady separation and forms an attached pair
of symmetric contra-rotating vortices at the base of the cylinder. The fluid in these
vortices circulates continuously, not moving downstream. The length of these eddies
will grow approximately linearly with increasing Re until they reach a second critical
value, Rec, around 40–50 (Kumar & Mittal 2006), where the wake downstream
of the cylinder becomes unsteady (Zdravkovich 1997). Experiments have naturally
played a crucial part in identifying and understanding the various flow regimes that
exist, particularly in trying to establish values for Reonset and Rec, and especially
for unsteady flows at higher Reynolds numbers. Strouhal (1878) completed some of
the earliest observations showing that the frequency of oscillation is linked to the
fluid velocity. Another important quantity for flow past a circular cylinder is the
drag coefficient, CD. It has been experimentally investigated extensively, along with
the wake geometry, for incompressible flow in the continuum regime (Taneda 1956;
Tritton 1959; Acrivos et al. 1968; Coutanceau & Bouard 1977; Huner & Hussey
1977; Wu et al. 2004). With the advance of computers in the 1960s, the numerical
solution of the Navier–Stokes equations for flow past a cylinder became possible,
allowing researchers to study the details of the flow physics (Son & Hanratty 1969;
Dennis & Chang 1970; Fornberg 1980; Sen et al. 2009). By analysing the numerical
solution of the incompressible Navier–Stokes equations with direct time integration
and linear stability analysis methods, Kumar & Mittal (2006) obtained a value for
the second critical Reynolds number, Rec, that is just above 47.

The vast majority of research studying flow past a circular cylinder has been for
conventional fluid mechanics where the velocity at the cylinder surface is zero, i.e. the
classic no-slip boundary condition. However, when the gas is in a non-equilibrium or
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rarefied state, the no-slip assumption is no longer valid and both the Reynolds number
and the Knudsen number are required to determine the flow physics. The Knudsen
number, Kn, relates the ratio of the molecular mean free path of the gas, λ, to a
characteristic length of the geometry, e.g. the diameter of a cylinder, D, and provides
a convenient way to determine the extent of the non-equilibrium or rarefaction of
the gas. Conventionally, when Kn. 0.001, the traditional Navier–Stokes equations are
valid and the no-slip boundary condition can be used. When 0.001.Kn.0.1, the flow
is in the slip regime and the Navier–Stokes–Fourier (NSF) equations, coupled with
appropriate velocity-slip and temperature-jump wall boundary conditions, are able to
predict certain main features of the flow for simple problems, but care is needed when
thermal effects are present (Sone 2000; John, Gu & Emerson 2010). If the Knudsen
number lies in the range 0.1 . Kn . 10, the flow is in the transition regime and the
NSF equations are no longer valid. For Kn & 10, the gas is in the free-molecular
or collisionless flow regime and kinetic theory is required to study the flow physics.
Solutions of the Boltzmann equation (Cercignani 1975, 2000) are required and the de
facto standard for simulating gas flow in the transition regime and beyond is the direct
simulation Monte Carlo (DSMC) method (Bird 1994). It is important to note that the
Knudsen number is proportional to the product of the Mach number and Reynolds
number and is discussed further in § 4.

Despite the numerous studies of flow past a circular cylinder in the continuum
regime, for both compressible and incompressible flows, studies involving rarefied
flows remain relatively scarce in the literature. In contrast to the difficulty in deriving
an analytical solution to flow past a cylinder for the Navier–Stokes equations, exact
solutions for drag in the free-molecular regime, as well as other aerodynamic forces,
have been derived for many objects. These include a flat plate at an angle of attack
(Tsien 1946; Schaaf & Chambre 1961; Sentman 1961), flow past a stationary sphere
(Epstein 1924) and the circular cylinder (Heineman 1948; Ashley 1949; Stalder,
Goodwin & Creager 1951; Schaaf & Chambre 1961). There have been several
attempts to extend continuum-based analytical expressions for drag; for example, if
an analytical solution is available for the Navier–Stokes equations, then it is possible
to include the effects of velocity slip, provided geometrical effects like curvature are
properly accounted for (Barber et al. 2004; Lockerby et al. 2004). In the case of a
sphere, Basset (1888) extended the solution developed by Stokes to include velocity
slip. For the cylinder, Pich (1969) derived an expression for CD from the early
transition to the free-molecular regime by defining a ‘molecular layer’ around the
cylinder and considering Lamb’s classical hydrodynamic approximation away from the
cylinder. Yamamoto & Sera (1985) studied low-Reynolds-number flow past a cylinder
using the linearised Bhatnagar–Gross–Krook (BGK) kinetic equation. Westerkamp &
Torrilhon (2012) derived an analytic solution for creeping flow past a cylinder based
on a linearised version of the regularised 13 moment equations. Although beyond
the scope of the current paper, there has been interest in understanding high-speed
rarefied gas flow past a cylinder. Experimental investigations have ranged from the
continuum to free-molecular flow (Maslach & Schaaf 1963; Ponomarev & Filippova
1969), whereas simulations based on kinetic approaches have recently been used (Li
et al. 2011; John et al. 2016; Volkov & Sharipov 2017).

It is clear that there is little data available when 1<Re<Rec and the gas is in the
slip and early transition regime. Indeed, little is known about low-Reynolds-number
compressible flow, although interest is steadily growing due to the possibility of flight
on Mars to survey the terrain (Munday et al. 2015). In contrast to the Earth, the
atmosphere on Mars is quite rarefied. Recently, Canuto & Taira (2015) performed
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Non-equilibrium effects on flow past a circular cylinder 657

direct numerical simulation of flow past a cylinder with moderate Reynolds and Mach
numbers using the compressible Navier–Stokes equations. Their flow conditions lay
in the range 0<Kn 6 0.037 but rarefaction effects were not considered, which could
result in an overprediction of both CD and the vortex size. Hu, Sun & Fan (2009)
computed the drag coefficient in the non-equilibrium flow regime with a hybrid
kinetic/continuum approach and found that there is a complex interplay between
rarefaction and compressibility effects. Currently, there is a lack of fundamental
studies in low-Reynolds-number compressible flows and particularly for problems
where non-equilibrium effects are important.

Extending hydrothermodynamics into the slip and transition regimes is one of
the most promising approaches for accurately capturing the physics associated with
non-equilibrium gas flows (Muller & Ruggeri 1993; Struchtrup 2005). The method
of moments, originally proposed by Grad (1949), provides an approximate solution
procedure to the Boltzmann equation and is under active development to bridge
the gap between hydrothermodynamics and kinetic theory. In this approach, the
Boltzmann equation is satisfied in a certain average sense rather than at the molecular
distribution function level. How many moments are required largely depends on the
flow regime. It was found (Gu, Emerson & Tang 2010; Young 2011; Gu & Emerson
2014) that the regularised 13 moment equations (R13) are not adequate enough to
capture the Knudsen layer in Kramers’ problem and the regularised 26 moment
equations (R26) are required to accurately reproduce the velocity defect found with
kinetic data. However, both the R13 and R26 equations are able to capture many of
the non-equilibrium phenomena observed using kinetic theory. These include effects
such as the tangential heat flux in planar Couette flow and the bimodal temperature
profile in planar force-driven Poiseuille flow (Gu & Emerson 2007, 2009; Taheri &
Struchtrup 2009; Taheri, Torrilhon & Struchtrup 2009). With several extra macroscopic
governing equations, the moment method is slightly more expensive than the NSF
equations to solve numerically. However, it is much more computationally efficient
than the kinetic approaches and capable of capturing the non-equilibrium effects with
a high degree of accuracy in the slip and early transition regime.

In the present study, we investigate the impact of rarefaction on steady subsonic
compressible flow past a circular cylinder in the Reynolds-number range 0.1 6 Re<
45, i.e. before the onset of classic unsteady vortex shedding. To capture the non-
equilibrium effects, we use the method of moments, as described in § 2, and compare
our results with kinetic theory using DSMC, which is outlined in § 3. The problem
formulation is described in § 4 and the computed results for drag, the onset of flow
separation, the location of the separation point and the size of the attached eddies will
be examined in detail in § 5 in terms of Reynolds number, Knudsen number as well
as Mach number. Our findings are discussed in § 6.

2. An overview of the method of moments

The traditional hydrodynamic quantities of density ρ, velocity ui and temperature
T correspond to the first five lowest-order moments of the molecular distribution
function, f . The governing equations of these hydrodynamic quantities for a dilute
gas can be obtained from the Boltzmann equation and represent mass, momentum
and energy conservation laws, respectively (Struchtrup 2005):

∂ρ

∂t
+
∂ρui

∂xi
= 0, (2.1)
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∂ρui

∂t
+
∂ρuiuj

∂xj
+
∂σij

∂xj
=−

∂p
∂xi

(2.2)

and
∂ρT
∂t
+
∂ρuiT
∂xi
+

2
3R
∂qi

∂xi
=−

2
3R

(
p
∂ui

∂xi
+ σij

∂uj

∂xi

)
. (2.3)

Here t and xi are temporal and spatial coordinates, respectively, and any suffix i,
j or k represents the usual summation convention. The pressure p is related to the
temperature and density by the ideal gas law, p = ρRT , where R is the specific
gas constant. However, the stress term, σij, and heat flux term, qi, given in (2.2)
and (2.3) are unknown. The classical way to close this set of equations is through
a Chapman–Enskog expansion (see Chapman & Cowling 1970) of the molecular
distribution function, f . When f is truncated at the first order of Kn, the gradient
transport mechanism is obtained as

σij = σ
NSF
ij =−

2µ
Aσ

∂u〈i
∂xj〉

and qi = qNSF
i =−

5µR
2Aq

∂T
∂xi
, (2.4a,b)

and equations (2.1)–(2.3) become the NSF equations. The angular brackets are used to
denote the traceless part of a symmetric tensor. Alternatively, the governing equations
of σij and qi can be derived from the Boltzmann equation, as proposed by Grad (1949):

∂σij

∂t
+
∂ukσij

∂xk
+
∂mijk

∂xk
=−Aσ

p
µ
σij − 2p

∂u〈i
∂xj〉
−

4
5
∂q〈i
∂xj〉
− 2σk〈i

∂uj〉

∂xk
(2.5)

and

∂qi

∂t
+
∂ujqi

∂xj
+

1
2
∂Rij

∂xj
= −Aq

p
µ

qi −
5
2

pR
∂T
∂xi
−

7σikR
2

∂T
∂xk

−RT
∂σik

∂xk
+
σij

ρ

(
∂p
∂xj
+
∂σjk

∂xk

)
−

2
5

(
7
2

qk
∂ui

∂xk
+ qk

∂uk

∂xi
+ qi

∂uk

∂xk

)
−

1
6
∂∆

∂xi
−mijk

∂uj

∂xk
. (2.6)

By applying a first-order Chapman–Enskog expansion to equations (2.5) and (2.6),
only the underlined terms are retained. Therefore, they reduce to equation (2.4) and
the NSF equations are recovered. The higher moments mijk, Rij and ∆ need to be
known to obtain a solution of equations (2.1)–(2.3), (2.5) and (2.6). Their algebraic
expressions, in terms of the derivatives of lower moments, can be used to close this
set of equations, as in the R13 equation approach (Struchtrup & Torrilhon 2003).
Alternatively, the governing equations of mijk, Rij and ∆ derived from the Boltzmann
equation can be used to provide information required in equations (2.5) and (2.6).
They are (Gu & Emerson 2009):

∂mijk

∂t
+
∂ulmijk

∂xl
+
∂φijkl

∂xl
=−Am

p
µ

mijk − 3RT
∂σ〈ij

∂xk〉
−

3
7
∂R〈ij
∂xk〉
+Mijk, (2.7)

∂Rij

∂t
+
∂ukRij

∂xk
+
∂ψijk

∂xk
=−AR1

p
µ

Rij −
28
5

RT
∂q〈i
∂xj〉
− 2RT

∂mijk

∂xk
−

2
5
∂Ω〈i

∂xj〉
+<ij (2.8)
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Aσ Aq Am AR1 AR2 A∆1 A∆2 Aφ Aψ AΩ

1.0 2/3 3/2 7/6 2/3 2/3 2/3 2.097 1.698 1.0

TABLE 1. Collision constants in the moment equations for Maxwell molecules.

and
∂∆

∂t
+
∂1ui

∂xi
+
∂Ωi

∂xi
=−A∆1

p
µ
∆− 8RT

∂qk

∂xk
+ℵ, (2.9)

in which Mijk, <ij and ℵ are the nonlinear source terms listed in appendix A.
In equations (2.7)–(2.9), higher-order unknown moments φijkl, ψijk and Ωi are
introduced into the system of governing equations, which can be obtained from
the Boltzmann equation. However, even higher-order moments will appear in their
equations. This is the closure problem in the moment method. Alternatively, they
can be approximated by algebraic expressions in terms of the derivatives of lower
moments. In the R26 equations (Gu & Emerson 2009), they were obtained by a
Chapman–Enskog expansion. For convenience, they can be expressed as gradient
transport terms and high-order nonlinear terms, respectively, by

φijkl =−
4µ
Aφρ

∂m〈ijk
∂xl〉
+ φNL

ijkl, (2.10)

ψijk =−
27µ

7Aψρ
∂R〈ij
∂xk〉
+ψNL

ijk (2.11)

and
Ωi =−

7
3
µ

AΩρ
∂∆

∂xi
− 4

µ

AΩρ
∂Rik

∂xk
+ΩNL

i . (2.12)

The full expressions of the nonlinear terms φNL
ijkl, ψ

NL
ijk and ΩNL

i are provided by Gu
& Emerson (2009). The values of the collision constants, Aσ , Aq, Am, AR1, AR2, A∆1,
A∆2, Aφ , Aψ and AΩ , depend on the molecular collision model adopted and represent
the relaxation time scale for each moment. They are given in table 1 for the case of
Maxwell molecules (Truesdell & Muncaster 1980; Struchtrup 2005), as employed in
the present study. Although a dilute monatomic gas is employed, all the findings in
the present study have relevance to realistic gases, such as air.

To apply any of the foregoing models to flows in confined geometries, appropriate
wall boundary conditions are required to determine a unique solution. Gu & Emerson
(2009) obtained a set of wall boundary conditions for the R26 equations based
on Maxwell’s kinetic wall boundary condition (Maxwell 1879) and a fifth-order
approximation of the molecular distribution function in Hermite polynomials. In a
frame where the coordinates are attached to the wall, with ni the normal vector out
of the wall pointing towards the gas and τi the tangential vector of the wall, the slip
velocity parallel to the wall, uτ , and temperature-jump conditions are

uτ =−
2− α
α

√
πRT

2
σnτ

pα
−

qτ
5pα
−

mnnτ

2pα
+

9Ωτ + 70ψnnτ

2520pαRT
(2.13)

and

RT − RTw =−
2− α
α

√
πRT

2
qn

2pα
−

RTσnn

4pα
+

u2
τ

4
−

75Rnn + 28∆
840pα

+
φnnnn

24pα
, (2.14)
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where

pα = p+
σnn

2
−

30Rnn + 7∆
840RT

−
φnnnn

24RT
. (2.15)

Here σnn, σnτ , qτ , mnnτ , mnnn, Rnn, ψnnτ , Ωτ and φnnnn are the tangential and normal
components of σij, qi, mijk, Rij, ψijk, Ωi and φijkl relative to the wall, respectively. It
should be noted that the normal velocity at the wall un = 0, since there is no gas
flow through the wall. The accommodation coefficient, α, represents the fraction of
gas molecules that will be diffusively reflected with a Maxwellian distribution at the
temperature of the wall, Tw. The remaining fraction (1− α) of gas molecules will
undergo specular reflection. The rest of the wall boundary conditions are listed in
appendix C of Gu & Emerson (2009). Equations (2.13) and (2.14) are similar to
the velocity-slip and temperature-jump conditions for the NSF equations (Cercignani
1975; Gad-el-Hak 1999) with the additional underlined terms on the right-hand
side providing the higher-order moment contributions which are not available in the
NSF model. However, these higher-order moment terms can be used to derive a
second-order slip boundary condition for the NSF equations (Taheri & Struchtrup
2010). The solution of the NSF equations in the present study is associated with the
wall boundary conditions (2.13) and (2.14) without the underlined terms.

A pressure-based numerical algorithm was introduced by Gu & Emerson (2007,
2009) to solve the moment equations for weakly compressible and low-speed flows.
It has been successfully applied in the study of pressure-driven Poiseuille flow (Tang
et al. 2013), thermal transpiration flow (Sheng et al. 2014) and gas flows in porous
media (Lu et al. 2017; Wu et al. 2017). To accommodate the compressibility of the
gas flow in the present study, the pressure-based method (Ferziger & Perić 2002) for
arbitrary Mach number has been employed. In addition to the pressure correction, a
density correction is integrated into the derivation of the pressure correction equation.
The resultant pressure correction equation is no longer a discretised Poisson equation.
It contains both convective and unsteady terms. When the Mach number is not
negligibly small, the convective term dominates. The pressure correction method
automatically adjusts to the local nature of the flow and is ideal for the purpose of
the present study.

3. Description of the direct simulation Monte Carlo method

The DSMC method is based on the discrete molecular nature of a gas and
essentially captures the physics of a dilute gas governed by the Boltzmann equation.
The DSMC method was first introduced by Bird in the early 1960s (Bird 1963)
as a technique to analyse high-Knudsen-number flows, primarily targeted towards
aerospace applications. Since then, the DSMC method has evolved into a powerful
numerical approach and is considered one of the most reliable methods for simulating
non-equilibrium gaseous flows. However, it is very computationally expensive,
particularly for low-Reynolds-number flows in the early transition regime. Despite
significant efforts to overcome the numerical difficulties and computing costs,
solutions using the Boltzmann equation or DSMC are still too difficult to be widely
used in practical engineering applications. Variants of DSMC, like the LVDSMC
method (Baker & Hadjiconstantinou 2005), employ variance reduction techniques to
reduce the statistical noise. However, they are more suited for problems involving
extremely low flow speeds or very small thermal gradients. This has led to alternative
approaches being developed, as exemplified by the method of moments, which aim to
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alleviate the computational difficulties associated with kinetic theory but are accurate
enough for engineering design.

As the most reliable method for non-equilibrium gaseous flow simulations, the
DSMC method is employed to complement the computational solution of the
macroscopic equations. A detailed explanation of the steps involved in the DSMC
method can be found in Bird (1963). In contrast to the molecular dynamics (MD)
method (Allen & Tildesley 1987), which is deterministic, the exact trajectory of
each particle is not calculated in DSMC. Instead, a stochastic algorithm is used to
evaluate the collision probabilities and scattering distributions based on kinetic theory.
Although the actual nature of the molecular interactions is complex, they can be
treated in a DSMC simulation through the use of phenomenological collision models.

The DSMC simulations in this work have been carried out using SPARTA (Gallis
et al. 2014). The software is a highly scalable parallel open-source DSMC code
recently developed by Sandia National Laboratory (Plimpton & Gallis 2017). The
code has been validated on several benchmark test cases (Gallis et al. 2016, 2017)
and is widely used by the DSMC community. For all DSMC simulations in this study,
the gas was assumed to be argon and the variable hard sphere (VHS) model was
employed. Previous theoretical and numerical studies (Gu & Emerson 2009, 2011,
2014; Gu et al. 2010; Gu, Zhang & Emerson 2016) have indicated that the results
from the R26 equations using Maxwell molecules and the DSMC simulations using
a VHS model are in close agreement with each other. Bird’s no-time-counter (NTC)
scheme (Bird 1994) has been employed for calculating the collision probabilities in
a cell. Particle–wall interactions were assumed to be fully diffuse. Additionally, the
well-known guidelines have been followed with respect to the cell size, time step and
particle numbers that are needed for accurate DSMC calculations. The cell sizes in
our study are defined to be smaller than one-third of the mean free path. Accordingly,
the total number of cells in our simulations ranges from a few hundred thousand to
several hundred million, depending on the Knudsen number and operating pressure
under consideration. The time step for the DSMC simulations is taken to be five
times smaller than 1xmin/(Vmp + U∞), where 1xmin is the smallest cell dimension,
Vmp is the most probable molecular velocity given by Vmp =

√
2RT∞, and U∞ is the

free-stream velocity. To minimise statistical noise, an average of at least a hundred
particles per cell has been considered and the sampling phase has been carried out
over a period of several hundred thousand time steps.

The DSMC computational domain is a square shape, with the cylinder centrally
placed. The inflow and outflow boundary conditions in our DSMC simulations
are implemented by injecting particles based on the Maxwellian distribution and
corresponding to the flow conditions at the boundary. For the inflow boundary case,
particles are injected based on the free-stream velocity and density conditions. At
the subsonic outflow, particles can enter the domain from outside, the properties of
which are predominantly determined by the interior solution. We have followed the
characteristic boundary conditions (Hirsch 1991; Sun & Boyd 2004; John et al. 2016)
for the subsonic outflow, based on which the exit pressure is specified while other
properties like velocity and density are derived from values extrapolated from the
adjacent cell in the interior domain. The spatial extent of the DSMC computational
domain required for an accurate simulation depends on the Reynolds number and
Knudsen number under consideration. In general, a larger computational domain
size is required for cases with low Reynolds numbers when compared to cases with
high flow velocities (high Reynolds numbers). Accordingly, the largest computational
domain size considered is 60D × 60D, corresponding to the case with Re = 0.5
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and Kn∞ = 0.2, whereas the smallest computational domain size is 15D × 15D,
corresponding to the case with Re= 26 and Kn∞ = 0.07.

A major limitation of the DSMC method is that, although it is valid for all flow
regimes, the technique becomes computationally prohibitive in the near-continuum
regime. Additionally, statistical noise becomes increasingly significant for very
low-speed flows, requiring excessively large sampling periods to improve the
signal-to-noise ratio. Therefore, we have carried out DSMC computations of only
a few selected combinations of Reynolds number and Knudsen number, for which
the simulations were relatively computationally affordable. The simulation time for
the DSMC cases that we considered in the present study varies depending on the
operating flow conditions. However, in general, DSMC requires 30–50 times more
CPU time than for solving the macroscopic equations.

4. Problem formulation
Gaseous flow past a circular cylinder with a uniform wall temperature, Tw, is

computationally studied using the moment equations and the DSMC method. The
computational domain for the macroscopic equations is illustrated in figure 1 with a
circular cylinder of diameter D. A gas with a free-stream velocity u∞, temperature
T∞ and pressure p∞ (or density ρ∞) flows towards the cylinder. The origin of the
Cartesian coordinates (x, y) and the polar coordinates (r, θ) sits at the centre of the
circular cylinder. The ratio of the computational domain length, L, to the width, H,
is fixed at 10, while the aspect ratio H/D varies for different Reynolds numbers.
The diameter of the cylinder, D, is chosen as the characteristic length, so that the
Reynolds number, Re, is calculated from

Re=
ρ∞u∞D
µ∞

, (4.1)

where µ∞ is the gas viscosity at temperature T∞. The Knudsen number, Kn∞, is based
on the state of the free stream and is obtained from

Kn∞ =
λ∞

D
, (4.2)

in which λ∞ is the mean free path of the gaseous free stream defined by

λ∞ =
µ∞

p∞

√
πRT∞

2
, (4.3)

which indicates that, when the pressure of a gas is lower, the mean free path of the
gas becomes larger and vice versa.

For ideal gases, the Mach number of the incoming stream, Ma∞, is estimated from

Ma∞ =
u∞
√
γRT∞

, (4.4)

where γ is the ratio of specific heat capacities. For the monatomic gas in the present
study, γ = 5/3. The relationship between Re, Kn∞ and Ma∞ is readily obtained as

Ma∞ =

√
2
γπ

Re Kn∞. (4.5)
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FIGURE 1. Schematic of the macroscopic equation computational domain for the gas flow
past a circular cylinder.

It can be seen from (4.5) that Ma∞ is proportional to the product of Re and Kn∞.
When the gas departs from the continuum state, i.e. Kn� 0, the Reynolds-number
effect on the compressibility of the gas increases significantly. In the present study,
the investigations are limited to subsonic (Ma∞ < 1), creeping and steady separation
(Re< 45) flows in the slip and early transition regime (Kn∞ < 1).

5. Results and discussion
Macroscopic sets of the NSF, R13 and R26 equations are solved numerically for

flows past a stationary cylinder with a wide range of Reynolds and Knudsen numbers
determined by the free-stream parameters, u∞, T∞ and p∞. The Dirichlet boundary
condition is used for the side boundaries and the Neumann boundary condition for
the downstream boundary, as illustrated in figure 1. For convenience, the cylinder wall
temperature, Tw, is set to the free-stream temperature, T∞. A fully diffusive cylinder
surface is assumed, i.e. the accommodation coefficient, α= 1, and a body-fitted mesh
is employed around the cylinder. The viscosity was obtained from Sutherland’s law
(White 1991). The computed results are analysed in terms of the drag coefficient, CD,
the onset of the twin vortices downstream of the cylinder characterised in terms of
the vortex length l, defined as the distance between the rear base point and the wake
stagnation point, and the separation angle θs, as indicated in figure 2.

The non-dimensional pressure and stresses are expressed as the pressure coefficient,
cp, the skin friction coefficient, cf , and the normal stress coefficient, cn, respectively,
by

cp =
p− p∞
ρ∞u2

∞
/2
, cf =

σrθ

ρ∞u2
∞
/2

and cn =
σrr

ρ∞u2
∞
/2
, (5.1a−c)

in which σrθ and σrr are the shear and normal stress components, respectively, in the
cylindrical coordinate system (r, θ) illustrated in figure 1. The drag on the circular
cylinder is composed of three separate components, namely pressure drag Fp, skin
friction drag Ff , and normal stress drag Fn. The corresponding components of the
drag coefficient, Cp

D, Cf
D and Cn

D, can be estimated from the computational solution,
respectively, by

Cp
D =

Fp

ρ∞u2
∞

D/2
=−

1
ρ∞u2

∞

∫ 2π

0
(p− p∞) cos θ dθ, (5.2)
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D

œs

l

FIGURE 2. Schematics of the circular cylinder and the twin vortices.

Cf
D =

Ff

ρ∞u2
∞

D/2
=

1
ρ∞u2

∞

∫ 2π

0
σrθ sin θ dθ (5.3)

and

Cn
D =

Fn

ρ∞u2
∞

D/2
=−

1
ρ∞u2

∞

∫ 2π

0
σrr cos θ dθ. (5.4)

The total drag coefficient, CD, is the sum of each component, i.e.

CD =Cp
D +Cf

D +Cn
D. (5.5)

For the convenience of discussion in the following subsections, the drag coefficient in
the incompressible continuum limit is denoted as CD,cont.

5.1. Drag coefficient in the continuum limit
In the continuum limit, there are well-documented experimental, theoretical and
numerical studies of the drag coefficient, the onset of flow separation, and the
geometry of the wake. They are used in the present study to verify the accuracy
of the numerical implementation and serve as the baseline to reflect rarefaction and
compressibility effects on the flow characteristics as the state of the gas departs from
the continuum limit. Incompressible flows in the continuum limit are computed by the
Navier–Stokes equations with no-slip boundary conditions for 0.1 6 Re 6 45. When a
fluid flows past a stationary cylinder, the flow is disturbed not only downstream, but
also upstream and sideways. An appropriate computational domain size is required to
minimise any boundary effects. The ratio of the domain length, L, to the width, H,
is fixed at 10, while the aspect ratio of H/D varies for different Reynolds numbers.
Shown in figure 3(a) is the drag coefficient calculated from computational solutions
for Re = 0.1, 0.2, 0.5 and 1.0, respectively, for different sizes of computational
domain. At Re = 0.1, the aspect ratio, H/D, must be greater than 2000 to obtain
a grid-independent value of CD,cont, whereas at Re = 1, the value of CD,cont requires
the computational domain to be H/D= 200. To reach a converged value of the drag
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FIGURE 3. (Colour online) (a) Effect of the domain size on the computed values of the
drag coefficient at different Reynolds numbers. (b) Comparison of the drag coefficient at
different Reynolds number for incompressible continuum flow by different approaches.

coefficient, CD,cont, a large computational domain is required for low-Reynolds-number
flow. In the present study, all computations have been obtained using a sufficiently
large domain for the specific Reynolds number under investigation.

The computed values of CD,cont for incompressible continuum flows are plotted
against the Reynolds number in figure 3(b), in comparison with theoretical and
experimental data. In the creeping flow regime, Re < 1, our computed value for
CD,cont is slightly lower than the solution of Lamb (1911), which is

CD,cont =
8π

Re
ε, (5.6)

in which

ε=

[
1
2
− γe − ln

(
Re
8

)]−1

, (5.7)

where γe = 0.577215 is Euler’s constant. The present results are in good agreement
with the asymptotic solution of Kaplun (1957):

CD,cont =
8π

Re
ε(1− 0.87ε2), (5.8)

which is a higher-order approximation than Lamb’s solution. Skinner (1975) achieved
an even higher-order expansion than Kaplun’s approximation, but the difference
between them is negligible. The computational solutions of Rajani, Kandasamy &
Majumdar (2009) overpredict the value of CD,cont significantly, particularly at small
values of Reynolds number, as indicated in figure 3(b), as their study used a small
computational domain. In the region Re> 1, our computed values of CD,cont agree well
with the experimental data (Tritton 1959) and the computational results of Dennis &
Shimshoni (1965), Takami & Keller (1969) and Dennis & Chang (1970).
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5.2. Drag coefficient in the slip and early transition regime
When the state of the gas is no longer in equilibrium, the characteristics of the flow
are determined not only by the Reynolds number, but also by the Knudsen number.
Yamamoto & Sera (1985) obtained an approximation of the drag coefficient for Re<1
based on the linearised BGK equation. Following the notation used in the present
paper, their drag coefficient can be written as

CD =
8π

Re
ξ, (5.9)

where

ξ =

[
1
2
− γe − ln

(
Re
8

)
+

4Kn∞
√

π
Λ

]−1

, (5.10)

and Λ is a parameter close to unity in the slip and early transition regime and
gradually increases to 1.5 towards the free-molecular regime. The values of Λ are
given in table I of Yamamoto & Sera (1985). As Kn∞→ 0, equations (5.9) and (5.10)
reduce to Lamb’s solution. As a close analogy to Kaplun’s higher-order correction to
Lamb’s solution, an empirical modification to (5.9) is proposed in the present study
as

CD =
8π

Re
ξ(1− 0.87ξ 2), (5.11)

so that, as Kn∞→ 0, equation (5.11) reduces to Kaplun’s solution in the continuum
limit. Figure 4(a) shows the predictions from Yamamoto & Sera’s approximation
(5.9) and its modification (5.11) at Re = 0.5. The gap between the two predictions
is the difference between Lamb and Kaplun’s solutions as Kn∞→ 0. However, when
Kn∞ > 1, the difference between (5.9) and (5.11) diminishes. With the combination
of the concept of a ‘molecular layer’ around the cylinder and Oseen’s approximation
by Lamb away from the cylinder, Pich (1969) obtained an expression for CD in the
transition regime:

CD =
8π

Re

[
1
2
− γe − ln

(
Re
8

)
+ 1.747Kn∞ − ln(1+ 0.749Kn∞)

]−1

. (5.12)

Naturally, when Kn∞→ 0, equation (5.12) recovers Lamb’s solution and is close to
the solution of Yamamoto & Sera (1985) in the slip and transition regime, as shown
in figure 4(a).

Figure 4(b) presents the values of CD calculated for Re = 0.5 from the numerical
solution of the NSF equations with velocity-slip and temperature-jump boundary
conditions, the R13 and R26 equations in the slip and early transition regime along
with (5.11) and the DSMC data. The numerical solutions from all three macroscopic
models converge to Kaplun’s theoretical value as Kn∞→ 0. As expected, the value
of CD decreases as Kn∞ increases at a constant Re. When Kn∞ < 0.07, all three
numerical solutions are in close agreement with the modified Yamamoto & Sera
approximation, equation (5.11). As Kn∞ increases above 0.07, the NSF equations with
slip boundary conditions start to deviate from the other solutions and overpredict the
value of CD significantly beyond the slip regime. The R13 equations follow the R26
results and (5.11) up to Kn∞ = 0.3. Above this value, the R13 model underpredicts
the value of CD while the R26 equations are in good agreement with (5.11) up to a
Knudsen number of approximately unity. This is due to the fact that the R26 model
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FIGURE 4. (Colour online) (a) Predicted drag coefficient from the BGK kinetic equations.
(b) Predicted values of CD from macroscopic models against Kn∞ in comparison with
DSMC data at Re= 0.5.
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FIGURE 5. (Colour online) Predicted components of CD from macroscopic models at
Re= 0.5 against Kn∞.

is able to capture the Knudsen layer much more accurately than the R13 model
(Gu, Emerson & Tang 2009; Gu et al. 2010; Young 2011; Gu & Emerson 2014). It
is computationally expensive for DSMC to simulate flows with such low Reynolds
and Knudsen numbers. Consequently, only limited simulations at moderate Knudsen
numbers are shown in figure 4. The values of CD from the DSMC simulations are
close to (5.11) but are slightly higher.

Using the R26 equation solutions, we can now examine the effect of the Knudsen
number on the contribution from the pressure and stress terms (tangential and normal)
of the drag coefficient, CD. At Kn∞ = 0.01, as shown in figure 5 for Re= 0.5, 50 %
of the drag coefficient is generated by the pressure component, Cp

D, while 48 % of
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FIGURE 6. (Colour online) Predicted values of the drag coefficient by the R26 equations
for different Reynolds numbers plotted against (a) Kn∞ and (b) Ma∞.

the value of CD is from the tangential shear stress component, Cf
D. The normal stress

component, Cn
D, only contributes 2 % of drag. Indeed, at the continuum limit, there is

no contribution from the normal stress towards CD. As Kn∞ increases, the value of
Cn

D increases and the friction drag decreases, respectively. The value of Cp
D remains

constant until just beyond the slip regime (Kn∞ ∼ 0.2) and it then reduces as Kn∞
continues to increase. At Kn∞ ≈ 0.9, the proportions of Cp

D, Cn
D and Cf

D contributing
to CD are 49.5 %, 28 % and 22.5 %, respectively. Although both Cp

D and CD reduce as
Kn∞ increases beyond the slip flow regime, their ratio changes due to the increasing
contribution of the normal stress component, which begins to asymptote at Kn ∼ 1.
The contribution of Cf

D decreases as Kn∞ increases. The solution of the NSF equations
with the velocity-slip boundary condition (represented by the dashed lines in figure 5)
follows that of the R26 equations (represented by the solid lines) up to Kn∞ ∼ 0.07.
Beyond this value, the NSF equations overpredict Cn

D and Cp
D in comparison with the

R26 equations, which results in an overprediction of the total drag.
The non-equilibrium effects on the value of the drag coefficient for the range of

Reynolds number considered are quite distinct. For small Reynolds numbers, Re< 10,
the drag coefficient decreases below its corresponding value at the continuum limit
as Kn∞ increases, as shown in figure 6(a). When Re > 10, the ratio of rarefied
to continuum drag, CD/CD,cont, shows a slight initial drop close to the continuum
regime. However, as Kn∞ increases, the drag ratio is seen to increase above unity.
The larger the Reynolds number, the more obvious the trend is. As indicated by
(4.5), both rarefaction and compressibility are related. Although rarefaction increases
the velocity slip around the cylinder and tends to reduce the drag coefficient, the
effects of compressibility increase the pressure drop across the cylinder and increase
the drag coefficient. This will be discussed further in § 5.4. The values of CD/CD,cont

plotted against Ma∞ are presented in figure 6(b) for the same range of Reynolds
number as in figure 6(a). For flows with Re> 10, the drag coefficient will be above
its corresponding continuum value as the Mach number increases. Although it is
difficult to separate the effects of rarefaction and compressibility, figure 6 implies
that compressible effects begin to dominate when Re > 10, whereas rarefied gas
effects are stronger when Re< 10 (Hu et al. 2009).
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FIGURE 7. (Colour online) Predicted vortex size from the R26 equations against Re for a
range of Kn∞ in comparison with the continuum limit: (a) wake length and (b) separation
angle.

5.3. Non-equilibrium effects on vortex formation and size
In the continuum limit, a pair of steady twin vortices is formed downstream of the
cylinder when the Reynolds number, Re, is above a critical value, denoted by Reonset.
The onset of flow separation can be detected by gradually increasing the Reynolds
number. Above a critical value, Reonset, the streamlines of the flow start to detach from
the cylinder and a pair of symmetric vortices begin to form. The length of the twin
vortices behind the cylinder, denoted by l, and the separation angle, θs, as illustrated
in figure 2, are measured against the Reynolds number. The critical Reynolds number
can be found by extrapolating l to zero. Our simulations predict a value of 6.5, which
is close to the value of 6.2 obtained by Dennis & Chang (1970). The size of these
vortices grows as Re increases until the Reynolds number reaches a second critical
value, Rec; beyond this value, the vortices become unstable. Kumar & Mittal (2006)
reviewed the values of the second critical Reynolds number obtained from numerical
simulations and experimental observations, and found that it varied from 40 to 50. In
their work, they obtained a value of Rec just above 47 by both direct time integration
and linear stability analysis methods. However, as the focus of the present study is on
steady-state flows, we only consider Reynolds numbers below this critical value, Rec.

The relationship between the Reynolds number and the normalised vortex length,
l/D, has been studied, experimentally and numerically, for continuum incompressible
flows by many researchers. Experimental data measured by Taneda (1956) and Acrivos
et al. (1968) for liquid flow past a circular cylinder are indicated by the solid symbols
in figure 7(a) along with data from numerical solutions of the incompressible Navier–
Stokes equations by Kawaguti & Jain (1966), Takami & Keller (1969) and Dennis
& Chang (1970), indicated by the hollow symbols. They are all in good agreement
with the values of l/D from the present numerical solution of the incompressible
Navier–Stokes equations represented by the solid line for the continuum limit. The
present values of the corresponding separation angle, θs, plotted in figure 7(b) by the
uppermost solid line, are slightly lower than the experimental measurements of Wu
et al. (2004) when Re is small but agree well with the computational results of Takami
& Keller (1969) and Dennis & Chang (1970).
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FIGURE 8. The streamlines behind the cylinder calculated from the R26 equation solution
and the DSMC data at Kn∞ = 0.05 for eight different Reynolds numbers.

The lines second from the top in figure 7(a,b) are the values of l/D and θs predicted
by the R26 moment equations for gas flow at Kn∞=0.01. The vortex length is slightly
reduced and the separation point moves in the downstream direction, in comparison
to continuum flow, due to non-equilibrium effects at the wall, particularly at larger
Reynolds numbers. Within the computed range of Reynolds number, Re 6 45, the
values of l/D and θs increase as Re increases for this particular Knudsen number.
However, when Kn∞> 0.028, as shown in figure 7, an interesting phenomenon occurs,
which has not been observed in continuum flow. Figure 8 shows the streamlines
behind the cylinder calculated from the computational results of the R26 equations
and the DSMC data at Kn∞ = 0.05 as the Reynolds number increases from 10 to
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FIGURE 9. (Colour online) Predicted vortex size from the macroscopic models in
comparison with the DSMC data: (a) wake length and (b) separation angle. Lines: R26.
Symbols: DSMC, Kn∞ = 0.05 (E) and Kn∞ = 0.07 (@).

28.75. The vortex length initially increases as Re increases and the separation point
moves upstream, as illustrated by (a–d) in figure 8. However, when the Reynolds
number is above a critical value, Recl, the twin vortices gradually diminish in size as
Re increases until they eventually disappear, as demonstrated by figure 8(e–g). The
agreement between the R26 equations and the DSMC data is excellent, apart from
the stagnation point region where the gas velocity is close to zero and the statistical
noise in the DSMC data is high.

All three macroscopic models, the NSF, R13 and R26 equations, can capture
the general phenomenon but differ considerably in capturing the physical detail, as
demonstrated in figure 9. In the vortex-growing region, for Kn∞ = 0.05, the vortex
lengths predicted by the three models lie close to each other before they reach their
respective maximum length. The R26 and NSF equations predict the longest and
shortest maximum length, respectively, with the R13 equations close to the R26. The
vortex length predicted by DSMC for Kn∞ = 0.05, shown in figure 9(a) by the open
symbols, is generally closer to the R26 model than the other two macroscopic models.
However, the separation point predicted by the NSF equations with the velocity-slip
boundary condition is significantly different from the moment equations and the
DSMC data, as illustrated in figure 9(b). At Kn∞ = 0.07, within the traditional slip
regime, the discrepancy between the NSF and moment equations is quite substantial.
The NSF equations underpredict the vortex size significantly, in terms of both wake
length and separation angle.

The Reynolds numbers relating to the onset and end of the symmetric vortices
behind the cylinder, Reonset and Reend, can be obtained by extrapolating the curves in
figures 7 and 9 to l/D = 0 and are plotted against Knudsen number in figure 10(a)
for the three macroscopic models. The values of Reonset obtained from both the R13
and R26 equations are almost identical and increase gradually as Kn∞ increases.
Conversely, the values of Reend from the R13 are close to but slightly lower than
those from the R26 equations. From figure 10, we see that the NSF equations predict
a much narrower region where the twin vortices can exist in comparison to the
moment equations, as indicated by the broken lines in figure 10(a), despite the fact
that this is clearly in the traditional slip regime. This significant discrepancy shows
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FIGURE 10. (Colour online) Vortex existence Re–Kn∞ diagram of non-equilibrium gas
behind a circular cylinder.

that care is needed when using the NSF equations with velocity slip, even when
operating in the traditional slip flow regime. Plotted in figure 10(b) is the critical
Reynolds number, Recl, which divides the twin vortex region into a zone in which
the vortices are growing and one where the vortices are diminishing.

Empirical expressions for Reonset, Reend and Recl are obtained, respectively, by curve
fitting the data from the R26 equations, as

Reonset = 6.5+ 2.169× (10Kn∞)+ 1.275× (10Kn∞)2, (5.13)

Reend =
1

Kn∞

√
γπ

2
− 5.886+ 8.862× (10Kn∞)− 7.190× (10Kn∞)2 (5.14)

and

Recl =
0.685
Kn∞

√
γπ

2
+ 5.598− 9.927× (10Kn∞)+ 4.435× (10Kn∞)2. (5.15)

The steady twin vortices occur behind the cylinder only in the range Reonset <Re<
Reend. By extrapolating equations (5.13) and (5.14) in figure 10(b), they meet roughly
at Kn∞= 0.108. In other words, no vortices will exist downstream of the cylinder, for
any Reynolds number, when Kn∞ > 0.108.

5.4. Flow physics around the cylinder
One of the main non-equilibrium phenomena associated with a rarefied gas is
the velocity slip at the solid surface. The slip velocity, uτ , is determined by the
wall shear stress, tangential heat flux along the surface, and other higher-order
moments, as expressed through the boundary condition, equation (2.13). Since the
flow configuration under consideration is symmetric and the polar coordinates (r, θ)
are anticlockwise, it is intuitive to plot −uτ/u∞ around the cylinder from the front
stagnation point, at θ = 180◦, to the cylinder base, at θ = 0◦. Figure 11 shows the
velocity slip for three different Reynolds numbers and various Knudsen numbers from
solutions obtained from the R26 equations and DSMC. For fixed values of Re and
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FIGURE 11. (Colour online) Velocity slip around the cylinder for different Re and Kn∞.
Lines: R26. Symbols: DSMC, Kn∞ = 0.05 (E) and Kn∞ = 0.07 (@).
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FIGURE 12. (Colour online) The local Knudsen number around the cylinder.

Kn∞, the velocity slip along the cylinder increases from the front stagnation point
and reaches a maximum value before it drops to zero at θ = 0◦. The location of the
maximum slip depends on the value of Re and Kn∞. For example, when Re= 5 and
Kn∞ = 0.03, the maximum velocity slip occurs at θ = 120◦ in figure 10(a), while
it occurs at θ = 80◦ for Re = 20 and Kn∞ = 0.07, as shown in figure 11(c). As
anticipated, the velocity slip increases with Kn∞ for a fixed value of Re. Comparing
figure 11(a) and (c), the velocity slip clearly increases with Reynolds number for a
fixed value of Kn∞. However, this does not imply that it is purely a Reynolds-number
effect. In comparison to the DSMC data in figure 11(c), the R26 equations provide a
reliable prediction of the velocity slip around the front half of the cylinder but tend
to overpredict the maximum slip velocity in the leeward region.

Equation (4.5) indicates that Ma∞ increases with the product of Re and Kn∞. As
the values of Ma∞, which are illustrated in figure 11, are above 0.3, there will be
compressibility effects in the solution. Consequently, the local non-equilibrium state of
the gas will differ from its undisturbed free-stream value. The local Knudsen number,
Kn, determined from the local temperature and pressure, is no longer the same as
Kn∞. In figure 12, we have plotted the ratio, Kn/Kn∞, for three Reynolds numbers
and different values of Kn∞ or Ma∞ around the cylinder. When Ma∞< 0.3, the value
of Kn/Kn∞ around the cylinder is approximately equal to unity, i.e. the local non-
equilibrium state is the same as the nominal one defined by the free stream. The value
of Kn/Kn∞ is less than unity at the front of the cylinder when Ma∞> 0.3, and when
θ < 120◦ it increases beyond one, as shown in figure 12(a). The larger the value of
Ma∞, the more obvious the phenomenon, as indicated in figure 12. In the case of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

86
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.869


674 X.-J. Gu, R. W. Barber, B. John and D. R. Emerson

0.20; 0.618
Kn∞; Ma∞ Kn∞; Ma∞ Kn∞; Ma∞ 

0.10; 0.309
0.05; 0.154
0.03; 0.093
Contin. limit

Re = 5

Re = 5

180 120 60 0

0.20; 0.618
0.10; 0.309
0.05; 0.154
0.03; 0.093
Contin. limit

Re = 5

0.13; 0.803
0.10; 0.618
0.05; 0.309
0.03; 0.185
Contin. limit

Re = 10

0.13; 0.803
0.10; 0.618
0.05; 0.309
0.03; 0.185
Contin. limit

Re = 10

180 120 60 0

0.13; 0.803
0.10; 0.618
0.05; 0.309
0.03; 0.185
Contin. limit

Re = 10

0.07; 0.865
0.05; 0.618
0.03; 0.371
Contin. limit
0.07; 0.865
0.05; 0.618

Re = 20
Lines: R26 
Symbols: DSMC

0.07; 0.865
0.05; 0.618
0.03; 0.371
0.07; 0.865
0.05; 0.618
Contin. limit

Re = 20
Lines: R26 
Symbols: DSMC

180 120 60 0

0.07; 0.865
0.05; 0.618
0.03; 0.371
Contin. limit

Re = 20
0.4

0.2

0

-0.2

-0.4

2.0

1.5

1.0

0.5

0

2.5
2.0
1.5
1.0
0.5

0
-0.5
-1.0
-1.5

œ (deg.) œ (deg.) œ (deg.)

cn

cp

cf

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

0.20; 0.618
0.10; 0.309
0.05; 0.154
0.03; 0.093
Contin. limit

Kn∞; Ma∞ 
Kn∞; Ma∞ Kn∞; Ma∞ 

Kn∞; Ma∞ Kn∞; Ma∞ Kn∞; Ma∞ 

FIGURE 13. (Colour online) Viscous and rarefaction effects on (a–c) cp, (d–f ) cf and
(g–i) cn around the cylinder wall. Lines: R26. Symbols: DSMC, Kn∞ = 0.05 (E) and
Kn∞ = 0.07 (@).

Re= 20 and Kn∞ = 0.07, the local Knudsen number, Kn, is only half of its nominal
value at the front, while figure 12(c) shows that it exceeds 3Kn∞ at the rear of the
cylinder. Although it is in the slip regime in terms of the free-stream Knudsen number,
Kn∞, the flow around the cylinder experiences a significant shift from the slip regime
well into the transition regime. The high value of velocity slip around the rear section
of the cylinder moves the separation point further downstream with an increase of
Re and is able to overcome the adverse pressure gradient to reduce the vortex size
until it eventually disappears, as shown in figures 8 and 9. The strong variation in
local Knudsen number could also explain the discrepancy between DSMC and the
R26 equations in predicting velocity slip, as highlighted in figure 11(c).

The high value of local Knudsen number results in the pressure coefficient, cp, the
skin friction coefficient, cf , and the normal stress coefficient, cn, deviating significantly
from their continuum limits. Figure 13 illustrates the variation in surface value of
the coefficients around the cylinder for three Reynolds numbers and various Knudsen
numbers. At Re= 5, the value of cp is below its continuum limit at the front and rear
of the cylinder for all Kn∞ or Ma∞ considered. It then rises above the continuum limit
for 145◦ > θ > 45◦, approximately, as shown in figure 13(a). At Re = 10, the value
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FIGURE 14. (Colour online) Viscous and rarefaction effects on predicted components of
CD from the R26 equations.

of cp lies close to its continuum value at the front stagnation point for Kn∞ 6 0.1.
However, the value of cp clearly rises above the continuum limit until θ ' 60◦. In
contrast, at Re = 20, shown in figure 13(c), the value of cp is generally above the
continuum value at θ = 180◦. For all Reynolds numbers considered, the value of cp for
the rarefied gas is always lower than the continuum limit at the rear of the cylinder,
i.e. θ = 0◦. Moreover, figure 13(a–c) clearly illustrates the separation point moving
towards the rear of the cylinder. The flow undergoes compression around the front half
of the cylinder, so that Kn/Kn∞< 1, while the gas expands around the rear half of the
cylinder, where Kn/Kn∞>1, as indicated in figure 12(c). The variation of cp predicted
by the R26 equations is validated by the DSMC data, as shown in figure 13(c).

The skin friction coefficient, cf , is zero at the front stagnation point and the
cylinder base and reaches a maximum value at θ ≈ 110◦ for all the Reynolds numbers
considered, as shown in figure 13(d–f ). The maximum value of cf is clearly shown
to decrease as Re increases. It can also be seen that the skin friction decreases as
Kn∞ increases for a fixed Reynolds number. The slightly negative value of cf at the
rear of the cylinder is due to the recirculating flow. Our simulations show that the
R26 equations and the DSMC data agree well for cf at both Kn∞ = 0.05 and 0.07,
as illustrated in figure 13( f ). For completeness, the normal stress coefficient, cn, is
plotted along the cylinder wall and is zero in the continuum limit. The magnitude
of cn is much smaller than that of cp and cf , but can be seen to increase as Kn∞
increases, particularly at low Reynolds number, as shown in figure 13(g).

Non-equilibrium effects from the contributions of cp, cf and cn towards the total
drag coefficient are presented in figure 14 for the range of Reynolds numbers
considered. The contribution of cn to CD increases as Kn∞ increases, but it is small
compared to the contributions from cp and cf and does not affect the general trend of
CD. The pressure component, Cp

D, can be seen to contribute more than 50 % of the
total drag and this rises as Re or Kn∞ increases. As the Knudsen number increases,
the skin friction drag, Cf

D, always decreases for a given Reynolds number due to the
velocity slip. The resultant trend of CD against Kn∞ for a fixed Reynolds number
depends on the competition between Cp

D and Cf
D. At Re = 5, the decrease of Cf

D is
faster than the corresponding increase in Cp

D with increasing Kn∞. As a result, CD
is lower than its continuum value, i.e. CD/CD,cont < 1, as the gas departs from its
equilibrium state, as shown in figure 14(a). When Re = 10, the rates of change of
Cp

D + Cn
D and Cf

D are roughly the same but in opposing directions and the value of
CD/CD,cont remains consistently around unity. However, as Re increases to 20, shown
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FIGURE 15. (Colour online) Compressibility effect on (a) CD and (b) l/D, with and
without non-equilibrium effects at Re= 20.

in figure 14(c), Cp
D increases much more rapidly with an increase in Kn∞ due to the

compression and expansion of the gas around the cylinder. As a result, the total drag
coefficient, CD, rises above its corresponding continuum limit, i.e. CD/CD,cont > 1,
even though the gas is inside the accepted slip flow limit.

The flow characteristics around the cylinder are determined by a combination
of viscous, rarefaction and compressibility effects and the overall behaviour of the
flow depends on the complex interplay between these competing effects. Canuto &
Taira (2015) recently studied how compressibility affects the flow without taking into
consideration any non-equilibrium effects. They used the compressible NSF equations
with the traditional no-slip boundary condition to compute the flow past a cylinder. In
their work, the maximum Knudsen number based on the state of the free stream was
0.037, which occurred for Re = 20 at Ma∞ = 0.5. By neglecting velocity slip, they
overpredict the drag coefficient against Ma∞, as shown in figure 15(a) for Re = 20,
particularly for Ma∞ > 0.3. Although the Knudsen number for this case is relatively
small, it indicates a clear error in the drag prediction and shows that rarefaction
effects need to be considered. Hu et al. (2009) studied the same flow conditions with
a hybrid strategy of coupling a kinetic approach around the cylinder and a continuum
method away from the cylinder. Both rarefaction and compressibility effects were
taken into account and their predicted drag coefficient is in good agreement with our
results using the R26 equations. The role of the vortex pair is also strongly affected
by non-equilibrium effects. Figure 15(b) shows that the vortex length predicted by
Canuto & Taira (2015) increases with Ma∞, which is opposite to the prediction by
the R26 equations. This illustrates the importance of velocity slip in the determination
of the vortex structure.

6. Conclusions
The method of moments has been used to investigate rarefaction effects on

low-speed compressible flow past a circular cylinder. In particular, we employ the
R26 equations to study flow in the slip and early transition regime to understand
the impact of non-equilibrium effects on drag. Our results are compared with the
Navier–Stokes–Fourier equations and data obtained from the direct simulation Monte
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Carlo method. At the Reynolds numbers considered in this paper, where 0.16Re< 45,
solutions are generally obtained under the assumption that the fluid is incompressible
with the classic no-slip boundary condition. This approach provides the baseline
results for examining how non-equilibrium effects influence the flow physics. For
creeping flow, with Re< 1, a revised expression for the total drag is proposed which
approaches Kaplun’s rather than Lamb’s solution when Kn∞ tends to zero. The drag
coefficient predicted from the higher moment equations agrees well with kinetic theory
when the Knudsen number is less than unity, while the NSF equations consistently
overpredict the drag coefficient, even in the slip regime. In the steady flow regime, it
has been shown that velocity slip delays flow separation and acts to reduce the size
of the vortices downstream of the cylinder. When Kn∞ > 0.028, the vortex length
increases initially with the increase of Re, as observed in the continuum regime.
However, once Re is above a critical value, Recl, the lengths of the vortices reduce
in size as Re increases until they eventually disappear. An existence criterion for
the vortices was shown in a Re–Kn∞ diagram. The flow physics around the cylinder
was analysed in terms of the velocity slip, pressure and skin friction coefficients. We
observed that rarefaction reduces the drag coefficient and the combination of viscous,
rarefaction and compressibility effects is intimately linked in determining the flow
features, as expressed by the relationship of Re, Kn∞ and Ma∞. An important factor
that has a dramatic effect on the flow is that the local state of the gas around the
cylinder, as exemplified by the local Knudsen number, can be significantly different
from the free-stream value. It is therefore essential to include all of these effects in
the computational studies of subsonic gas flow in the slip and early transition regime
even with a moderate or low Reynolds number.
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Appendix A. Source terms in the moment equations (2.7)–(2.9)
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