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Abstract
This paper proposes a theoretical insurance model to explain well-documented loss underreporting and to study
how strategic underreporting affects insurance demand. We consider a utility-maximizing insured who purchases a
deductible insurance contract and follows a barrier strategy to decide whether she should report a loss. The insurer
adopts a bonus-malus system with two rate classes, and the insured will move to or stay in the more expensive class
if she reports a loss. First, we fix the insurance contract (deductibles) and obtain the equilibrium reporting strategy
in semi-closed form. A key result is that the equilibrium barriers in both rate classes are strictly greater than the
corresponding deductibles, provided that the insured economically prefers the less expensive rate class, thereby
offering a theoretical explanation to underreporting. Second, we study an optimal deductible insurance problem in
which the insured strategically underreports losses to maximize her utility. We find that the equilibrium deductibles
are strictly positive, suggesting that full insurance, often assumed in related literature, is not optimal. Moreover, in
equilibrium, the insured underreports a positive amount of her loss. Finally, we examine how underreporting affects
the insurer’s expected profit.

1. Introduction
Underreporting losses is prevalent in insurance markets as confirmed by numerous empirical studies.1
Yet, the majority of classical insurance models either completely ignore underreporting (see Arrow,
1963 and Borch, 1962) or, even worse, lead to the contradictory conclusion that there is no incentive for
accident underreporting (see Dionne and Lasserre, 1985). To offer a theoretical explanation for underre-
porting, Cao et al. (2023b) propose a multi-period insurance model under a bonus-malus system (BMS)
and formulate a stochastic control problem in which the insured chooses a barrier strategy to report or
to hide losses. However, a restrictive assumption in that work is that the insured has full insurance cov-
erage, which raises two significant issues. First, insurance policies in real life often come with a strictly
positive deductible (copay). Second, and more importantly, by assuming full insurance, we have also
assumed a fixed contract and consequently cannot investigate how underreporting affects the insured’s

∗This paper was previously circulated under the title “Equilibrium Loss Reporting for a Risk-Averse Insured of Deductible
Insurance”; see https://ssrn.com/abstract=4549720.

1For automobile insurance, Cohen (2005), Abbring et al. (2008), Robinson and Zheng (2010), and Gong (2017), all confirm
that a significant portion of accidents is not reported, using data from Israel, the Netherlands, Canada, and China, respectively.
For underreporting in workers’ compensation insurance, see Petitta et al. (2017) and Probst et al. (2019).

C© The Author(s), 2024. Published by Cambridge University Press on behalf of The International Actuarial Association. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
re-use, distribution and reproduction, provided the original article is properly cited.

https://doi.org/10.1017/asb.2024.14 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2024.14
https://orcid.org/0000-0003-0407-5360
https://orcid.org/0000-0002-7390-7979
mailto:vryoung@umich.edu
https://ssrn.com/abstract$=$\gdef  \ignorespaces {$=$}\gdef no{no}\gdef yes{yes}4549720
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/asb.2024.14


2 Jingyi Cao et al.

Table 1. Summary statistics on the deductibles of BC policies (in million USD).

Min 25%-quantile Median Mean 75%-quantile Max
0 6.215 6.908 7.165 7.824 11.513

insurance demand and contracting decision. In order to address these issues, we extend the model in
Cao et al. (2023b) to incorporate deductible insurance and we study the following two questions:

• Question 1. Given a contract of deductible insurance, what is the equilibrium reporting strategy
for the insured?

• Question 2. Knowing how she would strategically underreport, what is the optimal deductible
insurance contract for the insured?

As hinted from the above description, the essential difference in modeling between Cao et al. (2023b)
and this paper is that the insured here purchases a deductible insurance contract. For this reason, we
start with providing empirical evidence to justify the consideration of deductible insurance over full
insurance. Using the publicly available Wisconsin Local Government Property Insurance Fund (LGPIF)
dataset,2 we examine the deductible information on all building and contents (BC) policies. Among the
total observed 6265 BC policies during 2006–2011, 6248 of them have a positive deductible, equivalent
to a proportion of 99.73%; we report summary statistics about the range of deductibles in Table 1. Both
the proportion with deductibles and the size of the deductibles in the BC policies strongly support the
extension from full insurance to deductible insurance.

Once a loss occurs (assuming it is covered and larger than the contract deductible), the insured faces
a trade-off when it comes to deciding whether she should report this loss to or hide it from the insurer.
On the one hand, reporting the loss will yield a positive reimbursement from the insurer but likely cause
an increase in future premiums;3 on the other hand, if the insured hides the loss, she bears the entire
cost herself but may enjoy a discount on future premiums due to her “clean claim record.” As is obvi-
ous, such a trade-off exists for all insurance lines that apply experience rating to compute premiums. A
typical example of such a rating system is a BMS, frequently adopted in nonlife insurance; see Lemaire
(1995) for its application in automobile insurance. Under a BMS, a reported claim often downgrades
the insured’s rate class to a worse one, resulting in a higher premium for the next period; conversely,
adding one more year (period) to the clean record improves the insured’s rate class, leading to additional
discounts on her premium. In this work, we follow Cao et al. (2023b) and consider a BMS insurance
model with two rate classes: rate class 1 is the “good” one with lower premiums and rate class 2 is
the “bad” one with higher premiums. If the insured does not file a claim in the current period, she will
move to or remain in rate class 1 for the next period; otherwise, if she reports a claim in the current
period, she will move to or remain in rate class 2 for the next period.4 As such, the difference in pre-
mium between the two rate classes might provide a monetary incentive to the insured to hide certain
losses.

Based on the described pros and cons of both reporting and hiding a loss from the insured’s per-
spective, it is, then, natural to study a decision-making problem allowing the insured to decide whether

2Please see https://sites.google.com/a/wisc.edu/local-government-property-insurance-fund for information on the LGPIF
dataset and Jeong and Zou (forthcoming) for a recent application of this dataset.

3According to Progressive automobile insurance data, one at-fault accident can raise your premium rates by up to 28% on
average; see https://www.progressive.com/answers/what-is-accident-forgiveness/.

4The transition in our two-class BMS is memoryless (Markov) because the insured’s rate class in the next period only depends
on the reporting status of the immediate previous period, but not on the entire history over multiple periods, which we plan to
investigate in a future work. The same Markov transition is also adopted in Zacks and Levikson (2004) and Charpentier et al.
(2017).
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she should report or hide an incurred loss. However, the extant literature largely ignores this impor-
tant question,5 and only a few theoretical works attempt to offer an answer, which we summarize in
chronological order as follows. Zacks and Levikson (2004) study the claim-reporting problem in a multi-
class BMS for a risk-neutral insured with deductible insurance. The insured seeks an optimal barrier
reporting strategy (i.e., reporting only losses above a threshold) to minimize her discounted aggregate
expenses. By a standard dynamic programming approach, they characterize the optimal barrier for each
rate class as “deductible + reduction in expenses from underreporting”; however, such a characterization
is implicit because the reduction in expenses is related to the value functions in different rate classes. In
the special case of three rate classes, they numerically solve the problem and obtain the optimal barriers.
Ludkovski and Young (2010) propose a two-period model with asymmetric information, in which the
insured follows a randomized reporting strategy (a Bernoulli random variable), and the insurer applies
a Bayesian approach to update its belief on the insured’s risk type based on her reporting. They find that
the optimal reporting strategy of a risk-neutral insured varies by her risk type and may be total nonre-
porting, full reporting, or mixed strategies. Robinson and Zheng (2010) show that a barrier reporting
strategy arises endogenously in equilibrium when the insurance market is competitive. Charpentier et al.
(2017) build upon the work of Zacks and Levikson (2004) and provide a rigorous, mathematical formu-
lation of the claim-reporting problem in a discrete-time BMS setup. In a numerical study assuming the
Spanish BMS with five rate classes, they not only compute the optimal barriers but also conduct sensi-
tivity analysis on the optimal barriers and the probability of underreporting. Cao et al. (2023b) aim to
answer Question 1 for an insured who has purchased full insurance and follows a barrier reporting strat-
egy. They show that the insured’s optimal (equilibrium) barrier is strictly positive in both rate classes,
and the two equilibrium barriers are equal due to model symmetry. Although the aforementioned papers
offer theoretical justification for an insured to hide certain losses, their findings all suffer from the same
limitation that the insured has purchased full insurance coverage.6

We proceed to elaborate how we tackle Question 1 under deductible insurance in detail. As introduced
earlier, the underlying insurance model is a multi-period BMS with two rate classes, and we consider a
representative insured with deductible insurance and denote the deductible amount by di ≥ 0 when the
insured is in rate class i, i = 1, 2. The decision horizon of the insured is random and independent of the
covered loss.7 Following Zacks and Levikson (2004), Charpentier et al. (2017), and Cao et al. (2023b),
we assume the insured follows a barrier strategy to make her reporting decision. Let (b1, b2) denote a
barrier reporting strategy, with bi being the barrier when the insured is in rate class i, i = 1, 2; then,
such a strategy dictates the insured in rate class i will report a loss if and only if it is greater than the
barrier bi, i = 1, 2. Following standard references in decision-making (see, e.g., Arrow, 1963, 1974 and
Borch, 1962), we model the insured’s preferences by expected utility theory and assume, for tractability
reasons, that the insured’s utility is given by an exponential function.8 Regardless of her current rate

5This question is of obvious significance to insureds; we further argue that it also concerns insurers and regulators.
Underreporting is a source of information asymmetry because insureds thereby strategically manipulate the distribution of losses
to their advantage (see, e.g., Ludkovski and Young, 2010). Failing to accurately capture insureds’ behavior related to moral hazard
might lead to imprecise ratemaking, ultimately resulting in adverse selection and financial losses for insurers. For public policy-
makers, recognizing underreporting is crucial for “public policy evaluation of spending on highway safety, driver education,
and accident reduction measures” (see Robinson and Zheng, 2010). Thus, it is important to understand insureds’ underreporting
behavior to prevent its adverse effects.

6Several related empirical papers also assume full insurance in the study; see, for instance, Gong (2017).
7Such an assumption allows us to focus on stationary (time-invariant) reporting strategies; see Cao et al. (2023b) for additional

motivation. In addition, the random terminal time τ may be interpreted as the insured’s surrender time. Under such context,
our assumptions on τ specify that the surrender behavior is exogenous, following a geometric distribution (equivalent to an
exponential distribution in continuous time). If surrender is endogenous and constitutes part of the insured’s decision, then we
face a complex optimal stopping-and-control problem, which adds an extra layer of maximization over the surrender time τ on top
of the equilibrium reporting and deductible problem we solve in this paper. Such a problem is likely untractable and lies beyond
the scope of this paper.

8Exponential utility is a popular choice in the study of optimal insurance problems; see Ghossoub et al. (2023) and Meng et al.
(2022) for recent examples.
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class, the insured may transit into the other rate class with a strictly positive probability; therefore, the
two barriers b1 and b2 are intertwined and affect each other. We treat such a potential conflict in decision-
making by a game-theoretical approach (see Björk et al., 2014 and 2017 for references). To be precise,
we formulate a noncooperative Nash game with two players who both maximize their own expected
exponential utility, in which player i represents the incarnation (or version) of the insured when she is
in rate class i, i = 1, 2. Then, Question 1 can be stated in a more precise form:

Question 1. For a fixed pair of deductibles (d1, d2), what is the Nash equilibrium barrier strategy(
b∗

1, b∗
2

)
that maximizes the insured’s expected exponential utility of terminal wealth?

We obtain a complete answer to Question 1 in Theorems 3.1 and 3.2. Theorem 3.1 provides an
equivalent condition (3.8) of (d1, d2) under which the insured prefers rate class 2 in terms of “utility,”
which implies that it is optimal for her to report all losses in excess of the deductible. As noted in the
discussion following the theorem, this condition defeats rate class 1 as being the preferable rating class.
By contrast to the condition in Theorem 3.1, when rate class 1 is preferred, Theorem 3.2 shows that
the equilibrium barrier strategy is fully characterized by the unique root of a nonlinear function (h in
(3.11)), which can be easily computed once the loss distribution and model parameters are specified.
Denoting such a root by h0, we obtain

b∗
1 = h0 > d1 ≥ 0 and b∗

2 = b∗
1 − d1 + d2 > d2 ≥ 0. (1.1)

Based on the relationship between b∗
1 and b∗

2 in (1.1), we see that b∗
1 − d1 = b∗

2 − d2. When the insured
prefers rate class 2, as in Theorem 3.1, then b∗

1 − d1 = b∗
2 − d2 = 0; otherwise, when the insured prefers

rate class 1, as in Theorem 3.2, both are positive. We call this quantity the amount of hidden losses
because losses greater than the deductible but less than the reporting barrier are those that the insured
strategically hides.

Several key remarks about the above results are due. First, because both b∗
1 > d1 and b∗

2 > d2 hold when
rate class 1 is preferred to rate class 2, our results in (1.1) confirm that the insured of any deductible
insurance will hide a strictly positive percentage of losses in both rate classes (i.e., P(Z ≤ b∗

i |Z > di)>
0, i = 1, 2, in which Z denotes the per-period loss). This finding immediately generalizes the one in
Cao et al. (2023b) from full insurance (with d1 = d2 = 0) to deductible insurance (when rate class 1
is preferred) and is consistent with the implicit result in Zacks and Levikson (2004) and Charpentier
et al. (2017). Second, the two equilibrium barriers b∗

1 and b∗
2 are not equal unless the two deductibles

are equal. In comparison, because of d1 = d2 = 0 in Cao et al. (2023b), their equilibrium barriers are the
same for the two rate classes.

The above discussion mainly focuses on the economic interpretation of the answer (1.1) to Question 1.
Next, we explain how solving Question 1 under deductible insurance is more challenging than under full
insurance, as in Cao et al. (2023b), which can be seen as a special case of ours by setting d1 = d2 = 0.
The first mathematical issue we face here is that the candidate solution to the objectives, Ji = −Aie−γ x in
(3.1) for i = 1, 2, require Ai to be strictly positive, but this is not guaranteed for any pair of deductibles d1

and d2. Therefore, our first task is to establish sufficient and necessary condition for A1 > 0 and A2 > 0,
which is achieved in Lemma 3.1 (see the inequality condition in (3.5)). This step is completely skipped
in Cao et al. (2023b) because they only need to verify the desired inequality holds for the equilibrium
reporting strategy under (d1, d2) = (0, 0). However, we must derive (3.5) for all (d1, d2) ∈R

2
+, not just

one particular pair of deductibles (d1, d2). We also point out that the associated verification step of
D

(
b∗

1, b∗
2

)
> 0 (D is defined by (3.4)) is technical here, as seen in proof of Theorem 3.2, but the same

step is simple in Cao et al. (2023b) (see their proof of Theorem 2). Furthermore, both papers need to
show that the equilibrium is not achieved at the boundary; that is, b∗

1 �= 0 or b∗
2 �= 0, as in Cao et al.

(2023b), or b∗
1 �= d1 or b∗

2 �= d2 for any pair of deductibles when rate class 1 is preferred, as in this paper.
This step is more involved here than in Cao et al. (2023b).

The solution to Question 1 in (1.1) reveals that the equilibrium barriers b∗
1 and b∗

2 depend on the
fixed contract deductibles d1 and d2. For this reason, write them as b∗

1(d1, d2) and b∗
2(d1, d2); we remark
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that the game-theoretic feature of our model is the reason both b∗
1 and b∗

2 depend on both d1 and d2.
Upon understanding such a dependence relation, a rational insured should and will take into account
underreporting when she chooses her insurance contract. Therefore, under the same setup as Question 1,
we state Question 2 in a more precise form:

Question 2. Knowing that the insured will strategically underreport losses by the barrier strat-
egy (b∗

1(d1, d2), b∗
2(d1, d2)), what is the Nash equilibrium deductible insurance contract

(
d∗

1 , d∗
2

)
that maximizes the insured’s expected exponential utility of terminal wealth?

To the best of our knowledge, the optimal insurance problem formulated in Question 2 is new to the
actuarial literature.9 As explained in the opening paragraph, it is essential to consider deductible insur-
ance in order to study Question 2; recall that Cao et al. (2023b) only obtain the equilibrium reporting
strategy (b∗

1(0, 0), b∗
2(0, 0)) under the fixed full insurance contract. To understand the impact of underre-

porting on insurance demand, consider an insured in rate class i, i = 1, 2, who has a current wealth of
Xt and faces a random loss Z , and assume a zero income for simplicity; to reduce the risk exposure, she
purchases deductible insurance with deductible di and pays premium πi. If we ignore underreporting,
her wealth at the end of the next period, Xt+1, is given by:

Xt+1 = Xt − πi − Z + (Z − di)+. (1.2)

However, if the insured follows the equilibrium barrier strategy for reporting, then we have

Xt+1 = Xt − πi − Z + (Z − di)+ · 1{Z>b∗
i (d1,d2)}, (1.3)

in which b∗
i (d1, d2) is the equilibrium solution to Question 1, and 1 denotes an indicator function. It is

clear that the two expressions of Xt+1 in (1.2) and (1.3) are noticeably different; they are identical if and
only if b∗

i (d1, d2) ≤ di for i = 1, 2, but we have shown in (1.1) that the opposite inequality holds, namely,
b∗

i (d1, d2)> di, when rate class 1 is preferred. As such, ignoring the impact of underreporting will lead
to a sub-optimal contract for the insured, justifying the need to study the problem posed in Question 2.

Solving Question 2 turns out to be highly nontrivial; the main challenge is that the equilibrium report-
ing strategy b∗

i (d1, d2) is obtained in a semi-closed form, subject to the unique root of the nonlinear
function h (defined in (3.11)), and it further feeds into the wealth dynamics in (1.3) in a nonsmooth
way (see the term with the indicator function in (1.3)). Because of these technical challenges, finding an
analytical solution to Question 2 seems unlikely even under additional assumptions on the loss distribu-
tion. As such, we resort to the numerical approach to identify the optimal (equilibrium) deductible pair(
d∗

1 , d∗
2

)
under strategic underreporting. When the positive loss follows a Gamma distribution (or Pareto

distribution), we numerically obtain the equilibrium deductible pair
(
d∗

1 , d∗
2

)
and the corresponding

equilibrium strategy
(
b∗

1, b∗
2

)
:= (b∗

1

(
d∗

1 , d∗
2

)
, b∗

2

(
d∗

1 , d∗
2

)
). The first main result is that both equilibrium

deductibles are strictly positive (i.e., d∗
1 > 0 and d∗

2 > 0); therefore, full insurance under strategic underre-
porting is not optimal to the insured, which is consistent with the literature on moral hazard (see Winter,
2013). Second, we obtain d∗

2 > d∗
1 , suggesting that insureds in rate class 2 (bad class) purchase less insur-

ance than those in rate class 1 (good class), which is due to the higher premium loading associated with
rate class 2. This finding implies a negative relation between insurance demand and riskiness, which is
empirically confirmed for auto insurance (see Li et al., 2007) and for flood insurance (see Dombrowski
et al., 2020). Third, in our numerical examples, we confirm that the amount of hidden losses is strictly
positive, which means that the insured economically prefers rate class 1, as one would expect. Last, we
conduct extensive sensitivity analysis to investigate how various model parameters affect the insured’s
equilibrium insurance and reporting decisions. An important finding is that the higher the risk aversion,

9Holtan (2001) studies optimal insurance under bonus-malus contracts, which is related to, but significantly different from, our
Question 2. The model in Holtan (2001) builds upon the classical one of Arrow (1963) but changes the insurance indemnity I to
an adjusted one Ĩ, defined by Ĩ(z) = (I(z) −ψ)+, in which ψ > 0 is the present value of all future premium savings if the insured
hides a loss and is assumed to be independent of the insurance contract (i.e., ψ does not depend on I). In contrast, the insured’s
reporting is endogenously determined in equilibrium in our work.
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the more the insurance coverage, as implied by a lower equilibrium deductible d∗
i , which is also found

when moral hazard is not considered in the study of optimal insurance (see Arrow, 1974). However, the
impact of risk aversion on the amount of hidden losses is complex and not captured by any monotone
relation. On the positive side, we observe that the amount of hidden losses is positively correlated with
the difference in the premium loadings between the two rate classes, θ2 − θ1.

We remark that underreporting losses is a type of ex post moral hazard, which can be generally
defined as insureds’ actions of manipulating the distribution of losses reported to the insurer following
an accident; see, for example, Chiappori (2000). In that regard, this paper contributes to the literature
of optimal insurance under ex post moral hazard. We refer the readers to Winter (2013) for a survey on
this topic, including both ex ante and ex post moral hazard. However, the existing literature of optimal
insurance under ex post moral hazard is largely motivated by the inefficiency of medical expenditures ex
post in health insurance; see, for instance, Zeckhauser (1970) and Ma and McGuire (1997). Another type
of ex post moral hazard is insurance fraud (i.e., intentionally increasing the number or amount of claims)
and can be theoretically ruled out by imposing the so-called incentive compatibility (IC) condition, also
termed no-sabotage condition, on the indemnity function of an insurance contract. There is a growing
stream of literature on optimal insurance or reinsurance under the IC condition; see Xu et al. (2019),
Chi and Tan (2021), Boonen and Jiang (2022), and Jin et al. (2023) for recent contributions to this field.
Note that experience rating is not considered in those works, so their claim that the IC constraint rules
out ex post moral hazard is only true under their setup but fails in a realistic model where submitting a
claim to the insurer often increases the insured’s future premium.

The remainder of the paper is organized as follows. In Section 2, we present the insurance model
allowing loss underreporting. In Section 3, for a given pair of deductibles, we formulate the insured’s
optimal reporting problem as a noncooperative Nash game and obtain her equilibrium barrier reporting
strategies in semi-explicit form. In Section 4, we study optimal insurance under strategic underreport-
ing, and in Section 5, we determine how underreporting affects the insurer’s expected profit. Section 6
concludes the paper. Additional numerical results on the equilibrium deductibles when the positive loss
follows a Pareto distribution are collected in an online appendix.

2. Model
In this section, we follow Cao et al. (2023b) to define a discrete-time insurance market to study the loss
reporting problem of an insured (she/her). The key difference from Cao et al. (2023b) is that we now
allow the insured to buy deductible insurance, instead of restricting her coverage to full insurance.

2.1. Insurance market
We model the insured’s risk by a series of independent and identically distributed (i.i.d.) nonnegative
random variables {Zt}t=1,2,..., in which Zt

d= Z denotes her loss over the tth period [t − 1, t). As suggested
by claim data from short-term insurance, we assume that the distribution of Z is a mixture of a point
mass at 0, with probability P(Z = 0) = p0 ∈ (0, 1), and a continuous, positive random variable, with full
support over (0, ∞) and a probability density function f . Let F (resp. S = 1 − F) denote the cumula-
tive distribution function (resp. survival function) of Z , that is, F(x) = p0 + ∫ x

0
f (t)dt for x ≥ 0. See, for

example, Zacks and Levikson (2004) for the same setup.
To mitigate her risk exposure, the insured buys deductible insurance from a representative

seller/insurer (it), who adopts a two-class BMS in ratemaking. Under our BMS, if the insured files a
claim in the previous period, she moves to or stays in class 2 for the next period and pays premium π2;
otherwise, she moves to or stays in class 1 and pays premium π1.10

10Here, we do not assume a specific premium principle for computing πi because the results in Section 3 do not rely on the
premium principle. However, the analysis in Section 4 requires knowing how the deductible choice affects the contract premium;
in that section, we will assume that the premium is given by the expected-value principle so that we can determine the equilibrium
deductibles.
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As supported by common practice, by following related research (i.e., Zacks and Levikson, 2004;
Charpentier et al., 2017, and Cao et al., 2023b), we assume that the insured applies a barrier strategy to
decide whether she should report a loss. Such a reporting strategy is fully captured by a pair (b1, b2) ∈R

2
+;

when the insured is in rate class i = 1, 2, she reports a loss if and only if it is greater than the barrier
bi. Because the payoff of deductible insurance is zero when the loss size is less than the deductible, we
assume, without loss of generality, that bi ≥ di for i = 1, 2. Let {Xt}t=0,1,... denote the insured’s wealth pro-
cess under a chosen barrier strategy (with dependence on (b1, b2) suppressed for notational simplicity);
here, Xt is the insured’s wealth at time t before receiving income and paying premium to the insurer.
Then, the dynamics of her wealth when she is in rate class i over [t, t + 1) follows:

Xt+1 = Xt + c − πi − Zt+1 + (Zt+1 − di)+ · 1{Zt+1>bi}, i = 1, 2, (2.1)

in which c> 0 is the insured’s per-period income, πi is the premium payable when she is in rate class i,
Zt+1 is the loss over [t, t + 1), and 1{Zt+1>bi} equals 1 if and only if Zt+1 > bi and equals 0 otherwise. We
impose the following assumption on the income c:

c>max{π1 + d1, π2 + d2}, (2.2)

which implies that the insured is able to pay the premium and deductible regardless of her rate class.
This assumption is, though technical, easily satisfied in real life.11

2.2. Insured’s preferences
We assume the insured is risk-averse, and her preferences are characterized by the standard expected util-
ity theory with an exponential utility U(x) = −e−γ x, in which γ > 0 is the insured’s (constant) absolute
risk aversion (see, e.g., Ghossoub et al., 2023 and Meng et al., 2022 for the same preference assump-
tion). The goal of the insured is to choose equilibrium barrier and deductible strategies to maximize
the expected utility of her “terminal” wealth (see, e.g., Merton, 1969 for a standard reference on this
criterion).

However, instead of a finite or an infinite planning horizon, we assume that the insured’s planning
horizon τ is random and exogenously given. Several recent papers (see Cao et al., 2022 and follow-
ups) on optimal (re)insurance problems also consider a random horizon; in particular, footnote 18 in
Cao et al. (2023a) discusses in detail the mathematical and economic justifications for the choice of
a random horizon.12 Because we assumed that the insured adopts a homogeneous barrier strategy in
reporting, it is natural to assume that the random horizon τ follows a geometric distribution, which is
the only memoryless discrete distribution. Under this assumption, we have

P(τ = t) = (1 − p) pt−1, t = 1, 2, . . . ,

in which p = P(τ > 1) ∈ (0, 1).
Based on the above setup, the insured’s objective function when she is currently in rate class i = 1, 2

is given by:

Ji(x) =E
(−e−γXτ

∣∣X0 = x, I0 = i
)
, (2.3)

in which X0 = x ∈R is the insured’s initial wealth, and I0 = i ∈ {1, 2} is her initial rate class. For nota-
tional simplicity, we often suppress the dependence of Ji upon (b1, b2, d1, d2). Several remarks are due
regarding the objective function Ji in (2.3). First, Ji is time-independent because we only consider

11For example, take auto insurance and income in the USA: Forbes’s analysis in 2023 finds that the national average cost for
car insurance (full coverage) is $2, 150 per year; the average deductible amount is $500 estimated by American Family Insurance;
and the latest (year 2021) official median household income is $70, 784.

12In addition to their arguments, such a modeling choice removes the strong horizon effect on the insured’s decision-making.
Indeed, suppose that the insured has a finite-time horizon T , then her optimal strategy for the last period is to report all losses over
the deductible, and this strategy is unlikely to be optimal for other periods.
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time-homogeneous deductible and barrier strategies, losses are i.i.d., and τ follows a geometric dis-
tribution. Therefore, the condition in (2.3), though written at time 0, can be equivalently understood as
at any time. Second, Ji is a function of both (b1, d1) and (b2, d2) for i = 1, 2, and this reflects the game
nature embedded in the BMS. To be more concrete, the joint effect of (b1, d1) and (b2, d2) on Ji is due
to the fact that there is a strictly positive probability that the insured will move from one rate class
to another. Consequently, the insured plays against herself in a noncooperative Nash game; please see
Remark 3.1 in Cao et al. (2023a) for a detailed discussion on this game feature and Björk et al. (2014)
and (2017) for standard references on such a game-theoretical approach.

We end this section with a useful lemma that reveals the relation between J1 and J2.

Lemma 2.1. The objectives J1 and J2 defined in (2.3) satisfy

J1(x) = −(1 − p)e−γ (x+c−π1)
E

(
eγ (Z−(Z−d1)+·1{Z>b1})

)
+ pF(b1)E

(
J1(x + c − π1 − Z)

∣∣Z ≤ b1

)
+ pS(b1)E

(
J2(x + c − π1 − (Z ∧ d1))

∣∣Z > b1

)
, (2.4)

J2(x) = −(1 − p)e−γ (x+c−π2)
E

(
eγ (Z−(Z−d2)+·1{Z>b2})

)
+ pF(b2)E

(
J1(x + c − π2 − Z)

∣∣Z ≤ b2

)
+ pS(b2)E

(
J2(x + c − π2 − (Z ∧ d2))

∣∣Z > b2

)
, (2.5)

in which

E

(
eγ(Z−(Z−di)+·1{Z>bi})

)
=

∫ bi

0

eγ zdF(z) + S(bi)eγ di , i = 1, 2. (2.6)

Proof. By a standard argument in renewal theory, the objective function J1 satisfies the following
recursion:

J1(x) = −Ex

(
e−γXτ

∣∣τ = 1
)
P(τ = 1)

+ {
Ex(J1(X1)|τ > 1, Z ≤ b1)P(Z ≤ b1) +Ex(J2(X1)|τ > 1, Z > b1)P(Z > b1)

}
P(τ > 1),

in which Ex denotes conditioning on X0 = x. The above recursion, along with (2.1), implies (2.4); by
a similar argument, we obtain (2.5). The result in (2.6) is straightforward by splitting the integration
region into [0, bi] and (bi, ∞). Note that the Riemann integral in (2.6) includes the jump at 0, that
is,

∫ bi

0
eγ zdF(z) = p0 + ∫

(0,bi]
eγ zf (z)dz; we follow this convention throughout this paper when writing

integrals. �

3. Equilibrium reporting strategy under deductible insurance
This section solves Question 1 from the Introduction to obtain the insured’s equilibrium reporting
strategy for a fixed deductible insurance contract. To this end, we first formally define the insured’s
equilibrium reporting strategy as follows.

Definition 3.1. Assume the deductibles (d1, d2) ∈R
2
+ are given, along with the premiums (π1, π2) ∈R

2
+.

For a fixed b2 ≥ d2, let b̄1(b2) denote arg supb1≥d1
J1(x; b1, b2); for a fixed b1 ≥ d1, let b̄2(b1) denote

arg supb2≥d2
J2(x; b1, b2). A strategy

(
b∗

1, b∗
2

)
is called an equilibrium barrier strategy if it is a fixed point

of the mapping (b1, b2) 
→ (b̄1(b2), b̄2(b1))13

Because the insured’s objectives in (2.3) involve exponential utility and because the wealth dynamics
in (2.1) is linear, we conjecture that the solution of (2.4)–(2.5) is of the form:

Ji(x) = −Ai e−γ x, i = 1, 2, (3.1)

13In this definition, we suppress the dependence of the functions upon (d1, d2) for notational simplicity.
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in which Ai > 0 is yet to be determined. Note that Ai depends on the insured’s barrier strategy (b1, b2)
and on the deductibles (d1, d2), but we suppress this dependence frequently to simplify notation. By
using the ansatz in (3.1), the recursions in (2.4)–(2.5) become

eγ (c−π1)A1 = (1 − p)

{∫ b1

0

eγ zdF(z) + S(b1)eγ d1

}
+ pA1

∫ b1

0

eγ zdF(z) + pS(b1)eγ d1 A2,

and

eγ (c−π2)A2 = (1 − p)

{∫ b2

0

eγ zdF(z) + S(b2)eγ d2

}
+ pA1

∫ b2

0

eγ zdF(z) + pS(b2)eγ d2 A2.

Solving the above system yields

A1(b1; b2) = (1 − p)
eγ (c−π2)

{∫ b1

0
eγ zdF(z) + eγ d1 S(b1)

}
+ N

(
b1, b2

)
D(b1, b2)

, (3.2)

and

A2(b2; b1) = (1 − p)
eγ (c−π1)

{∫ b2

0
eγ zdF(z) + eγ d2 S(b2)

}
+ N(b1, b2)

D(b1, b2)
, (3.3)

in which N and D equal, respectively,

N(b1, b2) = p

{
eγ d1 S(b1)

∫ b2

0

eγ zdF(z) − eγ d2 S(b2)
∫ b1

0

eγ zdF(z)

}
,

and

D(b1, b2) =
{

eγ (c−π1) − p
∫ b1

0

eγ zdF(z)

} (
eγ (c−π2) − peγ d2 S(b2)

) − p2eγ d1 S(b1)
∫ b2

0

eγ zdF(z). (3.4)

Because the insured is a utility maximizer, her objective Ji(x) in (2.3) must be strictly increasing with
respect to the initial wealth x, which is why we require Ai in (3.1) to be strictly positive. However, the
expressions in (3.2) and (3.3) cannot guarantee positiveness of A1 and A2; thus, we derive conditions
under which both are positive.

Lemma 3.1. A1 in (3.2) is positive if and only if{
eγ (c−π1) − p

∫ b1

0

eγ zdF(z)

} (
eγ (c−π2) − peγ d2 S(b2)

)
> p2eγ d1 S(b1)

∫ b2

0

eγ zdF(z). (3.5)

If inequality (3.5) holds, then A2 in (3.3) is positive.

Proof. For ease of notation in this proof, let

αi = eγ (c−πi), βi = eγ di S(bi), δi =
∫ bi

0

eγ zdF(z), i = 1, 2,

and


1 = α1 − pδ1, 
2 = α2 − pβ2.

Note that 
2 > 0 because eγ (c−(π2+d2)) > 1> pS(b2) by the assumption in (2.2).
First, rewrite A1 and A2 as follows (by factoring out the positive constant 1 − p):

A1 ∝ N1

D
, A2 ∝ N2

D
,
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in which

N1 =
2δ1 + (α2 + pδ2)β1 =
2δ1 + (
2 + pβ2 + pδ2)β1 =
2(δ1 + β1) + (δ2 + β2)pβ1,

N2 =
1β2 + (α1 + pβ1)δ2 =
1β2 + (
1 + pδ1 + pβ1)δ2 =
1(δ2 + β2) + (δ1 + β1)pδ2,

and

D =
1
2 − p2β1δ2.

Because 
2 > 0, we see that N1 > 0. A1 is positive if and only if D is positive, which is equivalent to
inequality (3.5). Finally, if D> 0, then


1 = eγ (c−π1) − p
∫ b1

0

eγ zdF(z)> 0,

which implies N2 > 0 and eventually A2 > 0. �
Because the condition in (3.5) is sufficient and necessary in order for both A1 and A2 to be positive,

as required by the ansatz in (3.1), we assume in the subsequent analysis that this condition holds, which
we formalize next.

Assumption 3.1. Henceforth, assume the deductibles d1 and d2 are such that (3.5) holds when (b1, b2) =
(d1, d2), or equivalently, D(d1, d2)> 0, in which D is given in (3.4).

Remark 3.1. The insured’s objective Ji, defined as a conditional expectation in (2.3), is well defined
and unique almost surely (although 2.3 does not guarantee that Ji is finite). Under the ansatz for Ji in
(3.1), the recursion system satisfied by J1 and J2 (2.4)–(2.5) leads to a unique pair of solutions (A1, A2).
When Assumption 3.1 is imposed, both A1 and A2 are positive, and thus the ansatz in (3.1) with A1 and
A2 given by (3.2) and (3.3) yields the unique, finite solution of Ji in (2.3).

For a deductible pair (d1, d2) satisfying Assumption 3.1, define the set of admissible barrier
strategies by:

D := {
(b1, b2) ∈ [d1, ∞) × [d2, ∞)

∣∣ D(b1, b2)> 0
}
,

in which D is defined in (3.4). As an aside, because the function D is continuous, Assumption 3.1 implies
D contains a neighborhood of (d1, d2). In what follows, when we consider optimization problems over b1

or b2, we always implicitly assume the optimization region is a projection of D onto the corresponding
argument space. After we obtain a candidate for the equilibrium barrier strategy

(
b∗

1, b∗
2

)
, we will verify

that it is, indeed, in the set D.
We first analyze the case when the insured is in rate class 1 at time 0, and we solve the problem:

b̄1(b2) := arg sup
b1≥d1

J1(x) = arg inf
b1≥d1

A1(b1; b2),

for a fixed b2 ≥ d2. The solution is presented in the next proposition.

Proposition 3.1. For a fixed b2 ≥ d2, the function b1 
→ A1(b1; b2) has a unique minimizer b̄1(b2) on
[d1, ∞). If

eγπ1

{∫ d1

0

eγ zdF(z) + eγ d1 S(d1)

}
≥ eγπ2

{∫ b2

0

eγ zdF(z) + eγ d2 S(b2)

}
,

then b̄1(b2) = d1. Otherwise, b̄1(b2) is the unique zero of g1( · ; b2) in (d1, ∞), in which

g1(b1; b2) = (
eγ (b1−d1) − 1

) + pe−γ (c−π1)

{∫ b1

0

eγ zdF(z) + eγ b1 S(b1)

}

− pe−γ (c−π2)

{∫ b2

0

eγ zdF(z) + eγ (b1−d1)eγ d2 S(b2)

}
. (3.6)
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Proof. After factoring 1−p
D2 eγ (c−π1)eγ (c−π2) eγ d1 f (b1)

(
eγ (c−π2) − peγ d2 S(b2)

)
> 0 from the derivative of A1

with respect to b1, we obtain that this derivative is positively proportional to g1 in (3.6). The derivative
of g1 with respect to b1 equals

∂g1

∂b1

= γ eγ (b1−d1)
(
1 + pe−γ (c−(π1+d1))S(b1) − pe−γ (c−(π2+d2))S(b2)

)
> 0,

which is positive because e−γ (c−(π2+d2)) < 1. Next,

lim
b1→∞

g1(b1; b2)

= lim
b1→∞

eγ (b1−d1)

(
1 + pe−γ (c−(π1+d1))

{∫ b1

0

e−γ (b1−z)dF(z) + S(b1)

}
− pe−γ (c−(π2+d2))S(b2)

)
= ∞,

in which the last line follows because 0<
∫ b1

0
e−γ (b1−z)dF(z) + S(b1)< 1 for all b1 and because

e−γ (c−(π2+d2)) < 1.
Finally,

g1(d1; b2) ∝ eγπ1

{∫ d1

0

eγ zdF(z) + eγ d1 S(d1)

}
− eγπ2

{∫ b2

0

eγ zdF(z) + eγ d2 S(b2)

}
.

If this expression is nonnegative, then the minimizer b̄1(b2) = d1 because g1 increases to ∞; otherwise,
if this expression is negative, then b̄1(b2) equals the unique zero of g1( · ;b2) in (d1, ∞). �

In the next proposition, we solve the problem:

arg sup
b2≥d2

J2(x) = arg inf
b2≥d2

A2(b2; b1),

which corresponds to the case when the insured is in rate class 2.

Proposition 3.2. For a fixed b1 ≥ d1, the function b2 
→ A2(b2; b1) has a unique minimizer b̄2(b1) on
[d2, ∞). If

eγπ1

{∫ b1

0

eγ zdF(z) + eγ d1 S(b1)

}
≥ eγπ2

{∫ d2

0

eγ zdF(z) + eγ d2 S(d2)

}
,

then b̄2(b1) = d2. Otherwise, b̄2(b1) is the unique zero of g2( · ; b1) in (d2, ∞), in which

g2(b2; b1) = (
eγ (b2−d2) − 1

) + pe−γ (c−π1)

{∫ b1

0

eγ zdF(z) + eγ (b2−d2)eγ d1 S(b1)

}

− pe−γ (c−π2)

{∫ b2

0

eγ zdF(z) + eγ b2 S(b2)

}
. (3.7)

Proof. After factoring 1−p
D2 eγ (c−π1)eγ (c−π2) eγ d2 f (b2)

(
eγ (c−π1) − p

∫ b1

0
eγ zdF(z)

)
> 0 from the derivative

of A2 with respect to b2, we obtain that this derivative is positively proportional to g2 in (3.7). The
derivative of g2 with respect to b2 equals

∂g2

∂b2

= γ eγ (b2−d2)
(
1 + pe−γ (c−(π1+d1))S(b1) − pe−γ (c−(π2+d2))S(b2)

)
,

which is positive because e−γ (c−(π2+d2)) < 1. We obtain the claimed result by following the same argument
as in the proof of Proposition 3.1. �

Recall from Definition 3.1 that the insured’s equilibrium barrier strategy, if exists, is a fixed point of
the mapping (b1, b2) 
→ (b̄1(b2), b̄2(b1)), in which b̄1(b2) ≥ d1 and b̄2(b1) ≥ d2 are obtained in the previous
two propositions, respectively. We naturally ask whether the fixed point will be achieved at the boundary
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corner (d1, d2); in that case, the insured reports all losses above the deductible, and there is no ex post
moral hazard in reporting. The next theorem provides an answer to this question.

Theorem 3.1. If d1 and d2 satisfy

eγπ1

{∫ d1

0

eγ zdF(z) + eγ d1 S(d1)

}
≥ eγπ2

{∫ d2

0

eγ zdF(z) + eγ d2 S(d2)

}
, (3.8)

then the equilibrium strategy
(
b∗

1, b∗
2

)
is (d1, d2).

Proof. Note that

∂

∂b

[
eγπ1

{∫ b

0

eγ zdF(z) + eγ dS(b)

}]
= (

eγ b − eγ d
)
f (b) ≥ 0, (3.9)

for all b ≥ d. Thus, if (3.8) is satisfied, then, by using (3.9) and b1 ≥ d1, we get

eγπ1

{∫ b1

0

eγ zdF(z) + eγ d1 S(b1)

}
≥ eγπ2

{∫ d2

0

eγ zdF(z) + eγ d2 S(d2)

}
.

Under the above condition, Propositions 3.1 and 3.2, along with Assumption 3.1, imply that (d1, d2) is
the unique equilibrium barrier strategy. �

One can interpret inequality (3.8) as follows: Consider the expected utility of the per-period outgo of
the insured when she is in rate class i and when she files claims for all losses in excess of the deductible
(or equivalently, bi = di), that is,

E
(−e−γ (−πi−(Z∧di))

) = −eγπi

{∫ di

0

eγ zdF(z) + eγ di S(di)

}
.

Inequality (3.8) means that the expected utility of this outgo is (weakly) less when the insured is in rate
class 1 than when she is in rate class 2. Therefore, the insured (weakly) prefers to be in rate class 2 and
has no incentive to hide her losses in excess of the deductible. This possible preference for rate class 2
defeats its purpose as a less desirable rate class, or “punishment” for filing claims, so for the remainder
of this section, we assume that d1 and d2 satisfy

eγπ1

{∫ d1

0

eγ zdF(z) + eγ d1 S(d1)

}
< eγπ2

{∫ d2

0

eγ zdF(z) + eγ d2 S(d2)

}
. (3.10)

Given (3.10), we show in the next theorem that the insured employs a nontrivial barrier strategy in
equilibrium and has incentives to hide certain losses above the deductible, which is in stark contrast to
the finding of Theorem 3.1.

Theorem 3.2. Assume d1 and d2 satisfy (3.10). The insured’s equilibrium barrier strategy is uniquely
given by

(
b∗

1, b∗
2

) = (b∗
1, b∗

1 − d1 + d2) ∈D, in which b∗
1 equals the unique zero of h on (d1, ∞), with h

defined by:

h(b) = (
eγ (b−d1) − 1

) + pe−γ (c−π1)

{∫ b

0

eγ zdF(z) + eγ bS(b)

}

− pe−γ (c−π2)

{∫ b−d1+d2

0

eγ zdF(z) + eγ (b−d1+d2)S(b − d1 + d2)

}
. (3.11)

Proof. We start by showing that b∗
i �= di for i = 1, 2, if the inequality in (3.10) holds. First, (3.9) and

(3.10) imply, for b2 ≥ d2,

eγπ1

{∫ d1

0

eγ zdF(z) + eγ d1 S(d1)

}
< eγπ2

{∫ b2

0

eγ zdF(z) + eγ d2 S(b2)

}
.

It follows from Proposition 3.1 that b̄1(b2)> d1 for all b2 ≥ d2.
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Next, we show that (b̄1(d2), d2) is not an equilibrium. Assuming the contrary holds, we have
g1(b̄1(d2); d2) = 0, which, by (3.6), is equivalent to

0 = (
eγ (b̄1(d2)−d1) − 1

) + pe−γ (c−π1)

{∫ b̄1(d2)

0

eγ zdF(z) + eγ b̄1(d2)S(b̄1(d2))

}

− pe−γ (c−π2)

{∫ d2

0

eγ zdF(z) + eγ (b̄1(d2)−d1)eγ d2 S(d2)

}
.

Using b̄1(b2)> d1, (3.9), and the above equality, we obtain

eγπ1

{∫ b̄1(b2)

0

eγ zdF(z) + eγ d1 S(b̄1(b2))

}

≤ eγπ1

{∫ b̄1(b2)

0

eγ zdF(z) + eγ b̄1(b2)S(b̄1(b2))

}

= − eγ c

p

(
eγ (b̄1(b2)−d1) − 1

) + eγπ2

{∫ d2

0

eγ zdF(z) + eγ (b̄1(b2)−d1)eγ d2 S(d2)

}

= eγπ2

{∫ d2

0

eγ zdF(z) + eγ d2 S(d2)

}
− (

eγ (b̄1(b2)−d1) − 1
) (

eγ c

p
− eγ (π2+d2)S(d2)

)

< eγπ2

{∫ d2

0

eγ zdF(z) + eγ d2 S(d2)

}
,

in which the last inequality follows from c>π2 + d2 in (2.2). Thus, Proposition 3.2 implies b̄2

(
b̄1(d2)

)
>

d2, a contradiction! Therefore, (b̄1(d2), d2) is not an equilibrium.
It follows that an equilibrium

(
b∗

1, b∗
2

)
, if it exists, simultaneously solves the two equations

g1(b1; b2) = 0 and g2(b2; b1) = 0, in which g1 and g2 are given in (3.6) and (3.7), respectively. By
subtracting those two equations, we obtain

0 = (
eγ (b1−d1) − eγ (b2−d2)

) {
1 + p

(
e−γ (c−(π1+d1))S(b1) − e−γ (c−(π2+d2))S(b2)

)}
,

which implies b∗
1 − d1 = b∗

2 − d2 because the factor in curly brackets is positive.
By substituting b∗

2 = b∗
1 − d1 + b2 into g1(b1; b2) = 0, we get h(b∗

1) = 0, in which h is given by (3.11).
Next, we show that h has a unique positive zero in (d1, ∞). To that end, note

h(d1) = pe−γ (c−π1)

{∫ d1

0

eγ zdF(z) + eγ d1 S(d1)

}
− pe−γ (c−π2)

{∫ d2

0

eγ zdF(z) + eγ (d2)S(d2)

}
< 0,

in which the inequality follows from (3.10). Also,

lim
b→∞

h(b) = lim
b→∞

eγ (b−d1)

[
1 + pe−γ (c−(π1+d1))

{∫ b

0

e−γ (b−z)dF(z) + S(b)

}

−pe−γ (c−(π2+d2))

{∫ b−d1+d2

0

e−γ (b−d1+d2−z)dF(z) + S(b − d1 + d2)

}]
= ∞,

in which the limit follows from c>max (π1 + d1, π2 + d2) and
∫ b

0
e−γ (b−z)dF(z) + S(b) ∈ (0, 1). Finally,

h′(b) = γ eγ (b−d1)
{
1 + p

(
e−γ (c−(π1+d1))S(b) − e−γ (c−(π2+d2))S(b − d1 + d2)

)}
> 0,

proving the claim.
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It remains to show that
(
b∗

1, b∗
2

) ∈D, that is, D
(
b∗

1, b∗
2

)
> 0, which, by Lemma 3.1, is equivalent to

(3.5). Setting

L(b) =
∫ b

0

e−γ (b−z)dF(z) + S(b),

which lies in (0, 1), we obtain the following equivalence relations:

D
(
b∗

1, b∗
2

)
> 0

⇐⇒
{

eγ (c−π1) − p
∫ b∗

1

0

eγ zdF(z)

} (
eγ (c−π2) − peγ d2 S(b∗

2)
)
> p2eγ d1 S(b∗

1)
∫ b∗

2

0

eγ zdF(z)

⇐⇒ eγ (b∗
1+d2)

[(
eγ (c−π1−b∗

1) − pL(b∗
1)

) + pS(b∗
1)

] {(
eγ (c−(π2+d2)) − pL(b∗

2)
) + p

∫ b∗
2

0

e−γ (b∗
2−z)dF(z)

}

> p2eγ (d1+b∗
2)S(b∗

1)
∫ b∗

2

0

e−γ (b∗
2−z)dF(z)

⇐⇒ (
eγ (c−π1−b∗

1) − pL(b∗
1)

) {(
eγ (c−(π2+d2)) − pL(b∗

2)
) + p

∫ b∗
2

0

e−γ (b∗
2−z)dF(z)

}

+ pS(b∗
1)

(
eγ (c−(π2+d2)) − pL(b∗

2)
)
> 0,

which holds if peγ b∗
1L(b∗

1)< eγ (c−π1). Note that b 
→ eγ bL(b) strictly increases. If peγ bL(b)< eγ (c−π1) for
all b ≥ d1, then we are done. Thus, without loss of generality, let b̃ ≥ d1 be the unique value that solves

p eγ b̃L(b̃) = eγ (c−π1). (3.12)

As an aside, note that b̃> d1; indeed, (3.12) implies peγ (b̃−d1)L(b̃) = eγ (c−(π1+d1)), which is greater than 1
because c>π1 + d1. Thus, because pL(b̃) ∈ (0, 1), we must have eγ (b̃−d1) > 1, which implies b̃> d1.

Now, peγ b∗
1L(b∗

1)< eγ (c−π1) if and only if b∗
1 < b̃, which is equivalent to h(b̃)> 0 because h is strictly

increasing. We compute

h(b̃) = (
eγ (b̃−d1) − 1

) + pe−γ (c−π1)eγ b̃L(b̃) − pe−γ (c−π2)eγ (b̃−d1+d2)L(b̃ − d1 + d2)

= eγ (b̃−d1)
(

1 − pe−γ (c−(π2+d2))L(b̃ − d1 + d2)
)

,

which is positive because c>π2 + d2 and pL(b̃ − d1 + d2) ∈ (0, 1). It follows that b∗
1 < b̃, which implies

peγ b∗
1L(b∗

1)< eγ (c−π1). Therefore, D
(
b∗

1, b∗
2

)
> 0 holds, and

(
b∗

1, b∗
2

) ∈D is verified. �
Remark 3.2. We can use Theorem 3.2 to strengthen Theorem 3.1 by asserting that

(
b∗

1, b∗
2

) = (d1, d2) if
and only if inequality (3.8) holds.

Remark 3.3. From the proof of Theorem 3.2, we see that b∗
1 − d1 = b∗

2 − d2 holds for any fixed contract
(d1, d2). This result relies heavily on the “symmetry” of the 2-class BMS with Markovian transition.
Once this symmetry breaks, we expect b∗

1 − d1 �= b∗
2 − d2 in general. Indeed, Section 5.2 in Cao et al.

(2023b) considers a 3-class BMS under full insurance (d1 = d2 = 0) and shows that the equilibrium
barriers are not equal. Note that if we were to allow the transition to depend on claim frequency or
severity, the underlying BMS would naturally have more than two classes, and our results in Cao et al.
(2023b) would then imply that b∗

i − di �= b∗
j − dj for i �= j. To see this, extend our model in Section 2 to

allow the insurer to use the last two periods of claim history in ratemaking and still assume that in each
period, the claim frequency is either 0 or 1; then, this model has four classes, (0, 0), (0, 1), (1, 0), and
(1, 1), in which the first component indicates the claim frequency two periods ago and the second, the
most recent period.

Remark 3.4. We return to an earlier comment regarding the choice of formulating the insured’s loss
reporting problem as a noncooperative Nash game, as in Definition 3.1. The same approach was first
adopted by Thomas Björk and his coauthors (see Björk et al., 2014, 2017) to handle time-inconsistent
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stochastic control problems, in which the term “time inconsistency” roughly means that an optimal
strategy derived by an agent at time s might not be optimal for the same agent at a later time t> s.
One possible, certainly not the only, solution is to “partition” the single agent into many selfs (play-
ers) indexed by time and formulate a noncooperative Nash game, in which each player only controls
during her own time period. If an equilibrium for such a game can be found, no player has an incen-
tive to deviate from it, and thus such a solution can be adopted by the agent without imposing further
commitment. With that in mind, the insured in our context faces the same challenge; that is, the best
decision based on her current rate class might not be the best when she moves to a different rate class.
In other words, arg max(b1,b2) J1 �= arg max(b1,b2) J2 is possible in general. As such, following the game-
theoretical approach, we interpret the insured as two players: player i represents the insured in rate class
i and chooses her own action bi, i = 1, 2.

As already hinted above, there are alternative formulations of the insured’s loss reporting problem.
For example, one could directly maximize J1 and J2 separably, over both b1 and b2. Recall from (3.1)
that Ji = −Ai e−γ x, with A1 and A2 given by (3.2) and (3.3), respectively; thus, we would solve

inf
(b1,b2)∈[d1,∞)×[d2,∞)

Ai(b1, b2), i = 1, 2.

When maximizing J1(b1, b2) and J2(b1, b2) over both b1 and b2, we obtain the identical pair of first-order
necessary conditions for the two maximization problems, which necessarily equal those in Propositions
3.1 and 3.2. Moreover, numerical work shows that the maximizers of J1 and J2 are equal to each other and
are equal to the equilibrium

(
b∗

1, b∗
2

)
as stated in Theorems 3.1 and 3.2. This nice coincidence, though

not expected in general, indicates that maximizing the bivariate objectives J1 and J2 yields the same
solution as our Nash equilibrium.

4. Equilibrium insurance under strategic underreporting
In this section, we study an optimal insurance problem for an insured who follows the equilibrium barrier
strategy obtained in Theorem 3.1 or 3.2 to strategically underreport her losses. We pose this problem in
Question 2 in the Introduction.

We start with a formal definition of the insured’s equilibrium deductible insurance under strategic
underreporting as follows. Recall that (b∗

1(d1, d2), b∗
2(d1, d2)) denotes the insured’s equilibrium barrier

strategy obtained in Theorem 3.1 or 3.2, for a fixed deductible pair (d1, d2) ∈R
2
+.

Definition 4.1. For a fixed d2 ≥ 0, let d̄1(d2) denote arg supd1≥0 J1(x; b∗
1(d1, d2), b∗

2(d1, d2), d1, d2); for a
fixed d1 ≥ 0, let d̄2(d1) denote arg supd2≥0 J2(x; b∗

1(d1, d2), b∗
2(d1, d2), d1, d2). A deductible pair

(
d∗

1 , d∗
2

)
yields the equilibrium deductible insurance under strategic underreporting if it is a fixed point of the
mapping (d1, d2) 
→ (d̄1(d2), d̄2(d1)).

The premium will depend on the deductible chosen, and for concreteness, we assume that the insurer
applies the expected-value principle to calculate premiums, but the premium loading varies by rate class.
To be precise, if the insured is currently in rate class i and chooses a deductible di ≥ 0, her (per-period)
premium is given by:

πi = (1 + θi) E(Z − di)+, i = 1, 2,

in which θi > 0 is the premium loading for rate class i, and x+ := max{x, 0}. Because class 2 is considered
as “punishment” and rate class 1 as “reward,” we assume θ1 < θ2 throughout the paper.

To obtain the equilibrium insurance contract as stated in Definition 4.1, we solve the following
problem for each rate class:

sup
di≥0

Ji(x; d1, d2), i = 1, 2, (4.1)
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Table 2. Parameter values in the base case.

Parameter Symbol Value
Insured’s per-period income c 35
Insured’s risk aversion γ 0.1
Risk loading for rate class 1 θ1 20%
Risk loading for rate class 2 θ2 50%
Gamma distribution (κ , λ) (2,5)
P(Z = 0) p0 0.1
P(τ > 1) p 0.8

in which Ji equals

Ji(x; d1, d2) = Ji

(
x; b∗

1(d1, d2), b∗
2(d1, d2), d1, d2

)
.

Recall Ji is defined in (2.3), and
(
b∗

1(d1, d2), b∗
2(d1, d2)

)
is obtained as in Theorem 3.1 or 3.2. If an

equilibrium
(
d∗

1 , d∗
2

)
exists, we will write b∗

1 (resp. b∗
2) to denote b∗

1

(
d∗

1 , d∗
2

) (
resp. b∗

2

(
d∗

1 , d∗
2

) )
.

Although Theorems 3.1 and 3.2 provide a complete characterization of
(
b∗

1(d1, d2), b∗
2(d1, d2)

)
, the

results are semi-explicit, and the related inequalities in (3.8) and (3.10) strongly depend on the loss
distribution F. In consequence, finding an analytical solution to the optimization problems in (4.1) is
likely impossible. So, we resort to a numerical approach for finding the equilibrium deductible startegy.
To start, we assume in the rest of this section that the insured’s per-period loss Z is a mixture of a
point mass at zero and a continuous random variable Z̃ ∼ Gamma(κ , λ), with weights p0 ∈ (0, 1) and
1 − p0, respectively. Recall that the Gamma(κ , λ) distribution is characterized by its probability density
function:

f (x) = xκ−1 e−x/λ

λκ�(κ)
, x> 0, with �(κ) =

∫ ∞

0

tκ−1e−tdt.

The Gamma distribution belongs to the exponential family of distributions and can capture “fat tails” that
are often encountered in insurance data; see, for instance, Section 17.3.1 in Frees (2009). In Appendix
A, we consider another popular fat-tailed distribution, specifically, the Pareto distribution.

We set the parameter values for the model as listed in Table 2, which constitutes the base case of our
numerical study. The key purpose of the subsequent numerical analysis is to obtain qualitative findings
on the equilibrium deductible strategy and its implications. In addition, we conduct extensive sensitivity
analysis to understand how model parameters affect the insured’s equilibrium decisions on insurance
and reporting. When we investigate the impact of a particular parameter on the insured’s equilibrium
strategy, we allow this parameter to vary over a reasonable range but keep the remaining parameters
unchanged, with values as in Table 2.

Under the base case with the parameters as in Table 2, we compute(
d∗

1 , d∗
2

) = (7.9029, 12.2407) and
(
b∗

1, b∗
2

) = (7.9515, 12.2893). (4.2)

As a side note, the expected loss size is EZ = (1 − p0)EZ̃ = 9. We summarize the key common findings
from the base case and the subsequent sensitivity studies as follows.

• First, the equilibrium deductibles are always strictly positive (i.e., d∗
1 > 0 and d∗

2 > 0). In conse-
quence, when strategic underreporting is considered and allowed, full insurance is not optimal;
therefore, the full insurance assumption made in Cao et al. (2023b) and several other papers
are questionable. As underreporting is a form of ex post moral hazard, this result strengthens
the conclusion that “full insurance is never optimal in the presence of moral hazard” (Winter,
2013, p.212).
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Figure 1. Impact of insured’s risk aversion γ on the equilibrium deductibles and hidden losses.

• Second, the inequality d∗
2 > d∗

1 always holds. This result implies that the insured’s risk classi-
fication negatively affects the insurance demand; that is, the worse the rate class, the less the
insurance coverage. Several empirical studies obtain the same conclusion; see, for instance, Li
et al. (2007) for auto insurance and Dombrowski et al. (2020) for flood insurance.

• Third, the numerical solutions confirm

b∗
1 − d∗

1 = b∗
2 − d∗

2 =: b∗ − d∗ > 0. (4.3)

Since the difference is the same in both rate classes, we denote such a difference by b∗ − d∗

and name it the amount of hidden losses. Recall that in the presence of a deductible d and
a reporting barrier b, losses greater than d but less than b are the ones that are strategically
hidden by the insured. Note that we know, from Theorem 3.1, that given an insurance contract
(d1, d2), it is possible for the insured to report full losses, that is, b∗

i − di = 0 for i = 1, 2. So,
the essential takeaway from (4.3) is that the amount of hidden losses is strictly positive in
equilibrium, which provides theoretical explanation for the insured’s underreporting and shows
that inequality (3.10) holds in equilibrium. It also generalizes the result in Cao et al. (2023b),
in which the authors show that the hidden losses are positive under full insurance; our work
shows that this result still holds when the insured can choose her deductibles freely.

• Last, we can show that the “double equilibrium” contract under strategic underreporting in (4.2)
yields higher welfare (as measured by expected utility) for the insured than the “single equi-
librium” contract under full reporting. To arrive at this conclusion, we can force the reporting
barriers to be equal to the contract deductibles, bi = di for i = 1, 2, which effectively prevents
underreporting. Under this constraint, we revisit the insured’s optimal deductible insurance
problem in (4.1) and obtain the corresponding equilibrium deductibles d̃1 and d̃2:

d̃1 = 7.9030> d∗
1 and d̃2 = 12.2409> d∗

2 .

Further, set x = 0 and write the insured’s expected utility Ji under (d1, d2, b1, b2) =
(d∗

1 , d∗
2 , b∗

1, b∗
2) as J∗

i and under (d1, d2, b1, b2) = (d̃1, d̃2, d̃1, d̃2) as J̃i, i = 1, 2. Then, a direct com-
putation shows that J∗

i > J̃i holds for both i = 1, 2, although the two quantities are close. For
instance, under the scaling from Ji to −100 ln (−Ji), we obtain

−100 ln (−J∗
1 ) = 403.6277> 403.6268 = −100 ln (−J̃1),

−100 ln (−J∗
2 ) = 396.5032> 396.5025 = −100 ln (−J̃2).

In the first sensitivity study, we investigate how the insured’s risk aversion γ affects her equilibrium
deductibles

(
d∗

1 , d∗
2

)
and the amount of hidden losses b∗ − d∗, as defined in (4.3). The left panel of

Figure 1 shows that both d∗
1 and d∗

2 are decreasing in γ . This finding is consistent with the classic literature
without moral hazard, namely, that a more risk-averse agent demands more insurance coverage; see
Arrow (1974).
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Figure 2. Impact of premium loading θ1 on equilibrium deductibles and hidden losses.
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Figure 3. Impact of premium loading θ2 on equilibrium deductibles and hidden losses.

Surprisingly, the amount of hidden losses b∗ − d∗ is not monotone in γ , as shown in the right panel
of Figure 1. When the risk aversion parameter γ increases from 0 to 1, b∗ − d∗ first increases and then
decreases. To understand this non-monotonicity of b∗ − d∗ with respect to γ , one can show that for the
function h defined in (3.11), lim

γ→0+
h(b1)
γ

= b1 − d1 − p(π2 − π1). As γ → 0+, the insured becomes risk-
neutral and has no demand for insurance, this implies both d∗

1 and d∗
2 converge to infinity, which implies

lim
γ→0+

π2 = lim
γ→0+

π1 = 0 and lim
γ→0+

(b∗
1 − d∗

1) = 0. On the other hand, as γ gets arbitrarily large, the indi-
vidual becomes very risk-averse, and her equilibrium deductibles and barriers all approach 0. Thus,
applying Occam’s razor, we expect b∗ − d∗ either (1) to increase from 0 to some positive number and,
then, decrease to 0 as γ increases, or (2) to stay identically 0. Our numerical work shows that the former
occurs.

We next consider the impact of the premium loadings θ1 and θ2 on the equilibrium deductibles and
hidden losses. From the two left panels in Figures 2 and 3, we see that the equilibrium deductible in
each rate class increases with respect to the premium loading of that rate class and does not change
much with respect to the premium loading for the other rate class. Therefore, the insured purchases less
insurance as the premium loading for her current rate class increases. Also, as the penalty decreases
(i.e., as θ2 − θ1 decreases), then d∗

2 − d∗
1 decreases.

From the two right panels in Figures 2 and 3, we deduce that the amount of hidden losses decreases
in θ1 and increases in θ2. The reason for this effect is that, with a smaller θ1 or larger θ2, the difference
in premium loading between the two rate classes is larger, or in other words, the penalty for changing
from rate class 1 to rate class 2 (or the reward for moving in the other direction) is larger. As a result,
the insured has more incentive to hide her losses. Also, note that d∗

1 = 0 when θ1 = 0, which means the
insured purchases full insurance in rate class 1 when the premium loading is 0. However, this result also
depends on other model parameters; for example, in work not shown here, if the per-period income rate
is low enough, the insured will not necessarily purchase full insurance even if θ1 = 0.
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Figure 4. Impact of probability mass at zero p0 on equilibrium deductibles and hidden losses.
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Figure 5. Impact of renewal probability p on equilibrium deductibles and hidden losses.

In Figure 4, we study the impact of p0 = P(Z = 0), the probability of no loss per period, on the
insured’s equilibrium strategies. The right panel shows that the amount of hidden losses decreases in
p0. The reason lies behind the fact that the motivation for underreporting comes from the difference in
the premiums between the two rate classes. When p0 increases, a positive loss is less likely to occur and
the difference in the premiums between the two rate classes shrinks. Thus, the insured will hide less of
her loss. The left panel of Figure 4 shows that the two equilibrium deductibles d∗

1 and d∗
2 both decrease

in p0, suggesting the insured will purchase more insurance for more unlikely losses, which seems coun-
terintuitive. However, note that with a larger value of p0, the premium also decreases, and for the same
amount spent on insurance premium, the insured could purchase more insurance via a lower deductible.

Figure 5 presents the effect of p on the equilibrium deductibles and hidden losses. Recall that p =
P(τ > 1), with τ being the insured’s planning horizon, measures the probability of receiving the reward
for underreporting (or penalty for reporting). When p = 0, the contract ends at the end of the current
period with probability one; thus, there is no need to consider the possible penalty or reward for the
next period. In this case, the insured reports her full loss, explaining why b∗ − d∗ = 0 when p = 0. As
p increases, the probability of reward for underreporting increases, which motivates the insured to hide
more losses. This argument explains the increase of b∗ − d∗ with respect to p observed in the right panel
of Figure 5. We observe from the left panel of Figure 5 that both d∗

1 and d∗
2 increase in p, meaning the

insured will buy less insurance in both rate classes if the game is more likely to continue. The reason for
this phenomenon is, as p increases, the expected time horizon Eτ also increases. If the insured were to
purchase the same amount of insurance, the per-period premium would stay the same but the premium
over the entire time horizon would increase, which would reduce the insured’s terminal wealth. Thus,
the insured is better-off purchasing less insurance and relying more on self-insuring (because both b∗

1

and b∗
2 increase) for a longer expected time horizon.
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Figure 6. Impact of income rate c on equilibrium deductibles and hidden losses.

Finally, Figure 6 demonstrates the impact of the per-period income rate c on equilibrium strategies.
The left panel shows that both equilibrium deductibles d∗

1 and d∗
2 decrease with respect to c. Thus,

an insured with higher income will purchase more insurance, because the insurance is relatively less
expensive. Similarly, with a higher income rate, the reward for underreporting is less significant, which
induces the insured to hide less losses, as shown in the right panel of Figure 6.

5. Impact of underreporting on insurer’s profit
We analyzed strategic loss reporting for a risk-averse insured in Section 3 and examined how underre-
porting affects her insurance demand in Section 4. In this section, we shift our attention to study how
the insured’s underreporting affects the insurer’s profit.

Suppose the insured has chosen a pair of deductibles �d := (d1, d2) ∈R
2
+ and a pair of reporting

barriers �b := (b1, b2) ∈ [d1, ∞) × [d2, ∞), both of which can be arbitrarily chosen from their respec-
tive domain. Let Yt denote the insurer’s cumulative profit over [0, t] from this insurance policy for
t = 1, 2, . . . . Given that the insured is in rate class i, i = 1, 2, during [t, t + 1), the dynamics of the
insurer’s profit is governed by:

Yt+1 = Yt + πi − (Zt+1 − di) · 1{Zt+1>bi}, Y0 = y ∈R,

in which Zt+1 is the insured’s loss in this period. We now define the insurer’s total expected profit at the
insured’s exit time τ by:

Vi(y) =E(Yτ |Y0 = y, I0 = i), i = 1, 2, (5.1)

in which I0 denotes the insured’s initial rate class. It is clear the Vi(y) depends on both �d and �b, and if this
dependence relations need to be emphasized, we will expand the arguments accordingly. For instance,
Vi(y, b1, b2) emphasizes the dependence on the barrier strategy (b1, b2). Similar to the treatment of the
insured’s objectives Ji in Section 3, we obtain an expression for Vi(y), as summarized in the next lemma.

Lemma 5.1. The insurer’s expected profit Vi, defined in (5.1), equals

Vi(y) = y + Mi

G
, i = 1, 2, (5.2)

in which

M1 = pS(b1)

{
π2 −

∫ ∞

b2

(z − d2)dF(z)

}
+ (1 − pS(b2))

{
π1 −

∫ ∞

b1

(z − d1)dF(z)

}
, (5.3)

M2 = (1 − pF(b1))

{
π2 −

∫ ∞

b2

(z − d2)dF(z)

}
+ pF(b2)

{
π1 −

∫ ∞

b1

(z − d1)dF(z)

}
, (5.4)

G = (1 − p)
(
1 + p(S(b1) − S(b2))

)
. (5.5)
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Figure 7. Insurer’s expected profit V1 as a function of the insured’s reporting strategy (b1, b2).

Proof. By following a similar proof to Lemma 2.1, one can show that V1 and V2 satisfy the following
system of equations:

V1(y) = (1 − p)
(
y + π1 − S(b1) E(Z − d1|Z > b1)

)
+ p

(
F(b1)V1(y + π1) + S(b1)E

(
V2(y + π1 − Z + d1)

∣∣Z > b1

))
,

V2(y) = (1 − p)
(
y + π2 − S(b2) E(Z − d2|Z > b2)

)
+ p

(
F(b2)V1(y + π2) + S(b2)E

(
V2(y + π2 − Z + d2)

∣∣Z > b2

))
.

To solve the above system, we consider an ansatz of Vi of the form Vi(y) = y + Bi, with Bi ∈R yet to
be determined. After a lengthy, but straightforward, computation, we verify that Bi is uniquely given by
Bi = Mi

G
, in which M1, M2, and G are defined in (5.3), (5.4), and (5.5), respectively. In addition, we easily

verify that M1, M2, G> 0 and thus Vi(y) − y> 0. �
Although Lemma 5.1 finds a fully explicit expression for the insurer’s expected profit Vi from an

insured in rate class i, it is still challenging to obtain analytical results about the sensitivity of Vi with
respect to the insured’s decisions �d and �b. As such, we proceed with a numerical study to achieve this
goal. Without the loss of generality, set x = 0 and y = 0 in the subsequent analysis and suppress the y-
dependence in Vi. Indeed, recall from (3.1) and (5.2) that the objectives are separable in the initial wealth
x and initial profit y, and, in particular, the insured’s equilibrium reporting strategy is independent of x
and y. In the numerical study of this section, we set the model parameters as in Table 2.

First, fix the insurance contract (i.e., fix the deductible pair �d = (d1, d2)) and study how the reporting
barriers b1 and b2 affect the insurer’s expected profit. For comparison, we consider two contracts: full
insurance with (d1, d2) = (0, 0), and a nontrivial deductible contract with (d1, d2) = (3, 5). In Figure 7,
we plot the insurer’s expected profit V1 := V1(b1, b2) as a function of the reporting barriers b1 and b2

in a neighborhood of the equilibrium point (b∗
1(d1, d2), b∗

2(d1, d2)). (The graphs for V2 are similar and all
the results discussed below hold for V2 as well.) The most important finding is that, for both contracts,
V1(d1, d2)> V1(b∗

1(d1, d2), b∗
2(d1, d2)); equivalently, the insurer’s expected profit when the insured follows

the equilibrium reporting strategy is strictly less than that when the insured fully reports all losses above
the deductibles. This result makes intuitive sense because the savings from strategic underreporting to
the insured is connected with lost profit to the insurer. In addition, we observe that the maximum value
of the insurer’s expected profit over the considered region is achieved when the insured does not hide
any losses (above the deductible), that is, arg max V1(b1, b2) = (d1, d2).

Next, we study how the insured’s two decisions, deductibles �d and reporting barriers �b, affect
the insurer’s expected profit, along with her own expected utility. We consider three different con-
tracts (d1, d2): Contract I is the insured’s equilibrium contract, and Contract II (resp., Contract III)
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Table 3. Insured’s expected utility and insurer’s expected profit under different strategies.

Deductibles Barriers Insured’s expected utility Insurer’s expected profit
(d1, d2) (b1, b2) (−100 ln (−J1), −100 ln (−J2)) (V1, V2)
Contract I: (7.9029, 12.2407) (403.6268, 396.5025) (3.6475, 3.8203)
(7.9029, 12.2407) (7.9515, 12.2893) (403.6277, 396.5032) (3.6460, 3.8190)

(8, 13) (403.6209, 396.3596) (3.6561, 3.8349)
Contract II: (10, 15) (403.0839, 395.6812) (2.5288, 2.5922)
(10, 15) (10.0508, 15.0508) (403.0848, 395.6818) (2.5285, 2.5920)

(11, 16) (402.7856, 395.4577) (2.6202, 2.6753)
Contract III: (6, 10) (403.1190, 395.7804) (5.0431, 5.3390)
(6, 10) (6.0504, 10.0504) (403.1199, 395.7813) (5.0400, 5.3360)

(7, 11) (402.7680, 395.4774) (5.1171, 5.4089)

has higher (resp., lower) deductibles than those of Contract I. For each fixed contract (d1, d2), we
further consider three different reporting strategies (b1, b2): the first strategy is full reporting with
(b1, b2) = (d1, d2), the second strategy is the corresponding equilibrium reporting strategy with (b1, b2) =
(b∗

1(d1, d2), b∗
2(d1, d2))> (d1, d2), and the third strategy is the pair of integers obtained by rounding up

from the equilibrium strategy, that is, (b1, b2) = (�b∗
1(d1, d2)�, �b∗

2(d1, d2)�).14 Under each strategy, we
report the insured’s scaled expected utility (−100 ln (−J1), −100 ln (−J2)) (we scale (J1, J2) only to
make the comparison easier) and the insurer’s expected profit (V1, V2) in Table 3, with the largest value
highlighted in blue. Taking the insurer’s standpoint, we observe a consistent result that V1(d1, d2)>
V1(b∗

1(d1, d2), b∗
2(d1, d2)) for all three contracts, also confirmed by Figure 7 previously. As indicated

by the third strategy under each contract, V1(b1, b2)> V1(d1, d2) is possible when (b1, b2) is above the
equilibrium choice, implying that, in theory, the insurer could benefit from underreporting when the
insured hides large losses. However, the reporting decision is entirely the insured’s, and the best out-
come to the insured is always achieved by the equilibrium reporting strategy under each fixed contract.
Table 3 further shows that the best among all nine combinations for the insured is the “double equilib-
rium,” that is, taking the equilibrium contract

(
d∗

1 , d∗
2

)
and following the equilibrium reporting strategy

(b∗
1

(
d∗

1 , d∗
2

)
, b∗

2

(
d∗

1 , d∗
2

)
), as expected. Therefore, we conclude that the insured’s strategic underreporting

negatively impacts the insurer’s profit.

6. Conclusions
Underreporting losses is well documented in the empirical insurance literature, but very few theoretical
insurance models exist to explain this behavior, let alone its impact on insurance demand. In our previous
work Cao et al. (2023b), we propose a BMS insurance model with two rate classes and consider a utility-
maximizing insured with full insurance who chooses a barrier strategy for reporting losses. However,
as argued in Introduction, the assumption of full insurance is questionable and, in particular, prevents
us from studying the impact of strategic underreporting on insurance demand. Therefore, we extend the
work of Cao et al. (2023b) from full insurance to deductible insurance and make two significant contribu-
tions. First, for a fixed insurance contract (characterized by a pair of deductibles (d1, d2)), we solve for the
equilibrium barrier strategy (b∗

1(d1, d2), b∗
2(d1, d2)) that maximizes the expected exponential utility of the

14As an example, recall from (4.2) that the equilibrium contract under strategic loss reporting is
(
d∗

1 , d∗
2

) = (7.9029, 12.2407),
which is the deductible pair of Contract I and also the first reporting strategy under Contract I. The equilibrium reporting
strategy of Contract I is (b∗

1

(
d∗

1 , d∗
2

)
, b∗

2

(
d∗

1 , d∗
2

)
) = (7.9515, 12.2893), constituting to the second strategy in consideration, and

(�7.9515�, �12.2893�) = (8, 13) is the third reporting strategy under Contract I.
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insured’s terminal wealth. We obtain the equilibrium barrier strategy in semi-closed form, via the solu-
tion of a nonlinear equation. Second, we propose a novel optimal insurance problem in which the insured
takes into account the fact that she will follow the equilibrium barrier strategy (b∗

1(d1, d2), b∗
2(d1, d2)) for

reporting. Extensive numerical analysis confirms that the equilibrium contract deductibles d∗
1 and d∗

2

are strictly positive, justifying the extension from full insurance to deductible insurance. We also find
that b∗

1

(
d∗

1 , d∗
2

)
> d∗

1 and b∗
2

(
d∗

1 , d∗
2

)
> d∗

2 ; that is, under the equilibrium insurance contract, the insured
strategically underreports losses. We expect this last result to hold under premium principles other than
the expected-value principle assumed in this paper.
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