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Abstract. We study moduli spaces of framed perverse instantons on �3. As an
open subset, it contains the (set-theoretical) moduli space of framed instantons studied
by I. Frenkel and M. Jardim in [9]. We also construct a few counter-examples to earlier
conjectures and results concerning these moduli spaces.
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1. Introduction. A mathematical instanton is a torsion-free sheaf E on �3 such
that H1(E(−2)) = H2(E(−2)) = 0 and there exists a line on which E is trivial. It is
conjectured that the moduli space of locally free instantons of rank 2 is smooth and
irreducible but this is known only for very small values of the second Chern class c (see
[6, 20] for proof of this conjecture for c ≤ 5 and history of the problem).

Originally, instantons appeared in physics as anti-selfdual connections on the four-
dimensional sphere. Later, they were connected by the Atiyah-Drinfeld-Hitchin-Manin
(ADHM) construction to mathematical instantons on �3 with some special properties.
But it was Donaldson who realised that there is a bijection between physical instantons
on the 4-sphere with framing at a point and vector bundles on a plane framed along a
line (see [8]). The correspondence can be seen using Wards’ construction and restricting
vector bundles from �3 to a fixed plane containing the line corresponding to the point
of the sphere. Using this interpretation, Donaldson was able to conclude that the
moduli space of physical instantons is smooth and irreducible.

In [9] (see also [18]) Frenkel and Jardim started to investigate the moduli space
of mathematical instantons framed along a line, hoping that this moduli space is
easier to handle than the moduli space of instantons. Since an open subset of the
moduli space of framed instantons is a principal bundle over the moduli space of
instantons, it is sufficient to consider the conjecture in the framed case. In fact, Frenkel
and Jardim conjectured that their framed moduli space is smooth and irreducible
even at non-locally free framed instantons. We show that this conjecture is false (see
Subsection 7.3). On the other hand, we also show that the moduli space of locally
free framed instantons is smooth for low ranks and values of the second Chern class
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(see Corollary 9.7). We also use Tyurin’s idea to show that in some case the restriction
map embeds the moduli space of instantons as a Lagrangian submanifold into the
moduli space of sheaves on a quartic in �3.

One of the main aims of this paper is the study of moduli spaces of perverse
framed instantons on �3 (see Definition 3.8). In particular, we use perverse instantons
to introduce partial compactifications of Gieseker and Donaldson-Uhlenbeck type of
the moduli space of framed instantons and study the morphism between these moduli
spaces. The picture that we get is quite similar to the one known from the plane case
(see [28]) or from the study of a similar morphism for sheaves on surfaces (see e.g. [15,
Remark 8.2.17]). However, this is the first case when a similar morphism is described
for moduli spaces of sheaves on a three-dimensional variety.

In the two-dimensional case the Donaldson-Uhlenbeck compactification has a
stratification by products of moduli spaces of locally free sheaves for a smaller second
Chern class and symmetric powers of a plane �2. In our case, the situation is quite
similar but more complicated: we get a stratification by products of moduli spaces of
regular perverse instantons and moduli spaces of perverse instantons of rank 0.

Perverse instantons of rank 0 are sheaves E of pure dimension 1 on �3 such that
H0(E(−2)) = H1(E(−2)) = 0. The moduli space of such sheaves (with fixed second
Chern class) has a similar type as a Chow variety: it is only set-theoretical and it
does not corepresent the moduli functor of such sheaves. But the moduli space of
perverse rank 0 instantons is still a coarse moduli space for some functor: it is the
moduli space of modules over some associative (but non-commutative) algebra. We
show that this moduli space contains an irreducible component, whose normalisation
is the symmetric power of �4.

The structure of the paper is as follows. In Section 2 we recall a few known
results including Nakajima’s description of the moduli space of framed torsion-free
sheaves on a plane and Frenkel–Jardim’s description of the (set-theoretical) moduli
space of framed instantons in terms of ADHM data. In Section 3, we introduce
perverse instantons and we sketch proof of representability of the stack of framed
perverse instantons on �3 (in the plane case, this theorem is due to Drinfeld; see
[4]). Then, in Section 4, we study the notion of stability of ADHM data in terms of
Geometric Invariant Theory (GIT). This is crucial in Section 5, where we describe the
Gieseker and Donaldson–Uhlenbeck type compactifications of the moduli space of
framed instantons. In Section 6, we study the moduli space of perverse instantons of
rank 0 relating them to the moduli space of modules over a certain non-commutative
algebra. In particular, we show an example when this moduli space is reducible. In
Section 7, we gather several examples and counter-examples to some conjectures, e.g.
to the Frenkel–Jardim conjecture on smoothness and irreducibility of moduli space of
torsion-free framed instantons or to their conjecture on weak instantons. In Section 8,
we study an analogue of the hyper-Kähler structure on the moduli space of perverse
instantons and we relate our moduli spaces to moduli spaces of framed modules of
Huybrechts and Lehn. In Section 9, we give a very short sketch of deformation theory
for stable framed perverse instantons and we study smoothness of moduli spaces of
framed locally free instantons.

2. Preliminaries. In this section, we introduce notation and collect a few known
results needed in later sections.

2.1. Geometric Invariant Theory. Let G be a reductive group. Let X be an
affine k-scheme (possibly non-reduced or reducible) with a left G-action. A character
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χ : G → �m gives a G-linearisation of the trivial line bundle L := (X × �1 → X) via
g · (x, z) = (gx, χ (g−1)z). So we can consider the corresponding GIT quotient

Xss(L)/G = Proj

⎛
⎝⊕

n≥0

H0(X, Ln)G

⎞
⎠ .

It is equal to

X//χG = Proj

⎛
⎝⊕

n≥0

k[X ]G,χn

⎞
⎠

and it is projective over X/G = Spec(k[X ]G) (see [21] for this description). The
corresponding map

X//χG → X/G

can be identified with the map describing change of polarisation from χ to the trivial
character 1 : G → �m. The GIT (semi)stable points of the G-action on (X, L) given
by χ are called χ -(semi)stable. Note that all points of X are 1-semistable, i.e. GIT
semistable for the trivial character 1.

We say that x is χ -polystable if G · (x, z) is closed for z �= 0. In particular, X//χ G is
in bijection with the set of χ -polystable points and a χ -polystable point is χ -stable if
and only if its stabiliser in G is trivial.

2.2. Torsion-free sheaves on �2 and ADHM data. Let V and W be k-vector spaces
of dimensions c and r, respectively. Set

B = Hom(V, V ) ⊕ Hom(V, V ) ⊕ Hom(W, V ) ⊕ Hom(V, W ).

An element of B is written as (B1, B2, i, j).
The map μ : B → Hom(V, V ) given by

μ(B1, B2, i, j) = [B1, B2] + ij

is called the moment map.
We say that (B1, B2, i, j) ∈ B satisfies the ADHM equation if [B1, B2] + ij = 0, i.e.

(B1, B2, i, j) ∈ μ−1(0). An element of B satisfying the ADHM equation is called an
ADHM datum.

DEFINITION 2.1. We say that an ADHM datum is
(1) stable, if for every subspace S � V (note that we allow S = 0) such that Bk(S) ⊂

S for k = 1, 2 we have im i �⊂ S.
(2) costable, if for every no non-zero subspace S ⊂ V such that Bk(S) ⊂ S for

k = 1, 2 we have S �⊂ ker j,
(3) regular, if it is stable and costable.

The group G = GL(V ) acts on B via

g · (B1, B2, i, j) = (gB1g−1, gB2g−1, gi, jg−1).
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If we consider the adjoint action of G on End(V ) then the map μ is G-equivariant.
In particular, G acts on μ̃−1(0), i.e. on the set of ADHM data satisfying the ADHM
equation. Let χ : G → �m be the character given by the determinant. We consider the
G-action on the trivial line bundle over B but with a non-trivial linearisation given the
character χ .

LEMMA 2.2. (1) All χ -semistable points of μ−1(0) are χ -stable and they correspond
to stable ADHM data.

(2) All χ−1-semistable points of μ−1(0) are χ−1-stable and they correspond to
costable ADHM data.

We have the following well-known theorem (see [28, Theorem 2.1, Remark 2.2 and
Lemma 3.25]):

THEOREM 2.3. The moduli space M(�2; r, c) of rank r > 0 torsion-free sheaves on
�2 with c2 = c, framed along a line l∞ is isomorphic to the GIT quotient μ−1(0)//χG.
Moreover, orbits of regular ADHM data are in bijection with locally free sheaves.

DEFINITION 2.4. A complex of locally free sheaves

C = (0 → C−1 α→ C0 β→ C1 → 0)

is called a monad if α is injective and β is surjective (as maps of sheaves). In this case
H0(C) = ker β/ im α is called the cohomology of the monad C.

Now let us briefly recall how to recover a torsion-free sheaf from a stable ADHM
datum.

Let (B1, B2, i, j) ∈ B be a stable ADHM datum. Denote W̃ = V ⊕ V ⊕ W and fix
homogeneous coordinates [x0, x1, x2] on �2. Let us define maps α : V ⊗ O�2 (−1) →
W̃ ⊗ O�2 and β : W̃ ⊗ O�2 → V ⊗ O�2 (1) by

α =

⎛
⎜⎝

B1x0 − 1 ⊗ x1

B2x0 − 1 ⊗ x2

jx0

⎞
⎟⎠ (1)

and

β = (−B2x0 + 1 ⊗ x2 B1x0 − 1 ⊗ x1 ix0
)
. (2)

Then (B1, B2, i, j) gives rise to the complex

V ⊗ O�2 (−1)
α−→ W̃ ⊗ O�2

β−→ V ⊗ O�2 (1).

This complex is a monad. Injectivity of α follows from injectivity on the line x0 = 0
and surjectivity of β follows from stability of the ADHM datum (see [28, Lemma 2.7]).
We can recover a torsion-free sheaf as the cohomology of this monad.

Let Mreg
0 (�2; r, c) be the moduli space of rank r locally free sheaves on �2 with

c2 = c, framed along a line l∞. By Theorem 2.3 Mreg
0 (�2, r, c) is isomorphic to the

quotient of regular ADHM data by the group G.
Let M0(�2; r, c) denotes the affine quotient μ−1(0)/G. This space contains the

moduli spaceMreg
0 (�2; r, c) and it can be considered as a partial Donaldson–Uhlenbeck
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compactification. We have a natural set-theoretical decomposition

M0(�2; r, c) =
⊔

0≤d≤c

Mreg
0 (�2; r, c − d) × Sd(�2),

where �2 is considered as the completion of l∞ in �2. Then the morphism

M(�2; r, c) � μ−1(0)//χG → μ−1(0)/G � M0(�2; r, c)

coming from the GIT (see Subsection 2.1) can be identified with the map

(E,�) → ((E∗∗,�), Supp(E∗∗/E))

(see [28, Exercise 3.53] and [37, Theorem 1]). This morphism is an analogue of the
morphism from the Gieseker compactification of the moduli space of (semistable)
locally free sheaves on a surface by means of torsion-free sheaves to its Donaldson–
Uhlenbeck compactification. In a very special case of rank one this corresponds to
the morphism from the Hilbert space to the Chow space (the so called Hilbert–Chow
morphism).

In the rest of this section, to agree with the standard notation we need to assume
that the characteristic of the base field is zero (or it is sufficiently large).

Let us define a symplectic form ω on B by

ω((B1, B2, i, j), (B′
1, B′

2, i′, j′)) := Tr(B1B′
2 − B2B′

1 + ij ′ − i′j).

We will use the same notation for the form induced on the tangent bundle TB. One
can easily check that μ is a momentum map, i.e.

(1) μ is G-equivariant, i.e. μ(g · x) = Ad∗
g−1 μ(x),

(2) 〈dμx(v), ξ 〉 = ω(ξx, v) for any x ∈ B, v ∈ TxB and ξ ∈ g (ξx denotes the image
of ξ under the tangent of the orbit map of x).

In particular, [19, Lemma 3.2] implies that the moduli space of semistable sheaves is
smooth (there are many others proofs of this fact: a sheaf-theoretic proof is trivial but
we mention the above proof since another argument using ADHM data given in [36,
Lemma 3.2] seems a bit too complicated).

2.3. Mathematical instantons on �3.

DEFINITION 2.5. A torsion-free sheaf E on �3 is called a mathematical (r, c)-
instanton, if E has rank r, c2E = c, H1(�3, E(−2)) = H2(�3, E(−2)) = 0 and there
exists a line l ⊂ �3 such that the restriction of E to l is isomorphic to the trivial sheaf
Or

l .

Let us fix a line l∞ ⊂ �3. A choice of an isomorphism � : E|l∞ �→ Or
l∞ is called a

framing of E along l∞. A pair (E,�) consisting of a mathematical (r, c)-instanton E
and its framing � : E|l∞ �→ Or

l∞ is called a framed (r, c)-instanton.

In the following we skip adjective “mathematical” and we will refer to
mathematical instantons simply as instantons.

The following lemma is well known (for locally free sheaves see [30, Chapter II,
2.2]):
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LEMMA 2.6. If a torsion-free sheaf E on �n is trivial on one line then it is slope
semistable. In particular, an instanton on �3 is slope semistable.

Proof. The sheaf E is trivial on a line m ⊂ �n if and only if E|m is torsion-free and
H1(E|m(−1)) = 0. Since these are open conditions it follows that if E is trivial on one
line then it is trivial on a general line. Now if E′ ⊂ E then for a general line m we have
E′|m ⊂ E|m � Ork E

�1 , so μ(E′) = deg(E′|m)/ rk E′ ≤ 0. �
If E is a rank 2 locally free sheaf with c1E = 0 on �3 then H1(�3, E(−2)) and

H2(�3, E(−2)) are Serre dual to each other. Let us also recall that if k has characteristic
0 then for a rank 2 locally free sheaf E with c1E = 0 existence of a line l such that
the restriction of E to l is trivial is equivalent to H0(E(−1)) = 0 (this follows from
the Grauert–Mülich restriction theorem). This leads to a more traditional definition
of rank 2 instantons as rank 2 vector bundles on �3 with vanishing H0(E(−1)) and
H1(E(−2)) (see [30, Chapter II, 4.4]). Usually, one also adds vanishing of H0(E) which
in this case is equivalent to slope stability (if H0(E) �= 0 then E � O2

�3 , so this cannot
happen if c ≥ 1).

Note that if E is locally free of rank ≥ 3 then vanishing of H2(�3, E(−2)) does not
follow from the remaining conditions (see Example 7.4).

We say that a locally free sheaf E is symplectic, if it admits a non-degenerate
symplectic form (or equivalently, an isomorphism ϕ : E → E∗ such that ϕ∗ = −ϕ). It
is easy to see that a non-trivial symplectic sheaf has an even rank. Obviously, for a
symplectic locally free sheaf, vanishing of H2(�3, E(−2)) follows from vanishing of
H1(�3, E(−2)) (by the Serre duality).

The following fact was known for a very long time:

THEOREM 2.7. (Barth, Atiyah [1, Theorem 2.3]) Let E be a symplectic (r, c)-
instanton. Then E is the cohomology of a monad

0 → O�3 (−1)c → O2c+r
�3 → O�3 (1)c → 0.

In the following we will need the following lemma (it should be compared with [9,
Proposition 15] dealing with the rank 1 case).

LEMMA 2.8. There exist framed locally free (r, c)-instantons if and only if either r = 1
and c = 0 or r > 1 and c is an arbitrary non-negative integer. Moreover, if there exist
framed locally free (r, c)-instantons then there exist framed locally free (r, c)-instantons
F such that Ext2(F, F) = 0.

Proof. The case r = 0 is clearly not possible. Let us first assume that r = 1. Since
the only line bundle with trivial determinant is E = O�1 we see that c2(E) = 0. So to
finish the proof it is sufficient to show existence of locally free (2, c)-instantons. If E is
such an instanton then F = E ⊕ Or−2

�3 can be given a structure of framed locally free
(r, c)-instanton.

Existence of locally free (2, c)-instantons is well known. For example, we can use
Serre’s construction (see [30, Chapter I, Theorem 5.1.1]) to construct the so called
t’Hooft bundles. More precisely, let L1, . . . , Lc be a collection of c disjoint lines in �3

and let Y denotes their sum (as a subscheme of �3). Then by the above mentioned
theorem there exists a rank 2 locally free sheaf E that sits in a short exact sequence

0 → O�3 → E → JY → 0.
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One can easily see that E is a (2, c)-instanton. Moreover, it is easy to see that
Ext2(F, F) = 0 as Ext2(E, E) = 0 and H2(E) = H2(E∗) = 0 (note that E∗ � E). �

2.4. Generalised ADHM data after Frenkel–Jardim. Let X be a smooth projective
variety over an algebraically closed field k and let OX (1) be a fixed ample line bundle.
Let V and W be k-vector spaces of dimensions c and r, respectively. Set

B = Hom(V, V ) ⊕ Hom(V, V ) ⊕ Hom(W, V ) ⊕ Hom(V, W )

and B̃ = B ⊗ H0(OX (1)). An element of B̃ is written as (B̃1, B̃2, ĩ, j̃), where B̃1 and B̃2

are treated as maps V → V ⊗ H0(OX (1)), ĩ as a map W → V ⊗ H0(OX (1)) and j̃ as a
map V → W ⊗ H0(OX (1)).

Let us define an analogue of the moment map

μ̃ = μ̃W,V : B̃ → End(V ) ⊗ H0(OX (2))

by the formula

μ̃(B̃1, B̃2, ĩ, j̃) = [B̃1, B̃2] + ĩj̃.

As before an element of μ̃−1(0) is called an ADHM datum (or an ADHM (r, c)-
datum for X if we want to show dependence on r, c and X).

If we fix a point p ∈ X then for a k-vector space U the evaluation map evp :
H0(OX (1)) → OX (1)p � k tensored with identity on U gives a map U ⊗ H0(OX (1)) →
U which we also denote by evp. For simplicity, we will use the notation B̃1(p) =
evp B̃1 ∈ Hom(V, V ), etc. For an ADHM datum x = (B̃1, B̃2, ĩ, j̃), x(p) denotes the
quadruple (B̃1(p), B̃2(p), ĩ(p), j̃(p)). Note that for maps to be well defined we need to fix
an isomorphism OX (1)p � k at each point p ∈ X . This does not cause any problems as
all the notions that we consider are independent of these choices.

DEFINITION 2.9. We say that an ADHM datum x ∈ B̃ is
(1) FJ-stable (FJ-costable, FJ-regular), if x(p) is stable (respectively: costable,

regular) for all p ∈ X ,
(2) FJ-semistable, if there exists a point p ∈ X such that x(p) is stable,
(3) FJ-semiregular, if it is FJ-stable and there exists a point p ∈ X such that x(p) is

regular.

Definition 2.9 in case of X = �1 (not �3!) was introduced by I. Frenkel and M.
Jardim in [9], but we slightly change the notation and we call stability, semistability,
etc. introduced in [9], FJ-stability, FJ-semistability, etc. The reason for this change will
become apparent in later sections. Namely, in [17] Jardim generalised this definition of
(semi)stability of ADHM data to all projective spaces and claimed in [17, Proposition 4]
that his notion of semistability is equivalent to GIT semistability of ADHM data. We
show that this assertion is false.

Let us specialise to the case X = �1. Let [x0, x1, x2, x3] be homogeneous
coordinates in �3 and let us embedd X into �3 by [y0, y1] → [y0, y1, 0, 0]. Then x0

and x1 can be considered as elements of H0(X,OX (1)).
Let us set W̃ = V ⊕ V ⊕ W . Then any point x = (B̃1, B̃2, ĩ, j̃) ∈ B̃ = B ⊗

H0(O�1 (1)) gives rise to the following maps of sheaves on �3: map
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α : V ⊗ O�3 (−1) → W̃ ⊗ O�3 given by

α =

⎛
⎜⎝

B̃1 + 1 ⊗ x2

B̃2 + 1 ⊗ x3

j̃

⎞
⎟⎠ (3)

and map β : W̃ ⊗ O�3 → V ⊗ O�3 (1) given by

β = (−B̃2 − 1 ⊗ x3 B̃1 + 1 ⊗ x2 ĩ
)
. (4)

It follows from easy calculations that βα = 0 if and only if (B̃1, B̃2, ĩ, j̃) ∈ μ̃−1(0). So if
x is an ADHM datum then we get the complex

C•
x = (V ⊗ O�3 (−1)

α−→ W̃ ⊗ O�3
β−→ V ⊗ O�3 (1)) (5)

considered in degrees −1, 0, 1.
Let l∞ be the line in �3 given by x0 = x1 = 0. It is easy to see that after restricting

to l∞ the cohomology of the above complex of sheaves becomes the trivial rank r sheaf
on �1. Moreover, we have the following lemma:

LEMMA 2.10. (see [9, Proposition 11]) Let us fix an ADHM datum x ∈ B̃. Then the
corresponding complex C•

x is a monad if and only if the ADHM datum x is FJ-stable.

Proof. The map α is always injective as a map of sheaves, so we only need to check
when β is surjective. This is exactly the content of [9, Proposition 11]. �

The main theorem of [9] is existence of the following set-theoretical bijections:

THEOREM 2.11. ([9, Main Theorem]) The above construction of monads from
ADHM data on �1 gives bijections between the following objects:
� FJ-stable ADHM data and framed torsion-free instantons;
� FJ-semiregular ADHM data and framed reflexive instantons;
� FJ-regular ADHM data and framed locally free instantons.

3. Perverse instantons on �3. In this section we introduce perverse sheaves and
perverse instantons and we show that perverse instantons are perverse sheaves (this
fact is non-trivial!). We also sketch proof of an analogue of Drinfeld’s representability
theorem in the three-dimensional case.

3.1. Tilting and torsion pairs on �3.

DEFINITION 3.1. Let A be an abelian category. A torsion pair in A is a pair (T ,F)
of full subcategories of A such that the following conditions are satisfied:

(1) for all objects T ∈ Ob T and F ∈ F we have HomA(T, F) = 0,
(2) for every object E ∈ ObA there exist objects T ∈ Ob T and F ∈ ObF such

that the following short exact sequence is exact in A:

0 → T → E → F → 0.

We will need the following theorem of Happel, Reiten and Smalø:
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THEOREM 3.2. (see [13, Proposition I.2.1]) Assume that A is the heart of a bounded
t-structure on a triangulated category D and suppose that (T ,F) is a torsion pair in A.
Then the full subcategory

B = {E ∈ ObD : Hi(E) = 0 for i �= 0,−1, H−1(E) ∈ ObF , and H0(E) ∈ Ob T }
of D is the heart of a bounded t-structure on D.

In the situation of the above theorem we say that B is obtained from A by tilting
with respect to the torsion pair (T ,F).

Let E be a coherent sheaf on a noetherian scheme X . The dimension dim E of the
sheaf E is by definition the dimension of the support of E. For a d-dimensional sheaf
E there exists a unique filtration

0 ⊂ T0(E) ⊂ T1(E) ⊂ . . . ⊂ Td(E)

such that Ti(E) is the maximal subsheaf of E of dimension ≤ i (see [15, Definition
1.1.4]).

Let A be an abelian category. Then any object in A can be viewed as a complex
concentrated in degree zero. This yields an equivalence between A and the full
subcategory of the derived category D(A) of A of complexes K• with Hi(K•) = 0
for i �= 0.

In the following by Db(X) we denote the bounded derived category of the abelian
category of coherent sheaves on the scheme X . The object of Db(X) corresponding to
a coherent sheaf F is called a sheaf object and by abuse of notation it is also denoted
by F .

If C is a complex of coherent sheaves on X then Hp(C) denotes its p-th cohomology.
We use this notation since we would like to distinguish cohomology Hp(F) of a sheaf
object F and cohomology of a sheaf Hp(F) = Hp(X,F).

Let A = Coh X be the category of coherent sheaves on a smooth projective 3-
fold X . Let T be the full subcategory of A whose objects are all coherent sheaves
of dimension ≤ 1. Let F be the full subcategory of A whose objects are all coherent
sheaves E which do not contain subsheaves of dimension ≤ 1 (i.e. T1(E) = 0). Clearly,
(T ,F) form a torsion pair in A.

DEFINITION 3.3. A complex C ∈ Db(X) is called a perverse sheaf if the following
conditions are satisfied:

(1) Hi(C) = 0 for i �= 0, 1,
(2) H0(C) ∈ ObF ,
(3) H1(C) ∈ Ob T .

DEFINITION 3.4. A moduli lax functor of perverse sheaves is the lax functor Perv(X) :
Sch /k → Group from the category of k-schemes to the category of groupoids, which
to a k-scheme S assigns the groupoid that has S-families of perverse sheaves on X as
objects and isomorphisms of perverse sheaves as morphisms.

Theorem 3.2 implies that perverse sheaves form an abelian category which is a shift
of the tilting of Coh X with respect to the pair (T ,F). This fact is crucial in proof of
the following theorem (cf. [11, VIII 5.1, 1.1, 1.2], [35, Theorem 3.5], [4, Lemma 5.5]):

THEOREM 3.5. The moduli lax functor of perverse sheaves on a smooth three-
dimensional projective variety is a (non-algebraic!) k-stack.
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PROPOSITION 3.6. Let

C = (C−1 α→ C0 β→ C1)

be a complex of locally free sheaves on X and assume that there exists a curve j : C ↪→ X
such that Lj∗C is a sheaf object in Db(C). Then the object of Db(X) corresponding to C
is a perverse sheaf.

Proof. Note that Lj∗C is represented by the complex

j∗C−1 j∗α−→ j∗C0 j∗β−→ j∗C1.

Since H−1(Lj∗C) = 0, the restriction of α to C is injective. Since C−1 is torsion-free this
implies that α is injective and hence H−1(C) = 0.

Similarly, by assumption we have H1(Lj∗C) = 0 and hence the restriction of β to C
is surjective. This implies that β is surjective in codimension 1 (i.e. it is surjective outside
of a subset of codimension ≥ 2). ThereforeH1(C) = coker β is a sheaf of dimension ≤ 1,
i.e. H1(C) is an object of T .

By definition we have a short exact sequence

0 → H0(C) → E = coker α → im β → 0.

Therefore to finish the proof it is sufficient to show that T1(E) = 0. To prove this let us
consider the following commutative diagram

0 0�⏐⏐ �⏐⏐
0 −−−−→ ker γ

α−−−−→ C0 γ−−−−→ E/T1(E) −−−−→ 0�⏐⏐ �⏐⏐ �⏐⏐
0 −−−−→ C−1 α−−−−→ C0 −−−−→ E −−−−→ 0�⏐⏐ �⏐⏐ �⏐⏐

0 −−−−→ 0 −−−−→ T1(E)�⏐⏐
0

Using the snake lemma we get the following short exact sequence

0 → C−1 → ker γ → T1(E) → 0.

Since ker γ is torsion-free (as a subsheaf of C0), C−1 is reflexive and the map C−1 →
ker γ is an isomorphism outside of the support of T1(E) (i.e. outside of a subset
of codimension ≥ 2), the map C−1 → ker γ must be an isomorphism. In particular,
T1(E) = 0 and H0(C) is an object of F . �

PROPOSITION 3.7. Let

C = (C−1 α→ C0 β→ C1)
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be a complex of locally free sheaves on �3 and assume that there exists a curve j : C ↪→ �3

such that Lj∗C is a locally free sheaf object in Db(C). Then H0(C) is torsion-free.

Proof. Let Z be the set of points p ∈ �3 such that α(p) = α ⊗ k(p) : C−1 ⊗ k(p) →
C0 ⊗ k(p) is not injective. It is a closed subset of �3 (in the Zariski topology). Since
H0(Lj∗C) is locally free, it is easy to see that Z does not intersect C (if Z ∩ C �= ∅ then
the cokernel of j∗α would contain torsion that would also be contained in H0(Lj∗C)).
But since we are on �3 this implies that Z has dimension at most 1. But the support of
T2(coker α) is contained in Z and T2(coker α) is pure of dimension 2 (by the previous
proposition). Therefore coker α is torsion-free, which implies thatH0(C) is also torsion-
free. �

3.2. Definition and basic properties of perverse instantons. Let us denote by j
the embedding of a line l into �3. The pull back j∗ induces the left derived functor
Lj∗ : Db(�3) → Db(l).

DEFINITION 3.8. A rank r perverse instanton is an object C of the derived category
Db(�3) satisfying the following conditions:

(1) Hp(�3, C ⊗ O�3 (q)) = 0 if either p = 0, 1 and p + q < 0 or p = 2, 3 and p +
q ≥ 0,

(2) Hp(C) = 0 for p �= 0, 1,

(3) there exists a line j : l ↪→ �3 such that Lj∗C is isomorphic to the sheaf object
O⊕r

l .

Let us fix a line j : l∞ ↪→ �3 and choose coordinates [x0, x1, x2, x3] in �3 so that
l∞ is given by x0 = x1 = 0. A framing � along l∞ of a perverse instanton C is an
isomorphism � : Lj∗C → O⊕r

l∞ . A framed perverse instanton is a pair (C,�) consisting
of a perverse instanton C and its framing �.

Any instanton is a perverse instanton. By the Riemann–Roch theorem for any
perverse instanton C there exists c ≥ 0 such that ch(C) = r − c[H]2. We also have a
distinguished triangle H0(C) → C → H1(C)[−1] → H0[1]. However, it is not a priori
clear if a perverse instanton is a perverse sheaf in the sense of Definition 3.3. We will
prove that this is indeed the case in Corollary 3.16.

As before there is a natural G = GL(r)-action on B̃ which induces a G-action on
the set of ADHM data. More precisely, let us recall that the group G = GL(V ) acts on
B via

g · (B1, B2, i, j) = (gB1g−1, gB2g−1, gi, jg−1)

and it induces the action on B̃. If we consider the adjoint action of G on End(V ) then
the map μ̃ is G-equivariant. In particular, G acts on μ̃−1(0), i.e. on the set of ADHM
data.

The main motivation for introducing perverse instantons is the following theorem:

THEOREM 3.9. There exists a bijection between isomorphism classes of perverse
instantons (C,�) with ch(C) = r − c[H]2 framed along l∞ and GL(c)-orbits of ADHM
(r, c)-data for �1.
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The bijection in the theorem is the same as in Section 2.4. Namely, if x =
(B̃1, B̃2, ĩ, j̃) is an (r, c)-complex ADHM datum then we can associate to it the complex

C•
x = (V ⊗ O�3 (−1)

α−→ W̃ ⊗ O�3
β−→ V ⊗ O�3 (1)) (6)

where α and β are defined as in Section 2.4. This complex is a perverse instanton and
it comes with an obvious framing along l∞.

In the following we sketch proof of a stronger version of the above theorem
showing that isomorphism already holds at the level of stacks. To do so, first we need
to generalise the above definition to families of perverse instantons.

Let S be a (locally noetherian) k-scheme. We set jS = j × IdS : S ×k l∞ → �3
S =

S ×k �3.

DEFINITION 3.10. An S-family of framed perverse (r, c)-instantons is an object
C ∈ Ob Db(�3

S) together with an isomorphism � : Lj∗SC → Or
l∞×S such that for every

geometric point s : Spec K → S, the derived pull-back (Lj∗s C, Ls∗�) is a framed
perverse (r, c)-instanton on �3

K .
A morphism ϕ : (C1,�1) → (C2,�2) of S-families of framed perverse instantons

is a morphism ϕ : C1 → C2 in Db(�3
S) such that �1 = �2 ◦ Lj∗Sϕ.

DEFINITION 3.11. A moduli lax functor of framed perverse (r, c)-instantons is the
lax functor Pervc

r(�
3, l∞) : Sch /k → Group from the category of k-schemes to the

category of groupoids, which to a k-scheme S assigns the groupoid that has S-families
of framed perverse (r, c)-instantons as objects and isomorphisms of framed perverse
instantons as morphisms.

In order for the definition to make geometric sense we have to note that the moduli
lax functor is a stack, i.e. it defines a sheaf of categories in the faithfully flat topology:

LEMMA 3.12. The moduli lax functor of framed perverse (r, c)-instantons on �3 is a
k-stack of finite type.

Let G be an algebraic group acting on a scheme X . Then we can form a quotient
stack [X/G] which to any scheme S assigns the groupoid whose objects are pairs (P, ϕ)
consisting of a principal G-bundle P on S and a G-equivariant morphism ϕ : P → X .
A morphism in this groupoid is an isomorphism h : (P1, ϕ1) → (P2, ϕ2) of pairs, i.e.
such an isomorphism h : P1 → P2 of principal G-bundles that ϕ1 = ϕ2 ◦ h.

In the three-dimensional case we have the following analogue of Drinfeld’s theorem
on representability of the stack of framed perverse sheaves on �2 (see [4, Theorem 5.7]):

THEOREM 3.13. The moduli stack Pervc
r(�

3, l∞) is isomorphic to the quotient stack
[μ̃−1(0)/ GL(V )].

Proof of the above theorem is analogous to proof of [4, Theorem 5.7] and it follows
from the following two lemmas.

LEMMA 3.14. Let C be a perverse instanton on �3. Then

Hq(�3, C(−1) ⊗ �
−p
�3 (−p)) = 0

for q �= 1 and for q = 1, p ≤ −3 or p > 0.

This lemma and its proof are analogous to [28, Lemma 2.4] and [9, Proposition 26].
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LEMMA 3.15. An S-family of perverse instantons C ∈ Db(�3
S) is canonically

isomorphic to the complex of sheaves

O�3
S
(−1) ⊗ R1(p1)∗(C ⊗ �2(1))

α→O�3
S
⊗ R1(p1)∗(C ⊗ �1)

β→O�3
S
(1) ⊗ R1(p1)∗(C(−1))

in degrees −1, 0, 1 coming from Beilinson’s construction. Moreover, α is injective (as a
map of sheaves), the sheaves R1(p1)∗(C(−1) ⊗ �p(p)) are locally free for p = 0, 1, 2 and
we have a canonical isomorphism

R1(p1)∗(C ⊗ �2(1)) � R1(p1)∗(C(−1)).

The above lemma follows from the previous lemma by standard arguments using
Beilinson’s construction (i.e. proof of existence of Beilinson’s spectral sequence) in
families.

COROLLARY 3.16. Let C be a perverse instanton on �3. Then H0(C) is torsion-free
and H1(C) is of dimension ≤ 1.

Proof. The assertion follows immediately from Proposition 3.7 and Lemma 3.15
applied for S being a point. �

3.3. Analysis of singularities of perverse instantons.

DEFINITION 3.17. Let E be a coherent sheaf on a smooth variety X . Then the set
of points where the sheaf E is not locally free is called the singular locus of E and it is
denoted by S(E).

It is easy to see that the singular locus of an arbitrary coherent sheaf on X is
a closed subset of X (in the Zariski topology). Here we study the singular locus of
perverse instantons on �3.

From the proof of [9, Proposition 10] it follows that in case of complex ADHM
data if coker α is not reflexive then it is non-locally free along a certain (possibly non-
reduced or reducible) curve of degree c2 (not 2c!) that does not intersect l∞. If coker α

is reflexive then it is non-locally free only in a finite number of points.
We have two short exact sequences:

0 → H0(C) → coker α → im β → 0

and

0 → im β → C1 → H1(C) = coker β → 0.

It follows that im β is torsion-free and it is non-locally free exactly along the support
of H1(C) (which is at most one-dimensional).

Obviously, H0(C) can be non-locally free only at the points of S(coker α) or at
the points of S(im β). Moreover, the one-dimensional components of S(H0(C)) are
contained in S(coker α). This follows from the fact that the kernel of a map from a
locally free sheaf to a torsion-free sheaf is reflexive.
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4. GIT approach to perverse instantons. In this section we consider ADHM data
for an arbitrary manifold X . We have a natural G = GL(V )-action on B̃ which induces
a G-action on the set of ADHM data μ̃−1(0). Let χ : G → �m be the character given by
the determinant. We can consider the G-action on B̃ × �1 with respect to this character
(i.e. a non-trivial G-linearisation of the trivial line bundle on B̃).

The main aim of this section is to study different notions of stability obtained via
Geometric Invariant Theory when taking quotients μ̃−1(0)//χG and μ̃−1(0)/G.

This section is just a careful rewriting of [37, Section 2] but we give a bit more
details for the convenience of the reader.

DEFINITION 4.1. We say that an ADHM datum is
(1) stable, if for every subspace S � V (note that we allow S = 0) such that B̃k(S) ⊂

S ⊗ H0(OX (1)) for k = 1, 2 we have im ĩ �⊂ S ⊗ H0(OX (1)).
(2) costable, if for every no non-zero subspace S ⊂ V such that B̃k(S) ⊂ S ⊗

H0(OX (1)) for k = 1, 2 we have S �⊂ ker j̃,
(2) regular, if it is stable and costable.

We say that (B̃1, B̃2, ĩ, j̃) satisfies the ADHM equation if [B̃1, B̃2] + ĩj̃ = 0.

The following lemma generalises [28, Lemma 3.25]. Its proof is similar to the proof
given in [28].

LEMMA 4.2. Let x be an ADHM datum. Then x is stable if and only if G · (x, z) is
closed for some (or, equivalently, all) z �= 0.

Proof. Let sections {sl} form a basis of H0(OX (1)). Then B̃k and ĩ can be written as

B̃k =
∑

Blk ⊗ sl, ĩ =
∑

il ⊗ sl.

Assume that G · (x, z) is closed for z �= 0. Suppose that there exists S � V such that
B̃k(S) ⊂ S ⊗ H0(OX (1)) for k = 1, 2 and im ĩ ⊂ S ⊗ H0(OX (1)). Let us fix a subspace
S⊥ ⊂ V such that V = S ⊕ S⊥. Then we have

Bkl =
(

∗ ∗
0 ∗

)
, il =

(
∗
0

)
.

If we set g(t) = ( 1 0
0 t−1 ) then we have

g(t)Bklg(t−1) =
(

∗ t∗
0 ∗

)
, g(t)il = il.

Therefore there exists limit limt→0 g(t)x in B̃. On the other hand, when t → 0 then

g(t)(x, z) = (g(t)x, det(g(t))−1z) = (g(t)x, tdim S⊥
z)

has a limit (limt→0 g(t)x, 0) which does not belong to G · (x, z). Contradiction shows
that x has to be stable.

Now suppose that x is stable and G · (x, z) is not closed. By the Hilbert–
Mumford criterion there exists a 1-parameter subgroup λ : �m → G such that the
limit limt→0 λ(t)(x, z) exists and it belongs to G · (x, z)\G · (x, z). Let V (m) consist of
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vectors v ∈ V such that λ(t) · v = tmv for every t ∈ �m. Then we have a decomposition
V = ⊕

m V (m) and we can choose a basis of V such that

λ(t) =

⎛
⎜⎝

ta1

. . .
tac

⎞
⎟⎠

where a1 ≥ . . . ≥ ac. Existence of limt→0 λ(t)B̃kλ(t−1) implies that the limits
limt→0 λ(t)B̃lkλ(t−1) exist for every l. Let Blk = (bij ). Then (λ(t)B̃lkλ(t−1))ij = tai−aj bij .
This shows that bij = 0 if ai < aj. Therefore B̃k(V (m)) ⊂ (

⊕
l≥m V (l)) ⊗ H0(OX (1)).

Similarly, one can show that im ĩ ⊂ (
⊕

m≥0 V (m)) ⊗ H0(OX (1)). Let us set S =⊕
m≥0 V (m). Then B̃k(S) ⊂ S ⊗ H0(OX (1)) and im ĩ ⊂ S ⊗ H0(OX (1)), so from the

stability condition it follows that S = V . Therefore det λ(t) = tN for N ≥ 0. If N = 0
then V (0) = V and λ ≡ Id. This is impossible because limt→0 λ(t)(x, z) /∈ G · (x, z). If
N > 0 then λ(t)(x, z) = (λ(t)x, det(λ(t))−1z) = (λ(t)x, t−Nz) which diverges as t → 0.
This gives a contradiction. �

PROPOSITION 4.3. The following conditions are equivalent:

(1) x is stable,
(2) x is χ -stable,
(3) x is χ -semistable.

Similar assertion holds if we replace stable with costable and χ with χ−1.

Proof. By Lemma 4.2 x is stable if and only if x is χ -polystable. So to prove
the proposition it is sufficient to prove that if x is stable then its stabiliser in G is
trivial. Assume that g ∈ G acts trivially on x and consider S = ker(g − Id). Then
im ĩ ⊂ S ⊗ H0(OX (1)) and B̃k(S) ⊂ S ⊗ H0(OX (1)) so S = V and g = Id. If x is χ -
semistable let y be a χ -polystable ADHM datum such that (y, w) is in the closure
of G · (x, z). Since G · (x, z) is disjoint from the zero-section ([21, Lemma 2.2]) we
know that w �= 0. Then y is χ -stable and in particular it has a trivial stabiliser in G.
Therefore the orbit of (y, w) has the maximal dimension. But the set G · (x, z)\G · (x, z)
is composed from the orbits of smaller dimension than the dimension of G · (x, z).
Therefore G · (x, z) = G · (y, w) and x is also χ -stable. �

LEMMA 4.4. Let x be an ADHM datum. Then x is 1-stable (i.e. stable for the trivial
character) if and only if it is regular.

Proof. Let us recall that x is 1-stable if and only if the stabiliser of x in G is trivial
and the orbit G · x is closed. Then for any character and any z �= 0 the orbit G · (x, z)
is closed as well. In particular, x is both χ -stable and χ−1-stable, which by Proposition
4.3 gives implication ⇒.

Proof of the other implication is similar to the proof of Lemma 4.2. Suppose that
x stable and costable and G · x is not closed. There exists a one-parameter subgroup λ :
�m → G such that limt→0 λ(t) · x exists and belongs to G · x\G · x. Let V = ⊕

m V (m)
be the weight decomposition with respect to λ. As in proof of Lemma 4.2 existence of
the limit limt→0 λ(t) · x implies that

B̃k(V (m)) ⊂ (
⊕
l≥m

V (l)) ⊗ H0(OX (1)),
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im ĩ ⊂ (
⊕
m≥0

V (m)) ⊗ H0(OX (1))

and ⊕
m>0

V (m) ⊂ ker j̃.

The stability condition implies that V = ⊕
m≥0 V (m) and costability gives⊕

m≥1 V (m) = {0}. So V = V (0) which contradicts our assumption that the
limit limt→0 λ(t) · x does not belong to G · x. The stabiliser of x in G is trivial because
x is also χ -stable. �

LEMMA 4.5. Let x ∈ μ̃−1
W,V (0). Then x is 1-polystable if and only if there exist

subspaces V1, V2 ⊂ V and quadruples x1 ∈ μ̃−1
W,V1

(0)s,c and x2 ∈ μ̃−1
{0},V2

(0) such that
V = V1 ⊕ V2, x = x1 ⊕ x2 and GL(V2) · x2 is closed. Moreover, such splitting is unique.

Proof. Let us remind that x is 1-polystable if and only if GL(V ) · x is closed.
Assume first that x = (B̃1, B̃2, ĩ, j̃) has a closed orbit and define V1 as the

intersection of all subspaces S ⊂ V such that B̃k(S) ⊂ S ⊗ H0(OX (1)) for k = 1, 2
and im ĩ ⊂ S ⊗ H0(OX (1)). Choose V2 such that V = V1 ⊕ V2. Let {sl} be a basis of
H0(OX (1)). Then B̃k, ĩ and j̃ can be written as

B̃k =
∑

Blk ⊗ sl, ĩ =
∑

il ⊗ sl, j̃ =
∑

jl ⊗ sl

where

Bkl =
(

∗ ∗
0 ∗

)
, il =

(
∗
0

)
, jl = (∗ ∗ )

.

If λ(t) =
(

1 0
0 t−1

)
then we have

λ(t)Bklλ(t−1) =
(

∗ t∗
0 ∗

)
, λ(t)il = il, jlλ(t−1) = (∗ t∗ )

.

Hence there exists x′ = (B̃′
1, B̃′

2, ĩ′, j̃′) = limt→0 λ(t) · x which has the following
properties:
� B̃′

k(Va) ⊂ Va ⊗ H0(OX (1)) for k, a = 1, 2,
� B̃′

k|V1
= B̃k|V1 for k = 1, 2,

� ĩ′ = ĩ,
� j̃′|V2

= 0,
� j̃′|V1

= j̃|V1 .

Since the orbit of x is closed, we have x′ ∈ GL(V ) · x. There exists g ∈ GL(V ) such
that x′ = g · x. So if we find V ′

1, V ′
2 and x′

1, x′
2 satisfying conditions in the lemma for

x′, then g · V ′
1, g · V ′

2 and g−1 · x′
1, g−1 · x′

2 satisfy it for x.
Let V ′

1 be the intersection of all subspaces S ⊂ V such that B̃′
k(S) ⊂ S ⊗ H0(OX (1))

for k = 1, 2 and im ĩ′ ⊂ S ⊗ H0(OX (1)). Properties of x′ show that V1 is one of
such subspaces so V ′

1 ⊂ V1. On the other hand g · V ′
1 destabilises x so V1 ⊂ g−1 ·

V ′
1 and by the dimension count we obtain V ′

1 = V1. Let us set V ′
2 = V2 and
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x′
1 = (B̃′

1|V1
, B̃′

2|V1
, ĩ′, j̃′|V1

), x′
2 = (B̃′

1|V2
, B̃′

2|V2
, 0, j̃′|V2

) = (B̃′
1|V2

, B̃′
2|V2

, 0, 0). It is clear that

x′
1 ∈ μ̃−1

W,V1
(0) and x′

2 ∈ μ̃−1
{0},V2

(0) and x′ = x′
1 ⊕ x′

2. Since V ′
1 is minimal destabilising

space for x′, we also know that x′
1 is stable.

Now assume that x′′
1 ∈ μ̃−1

W,V1
(0) is in the closure of the GL(V1)-orbit of x′

1 and
x′′

2 ∈ μ̃−1
{0},V2

(0) is in the closure of the GL(V2)-orbit of x′
2. Then x′′

1 ⊕ x′′
2 is in the closure

of the GL(V )-orbit of x′ = x′
1 ⊕ x′

2. This orbit is closed by the assumption so we can
find g ∈ GL(V ) such that g · x′ = x′′

1 ⊕ x′′
2.

We can write

g =
(

g11 g12

g21 g22

)

x′
1 =

(∑
l

B′
11l ⊗ sl,

∑
l

B′
21l ⊗ sl,

∑
l

i′1l ⊗ sl,
∑

l

j′1l ⊗ sl

)

x′
2 =

(∑
l

B′
12l ⊗ sl,

∑
l

B′
22l ⊗ sl, 0, 0

)

x′′
1 =

(∑
l

B′′
11l ⊗ sl,

∑
l

B′′
21l ⊗ sl,

∑
l

i′′1l ⊗ sl,
∑

l

j′′1l ⊗ sl

)

x′′
2 =

(∑
l

B′′
12l ⊗ sl,

∑
l

B′′
22l ⊗ sl, 0, 0

)

x′ =
((

B′
11l 0

0 B′
12l

)
⊗ sl,

(
B′

21l 0

0 B′
22l

)
⊗ sl,

(
i′1l

0

)
⊗ sl,

(
j′1l 0

) ⊗ sl

)

x′′
1 ⊕ x′′

2 =
((

B′′
11l 0

0 B′′
12l

)
⊗ sl,

(
B′′

21l 0

0 B′′
22l

)
⊗ sl,

(
i′′1l

0

)
⊗ sl,

(
j′′1l 0

) ⊗ sl

)

The equality g · x′ = x′′
1 ⊕ x′′

2 gives us for each l and k = 1, 2 the following equalities:(
g11B′

k1l g12B′
k2l

g21B′
k1l g22B′

k2l

)
=

(
g11 g12

g21 g22

)
·
(

B′
k1l 0

0 B′
k2l

)

=
(

B′′
k1l 0

0 B′′
k2l

)
·
(

g11 g12

g21 g22

)
=

(
B′′

k1lg11 B′′
k1lg12

B′′
k2lg21 B′′

k2lg22

)
(

g11i′1l

g21i′1l

)
=

(
g11 g12

g21 g22

)
·
(

i′1l

0

)
=

(
i′′1l

0

)

(
j′′1lg11 j′′1lg12

) = (
j′′1l 0

) ·
(

g11 g12

g21 g22

)
= (

j′1l 0
)
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Let S = ker g21 ⊂ V1. The equalities above show that for every l and k = 1, 2 we
have

B′
k1l(S) ⊂ S im i′1l ⊂ S,

which shows that S is a destabilising space for x′
1. Since x1 is stable S = V1 and g21 = 0.

Therefore g11 and g22 are isomorphisms. Hence

g11 · x′
1 = x′′

2 and g22 · x′
2 = x′′

2

which shows that the orbits GL(V1) · x′
1 and GL(V2) · x′

2 are closed. By the same
argument as in Proposition 4.3 we show that x1 has a trivial stabiliser in GL(V1).
Hence x1 is 1-stable and by Lemma 4.5 it is costable.

REMARK 4.6. Note that the decomposition V = V1 ⊕ V2 is unique since V1

(respectively V2) is the smallest (respectively the biggest) subspace of V such that

B̃k(V1) ⊂ V1 ⊗ H0(OX (1)) for k = 1, 2 and im ĩ ⊂ V1 ⊗ H0(OX (1))

(respectively B̃k(V2) ⊂ V2 ⊗ H0(OX (1)) for k = 1, 2 and V2 ⊂ ker j̃).

Obviously, the splitting x = x1 ⊕ x2 is also unique.

Now let us prove the opposite implication ⇐. Fix x = (B̃1, B̃2, ĩ, j̃) admitting a
splitting x = x1 ⊕ x2 as in the statement of the lemma. Let Y be the unique closed
orbit contained in the closure of GL(V )-orbit of x. By [28, Theorem 3.6] there exists
x0 ∈ Y and λ : �m → GL(V ) such that limt→0 λ(t) · x = x0. The implication proved
above shows that there exists a unique splitting x0 = x0

1 ⊕ x0
2 and V = V0

1 ⊕ V0
2 as in

the lemma. Put

V
0
k = lim

t→0
λ(t)Vk and x0

k = lim
t→0

λ(t) · xk for k = 1, 2.

The first limit exists because subspaces in V of fixed dimension are parameterised by

Grassmanians which are projective. The remaining limits are restrictions of x0 to V
0
1

and V
0
2, respectively.

REMARK 4.7. Let us note that

λ(s) lim
t→0

λ(t)(Vk) = lim
t→0

λ(ts)(Vk) = V
0
k.

Hence for any s ∈ �m and k = 1, 2 we have λ(s)(V
0
k) = V

0
k.

First, let us suppose that λ(t)(V1) = V1 for all t. Then V
0
1 = V1 and for k, l = 1, 2

we have

(lim
t→0

λ(t) · B̃l)(V
0
k)) = (lim

t→0
λ(t) · B̃l · λ(t−1))(lim

s→0
λ(s)Vk) = lim

t→0
λ(t) · B̃l(Vk) ⊂

⊂ lim
t→0

λ(t)(Vk ⊗ H0(OX (1))) = V
0
k ⊗ H0(OX (1))

im(lim
t→0

λ(t)ĩ) = lim
t→0

λ(t) im ĩ ⊂ lim
t→0

λ(t)V1 ⊗ H0(OX (1)) = V
0
1 ⊗ H0(OX (1))
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and

ker lim
t→0

j̃λ(t−1) = lim
t→0

ker j̃λ(t−1) ⊃ lim
t→0

λ(t)V2 = V
0
2.

Therefore by the characterisation of V0
1 and V0

2 given in Remark 4.6 we have V0
1 ⊂ V

0
1

and V
0
2 ⊂ V0

2 . Since λ(t) preserves V1 for all t we see that x0
1 ∈ GL(V1) · x1 = GL(V1) ·

x1. This shows that x0
1 is stable and again using Remark 4.6 we obtain equality V0

1 = V
0
1.

Then the dimension count shows that V0
2 = V

0
2 and in particular V = V

0
1 ⊕ V

0
2.

Consider the unipotent group

Uλ = {u ∈ GL(V )| lim
t→0

(λ(t)uλ(t)−1) = 1}.

Observe that we can replace λ by λ′ = uλu−1 for u ∈ Uλ. Indeed, one can easily prove
that limt→0 λ′(t)x = ux0 and ux0 represents the same orbit as x0.

We will show that there exists u ∈ Uλ such that

u(V
0
k) = Vk for k = 1, 2. (7)

Set m = dim V
0
1 and n = dim V . By Remark 4.7 one can choose a basisA = (αi)n

i=1

of V such that (αi)m
i=1 is a basis of V

0
1, (αi)n

i=m+1 is a basis of V
0
2 and λ(t)αi = taiαi for

some ai ∈ � and all t ∈ �m. Let (uij ) be the matrix of u ∈ GL(V ). Then

(uij ) ∈ Uλ ⇐⇒ uii = 1 and uij = 0 for i �= j such that ai ≤ aj. (8)

Let B = (βj)n
j=m+1 be a basis of V2 such that

βj = αj +
m∑

i=1

cijαi for j = (m + 1), . . . , n.

Such a basis exists because dim V2 = dim V
0
2 and V2 ∩ V

0
2 = {0}. Let bj = min{ai : i =

j or cij �= 0}. Then

lim
t→0

λ(t) span(βj) = lim
t→0

span

(
taj αj +

m∑
i=1

cij taiαi

)

= span

(
lim
t→0

(
taj−bj αj +

m∑
i=1

cij tai−bj αi

))
.

The vector limt→0(taj−bj αj + ∑m
i=1 cij tai−bj αi) exists by the definition of bi.

Moreover, since limt→0 λ(t)V2 = V
0
2, it must be contained in V

0
2. Therefore bj = aj

and cij = 0 when ai ≤ aj. Now, with respect to the basis A, we define u ∈ GL(V ) by
matrix (uij ) with the following coefficients:

uij =

⎧⎪⎨
⎪⎩

1 for i = j,

cij for i ≤ m and j ≥ m + 1,

0 in the remaining cases.

By (8) such u belongs to Uλ and satisfies (7).
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Using Remark 4.7 we get for k = 1, 2

λ′(t)(Vk) = uλ(t)u−1(Vk) = uλ(t)(V
0
k) = u(V

0
k) = Vk.

We can therefore assume that λ = λ1 × λ2, where λa, a = 1, 2, is a one-parameter
subgroup of GL(Va). Then, since x1, x2 have closed orbits, we get

x0 = lim
t→0

(λ1(t) · x1 ⊕ λ2(t) · x2) ∈ GL(V1) · x1 ⊕ GL(V2) · x2 ⊆ GL(V ) · x,

which proves that the orbit of x is also closed.
In general, by similar arguments as above there exists an element u ∈ Uλ such

that u(V
0
1) = V1. Consider the one-parameter subgroup λ′ = uλu−1. Then we have

λ′(t)(V1) = V1 for all t and limt→0(λ′(t) · x) = ux0. Thus, the previous part of the proof
implies that ux0 ∈ GL(V ) · x and it proves that the orbit of x is closed. �

REMARK 4.8. Note that up to now we have never assumed that either r or c is
positive. In fact, r = 0 is very interesting due to Lemma 4.5. This lemma shows that
at least set–theoretically one can reduce the study of 1-polystable ADHM data to
regular ADHM data and 1-polystable ADHM data in the rank 0 case. We explain the
geometric meaning of this fact in the next section.

Note that in case of rank 0 there are no stable ADHM data so μ̃−1(0)//χG = ∅.
But the quotient μ̃−1(0)/G is still a highly non-trivial scheme.

5. Gieseker and Donaldson–Uhlenbeck partial compactifications of instantons. In
this section we consider ADHM data for X = �1, which by Theorem 3.9 correspond
to perverse instantons on �3. In this case we obtain a similar picture as that known
from framed torsion-free sheaves on �2 (see 2.2).

DEFINITION 5.1. A perverse instanton C is called stable (costable, regular) if it
comes from some stable (respectively: costable, regular) ADHM datum.

Let us recall that we have a natural action of G = GL(V ) on the set μ̃−1(0)
of ADHM data. This action induces an action on the open subset μ̃−1(0)s of
stable ADHM data, which by Lemma 4.3 corresponds to χ -stable points for the
character χ : G → �m given by the determinant. The proof of Lemma 4.3 shows that
μ−1(0)s → μ−1(0)s/G is a principal G-bundle in the étale topology (In fact, in positive
characteristic we also need to check scheme-theoretical stabilisers. Then the assertion
follows from a version of Luna’s slice theorem. We leave the details to the reader.)

Let M(�3; r, c) : Sch /k → Sets be the functor which to a scheme S assigns the
set of isomorphism classes of S-families of stable framed perverse (r, c)-instantons.
Theorem 3.13 and the above remarks imply that this functor is representable:

THEOREM 5.2. The quotient M(�3; r, c) := μ̃−1(0)//χG is a fine moduli scheme for
the functor M(�3; r, c). In particular, there is a bijection between G-orbits of stable
ADHM data and isomorphism classes of stable framed perverse instantons.

Since every FJ-stable ADHM datum is stable we get as a corollary the following
theorem generalising the main theorem of [9]:

THEOREM 5.3. Let μ̃−1(0)FJ be the set of FJ-stable ADHM data. Then the GIT
quotient Mf (�3; r, c) := μ̃−1(0)FJ//χG represents the moduli functor of rank r instantons
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on �3 with c2 = c, framed along a line l∞. In particular, there is a bijection between
G-orbits of FJ-stable ADHM data and isomorphism classes of framed (r, c)-instantons.
Moreover, orbits of FJ-regular ADHM data are in bijection with isomorphism classes of
locally free instantons.

Let Mreg
0 (�3; r, c) be the moduli space of regular framed perverse (r, c)-instantons.

By Theorem 5.2 Mreg
0 (�3; r, c) is isomorphic to the quotient of regular ADHM data by

the group G. The space M(�3; r, c) contains the moduli space Mreg
0 (�3; r, c) as an open

subset and it can be considered as its partial Gieseker compactification. Note also that
FJ-semiregular ADHM data are regular, so Mreg

0 (�3; r, c) contains the moduli space
of framed reflexive (r, c)-instantons as on open subset.

Let M0(�3; r, c) denote the quotient μ̃−1(0)/G. This is an affine scheme and it
contains the moduli space Mreg

0 (�3; r, c) as an open subset. It can be considered as its
partial Donaldson–Uhlenbeck compactification.

PROPOSITION 5.4. For every stable rank r > 0 perverse instanton C on �3 there exists
a regular rank r perverse instanton C ′ and a rank 0 perverse instanton C ′′ such that we
have a distinguished triangle

C ′′ → C → C ′ → C ′′[1].

Proof. Fix a stable ADHM datum x = (B̃1, B̃2, ĩ, j̃) ∈ μ̃−1(0)s corresponding to
a perverse instanton C (see Theorem 3.9). Then by [28, Theorem 3.6] there exists a
one-parameter subgroup λ : �m → GL(V ) such that x0 = limt→0(λ(t) · x) exists and it
is contained in the unique closed orbit in GL(V ) · x. Let us set x0 = (B̃0

1, B̃0
2, ĩ0, j̃ 0) and

fix a splitting x0 = x0
1 ⊕ x0

2, V = V1 ⊕ V2 as in Lemma 4.5.
As before we can consider the weight decomposition

V =
⊕
m∈�

V (m), where V (m) = {v ∈ V |λ(t) · v = tmv}.

Since x is stable we have V = ⊕
m≥0 V (m). Let i0 be the composition of i and the

natural projection p1 : V1 ⊕ V2 → V1. We claim that

V1 = V (0), x0
1 = (B̃0

1|V1
, B̃0

2|V1
, ĩ0, j̃),

V2 =
⊕
m≥1

V (m), x0
2 = (B̃0

1|V2
, B̃0

2|V2
, 0, 0).

By Remark 4.6 it is enough to show that V (0) is the smallest destabilising subspace
for x0 and

⊕
m≥1 V (m) is the biggest subspace “decostabilising” x0. It is easy to see

that V (0) indeed destabilises x0. If there was a proper subspace S ⊂ V (0) with the
same property then S ⊕ ⊕

m≥1 V (m) would destabilise x. A similar argument applies
to

⊕
m≥1 V (m).

Varagnolo and Vasserot in [37, proof of Theorem 1] claimed that x0
2 =

(B̃1|V2 , B̃2|V2 , 0, 0). In our case this equality does not hold. Let us set x2 =
(B̃1|V2 , B̃2|V2 , 0, 0). Since j̃|V2 = 0 one can easily see that x2 satisfies the ADHM equation
and x2 ∈ μ̃−1

0,V2
(0).
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Although x and x0
1 ⊕ x2 in general are not equal, we still have the following exact

triple of complexes:

0 → C•
x2

→ C•
x → C•

x0
1
→ 0. (9)

This triple gives rise to the required distinguished triangle. �

As a corollary to the above proposition we can describe the morphism
from Gieseker to Donaldson–Uhlenbeck partial compactifications of Mreg

0 (�3; r, c).
Namely, we have a natural set-theoretical decomposition

M0(�3; r, c) =
⊔

0≤d≤c

Mreg
0 (�3; r, c − d) × M0(�3; 0, d).

Then the natural morphism

M(�3; r, c) � μ̃−1(0)//χG → μ̃−1(0)/G � M0(�3; r, c)

coming from the GIT (see Subsection 2.1) can be identified with the map

(C,�) → ((C ′,�′), C ′′),

where C ′ and C ′′ are as in Proposition 5.4 and �′ is induced on C ′ via �. This morphism
is analogous to the one described in Subsection 2.2.

PROPOSITION 5.5. For every framed rank r > 0 instanton E on �3 there exists a
unique regular rank r instanton E′ containing E. Moreover, the inclusion map E → E′ is
uniquely determined and we have a short exact sequence

0 → E → E′ → E′′ → 0,

where E′′ is a rank 0 instanton (see Definition 6.1).

Proof. Let us consider the short exact sequence from the proof of previous
proposition. Since C•

x2
is a rank 0 perverse instanton, we have H0(C•

x2
) = 0. Thus we

obtain the following long exact sequence of cohomology groups

0 → H0(C•
x) → H0(C•

x0
1
) → H1(C•

x2
) → H1(C•

x) → H1(C•
x0

1
) → 0.

By Lemma 2.10 x is FJ-stable if and only if H1(C•
x) = 0. In particular, if x is FJ-stable

thenH1(C•
x) = 0. This implies thatH1(C•

x0
1
) = 0 and hence x0

1 is also FJ-stable. Therefore

we can set E′ = H0(C•
x0

1
) and E′′ = H1(C•

x2
). Let us set c′ = dim V1. Our choice of x0

1 and

x2 shows that E′ is a torsion-free (r, c′)-instanton corresponding to a costable ADHM
datum, and E′′ is the first cohomology of a perverse (0, c − c′)-instanton (let us recall
that such instantons have no other non-trivial cohomology). �

The above proposition allows us to describe the morphism from the moduli
space Mf (�3; r, c) of framed instantons to the Donaldson–Uhlenbeck partial
compactification of Mreg

0 (�3; r, c).
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6. Perverse instantons of rank 0. In this section we describe the moduli space
M0(�3; 0, c) of perverse instantons of rank 0. Let us recall that this “moduli space”
does not corepresent any functor and in particular, as for Chow varieties, we do not
have any deformation theory. But we can still show that closed points of this moduli
space can be interpreted as certain one-dimensional sheaves on �3. Then we relate the
moduli space to modules over a certain non-commutative algebra and we show that
already M0(�3; 0, 2) is reducible.

6.1. Rank 0 instantons.

DEFINITION 6.1. A rank 0 instanton E on �3 is a pure sheaf of dimension 1 such
that H0(�3, E(−2)) = 0 and H1(�3, E(−2)) = 0.

The above definition is motivated by the following lemma:

LEMMA 6.2. If C is a rank 0 perverse instanton then C[1] is a sheaf object whose
underlying sheaf is a rank 0 instanton. On the other hand, if E is a rank 0 instanton then
the object E[−1] in Db(�3) is a rank 0 perverse instanton.

Proof. If C is a rank 0 perverse instanton then only E = H1(C) is non-zero and
hence C[1] is a sheaf object. Clearly, it has dimension ≤ 1, since there exists a line l
such that the support of E does not intersect l. Since

Hp(�3, C ⊗ O�3 (q)) = Hp−1(�3, E(q))

we see the required vanishing of cohomology. To prove that E is pure of dimension 1
note that the torsion in E would give a section of H0(�3, E(−2)). This proves the first
part of the lemma.

Now assume that E is a rank 0 instanton and set C = E[−1]. Conditions 2 and 3
from Definition 3.8 are trivially satisfied for C. To check the condition 1 it is sufficient
to prove that H0(�3, E(q)) = 0 for q ≤ −2 and H1(�3, E(−2)) = 0 for q ≥ −2. By [15,
Lemma 1.1.12] there exists an E(m)-regular section of O�3 (1) and it gives rise to the
sequence

0 → E(m − 1) → E(m) → E′ → 0

in which E′ is some sheaf of dimension 0. Using such sequences and the definition of
rank 0 instanton it is easy to check the required vanishing of cohomology groups. �

By definition closed points of M0(�3; 0, d) correspond to closed GL(c)-orbits of
ADHM (0, c)-data for �1. By Theorem 3.9 and the above lemma there exists a bijection
between isomorphism classes of rank 0 instantons E whose scheme-theoretical support
is a curve od degree c not intersecting l∞ and GL(c)-orbits of ADHM (0, c)-data for
�1. So M0(�3; 0, d) can be thought of as the moduli space of some pure sheaves of
dimension 1. Note however that this moduli space is only set-theoretical and it is not
a coarse moduli space.

In the characteristic zero case μ̃−1(0)/G is a subscheme of the quotient B̃/G, which
is a normal variety. Moreover, the coordinate ring for the variety B̃/G can be described
using the First Fundamental Theorem for Matrices (see [22, 2.5, Theorem]). More
precisely, if chark = 0 then

k[B̃/G] = k[B̃]G = k[Tri1...im : 1 ≤ i1, . . . , im ≤ 4, m ≤ c2],
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where Tri1... im : B̃ � End(V )4 → k is the generalised trace defined by

(A1, A2, A3, A4) → Tr(Ai1 Ai2 . . . Aim ).

This in principle allows us to find μ̃−1(0)/G as the image of μ̃−1(0) in B̃/G. In practice,
computer assisted computations using this interpretation almost never work due to
complexity of the problem.

6.2. Schemes of modules over an associative ring. In this subsection we recall a
construction of the moduli space of d-dimensional modules over an associative ring.
It is mostly a folklore, but note that our moduli space is not the same as the one
constructed by King in [21]. We are interested in the moduli space that was introduced
by Procesi in [31] (see also [26] for a more functorial approach) but it is non-interesting
from the point of view of finite-dimensional (as k-vector spaces) algebras. In our
treatment we restrict to the simplest case although the constructions act in much more
general set-up.

Let k be an algebraically closed field and let R be a finitely generated associative
k-algebra with unit. Let us fix a positive integer d. Let Modd

R denote the scheme of
d-dimensional R-module structures. By definition it is the affine (algebraic) k-scheme
representing the functor from commutative k-algebras (with unit) to the category of
sets sending a k-algebra A to

Modd
R(A) = {left R ⊗k A-module structures on Ad}

= {A-algebra maps R ⊗k A → Matd×d(A)},
where Matd×d(A) denotes the set of d × d-matrices with values in A.

Let us choose a surjective homomorphism π : k〈x1, . . . , xn〉 → R from the free
associative algebra with unit. Then the above functor is naturally equivalent to the
functor sending A to the set of n-tuples (M1, . . . , Mn) of d × d-matrices with coefficients
in A such that f (M1, . . . , Mn) = 0 for all f ∈ ker π . In particular, the k-points of Modd

R
correspond to R-module structures on kd (i.e. to d-dimensional R-modules with a
choice of a k-basis).

We have a natural GL(d)-action on Modd
R which corresponds to a change of bases

(it gives the conjugation action on the set of matrices). By the GIT, there exists a
uniform good quotient Qd

R = Modd
R / GLd .

Let us recall that if S is a k-scheme then a family of d-dimensional R-modules
parameterised by S (or simply an S-family of R-modules) is a locally free coherent
OS-module F together with a k-algebra homomorphism R → EndF .

PROPOSITION 6.3. The quotient Qd
R corepresents the moduli functor Qd

R : Sch /k →
Sets given by

S → {Isomorphism classes of S-families of R-modules} .

We call it the moduli space of d-dimensional R-modules.

Proof of this proposition is completely standard and we leave it to the reader (cf.
[15, Lemma 4.1.2] and [21, Proposition 5.2])

The quotient Qd
R parameterises closed GLd-orbits in Modd

R. An orbit of a k-point
is closed if and only if it corresponds to a semisimple representation of R. Therefore
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the k-points of Qd
R correspond to isomorphism classes of d-dimensional semisimple

R-modules. Equivalently, Qd
R parameterises S-equivalence classes of d-dimensional R-

modules, where two modules are S-equivalent if the graded objects associated to their
Jordan–Hölder filtrations are isomorphic.

Note that if R is commutative then Qd
R is the moduli space of zero-dimensional

coherent sheaves of length d on X = Spec R. Usually, the moduli spaces on non-
projective varieties do not make sense but in case of zero-dimensional sheaves we can
take any completion of X to a projective scheme X and consider the open subscheme
of the moduli space of zero-dimensional coherent sheaves of length d on X , which
parameterises sheaves with support contained in X .

We will need the following proposition:

PROPOSITION 6.4. Let R be a commutative k-algebra and let X = Spec R. Then we
have a canonical morphism f : SdX → Qd

R from the d-th symmetric power of X, which
is a bijection on the sets of closed points. If k is a field of characteristic zero then f is an
isomorphism.

Proof. Let us consider the morphism Q1
R × · · · × Q1

R → Qd
R from the d copies

of Q1
R, given by taking a direct sum. Clearly, Q1

R = Spec R and the morphism factors
through Sd�n as it is invariant with respect to the natural action of symmetric group
exchanging components of the product. The induced morphism Sd�n → Qd

R is an
isomorphism on the level of closed k-points since a simple module over a commutative
algebra is one-dimensional (e.g. by Schur’s lemma).

The second part follows from [15, Example 4.3.6] (note that the proof works also
if the characteristic is sufficiently high) and the interpretation of Qd

R that we gave
above. �

REMARK 6.5. We note in the next subsection that the scheme of pairs of commuting
d × d-matrices is irreducible. But already the scheme of triples of commuting
d × d-matrices (i.e. Modd

R for R = k[x1, x2, x3]) is reducible for d ≥ 30 (see [12,
Proposition 3.1]). Still the above proposition says that its quotient Qd

R is irreducible if
R is commutative and Spec R is irreducible.

EXAMPLE 6.6. Let us consider M2
k[x1,x2]. Let us set

B1 =
(

1 0

y1 1

)(
y3 y2(y3 − y4)

0 y4

)(
1 0

−y1 1

)

and

B2 =
(

1 0

y1 1

)(
y5 y2(y5 − y6)

0 y6

)(
1 0

−y1 1

)
.

One can easily check that the condition [B1, B2] = 0 is satisfied. Therefore we can define
the map ψ : �6 → M2

k[x1,x2] by sending (y1, . . . , y6) to (B1, B2). By the previous remark
M2

k[x1,x2] is irreducible and one can check that the above defined map is dominant and
generically finite.

Let us recall that we have the map η : �4 = �2 × �2 → S2�2 → Q2
k[x1,x2]. One can

easily see that the image of a point (y1, . . . , y6) ∈ �6 in Q2
k[x1,x2] coincides with the
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image under η of the quadruple (y3, y4, y5, y6) ∈ �4 consisting of pairs of eigenvalues
of matrices (B1, B2) = ψ(y1, . . . , y6).

6.3. Moduli interpretation for instantons of rank 0. Let us first consider the
ADHM data for a point for r = 0 and some positive c > 0. The moment map

μ : B = End(V ) ⊕ End(V ) → End(V )

is in this case given by (B1, B2) → [B1, B2], where as usual V is a k-vector space of
dimension c. In this case μ−1(0) is known as the variety of commuting matrices. It is
known to be irreducible by classical results of Gerstenhaber [10] and Motzkin and
Taussky [27]. This implies that the quotient μ−1(0)/ GL(V ) is also irreducible. In fact,
one can see from the definition that μ−1(0)/ GL(V ) is isomorphic to the scheme Qc

k[x1,x2]
of equivalence classes of c-dimensional k[x1, x2]-modules. Therefore by Proposition
6.4 the points of μ−1(0)/ GL(V ) are in bijection with the points of c-th symmetric
power Sc(�2) of �2 (this should be compared with [28, Proposition 2.10] which gives
a different bijection). In characteristic zero we get that μ−1(0)/ GL(V ) is isomorphic
to Sc�2.

Now let us consider ADHM data for �1. Again it follows from the definitions
that the quotient M0(�3; 0, c) = μ̃−1(0)/ GL(V ) is isomorphic to the scheme Qc

R of
equivalence classes of c-dimensional R-modules for a non-commutative k-algebra

R = k〈y1, y2, z1, z2〉/(y1y2 − y2y1, z1z2 − z2z1, y1z2 − z2y1 + y2z1 − z1y2).

Let us define a two–sided ideal in R by

I = (y1z2 − z2y1, y1z1 − z1y1, y2z2 − z2y2).

It is easy to see that R/I � k[y1, y2, z1, z2] so we have a surjection R → R′ =
k[y1, y2, z1, z2]. This induces a closed embedding of affine schemes

Modc
R′ ⊂ Modc

R

(see [26, Proposition 1.2]). Therefore we get a morphism

Qc
R′ → Qc

R,

which is a set–theoretical injection of quotients. If k has characteristic zero then this
morphism is a closed embedding.

By Proposition 6.4 we get the following induced affine map

ϕ : Sc�4 → Qc
R � M0(�3; 0, c),

which is a set-theoretical injection.
Geometric interpretation of the map ϕ is the following. Note that �4 parameterises

the lines in �3 that do not intersect l∞. Then for a point in Sc�4, the image corresponds
to the rank 0 instanton E = Ol1 (1) ⊕ . . . ⊕ Olc (1), where l1, . . . , lc are the lines not
intersecting l∞. If all these lines are disjoint then the corresponding rank 0 instanton
E gives a point in the Hilbert scheme of curves of degree c and one can check that the
corresponding component has dimension 4c. This suggest the following proposition:
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PROPOSITION 6.7. The image of ϕ is an irreducible component of M0(�3; 0, c) of
dimension 4c.

Proof. Let l1, . . . , lc be disjoint lines not intersecting l∞. Let E = Ol1 (1) ⊕ . . . ⊕
Olc (1) be the corresponding rank 0 instanton E and let x ∈ μ̃−1(0) = Modc

R be an
ADHM datum corresponding to E. Let X denote the R-module corresponding to x.

By Theorem 9.1 there exists a surjective map TxModR → Ext1
�3 (E, E) whose kernel

is the tangent space of the orbit O(x) of x at x. The support of E does not intersect l∞
so we do not need to tensor by Jl∞ . Note that the theorem (and its proof) still works in
our case but in the formulation given above: dϕe is not injective. Let us also note that
this fact, together with Voigt’s theorem, shows that Ext1

R(X, X) � Ext1
�3 (E, E).

LEMMA 6.8. Let l be any line in �3. Then dim Ext1
�3 (Ol,Ol) = 4.

Proof. Using the short exact sequence

0 → Jl → O�3 → Ol → 0

we see that Ext1
�3 (Ol,Ol) � Hom(Jl,Ol). To compute this last group we can assume

that l is given by equations x2 = x3 = 0. Then we have a short exact sequence

0 → O�3 (−2)
(x2,x3)→ O�3 (−1)2 → Jl → 0

which gives an exact sequence

0 → Hom(Jl,Ol) → Hom(O�3 (−1)2,Ol)
f→ Hom(O�3 (−2),Ol).

Since f is the zero map, we see that Hom(Jl,Ol) � Hom(O�3 (−1)2,Ol) � H0(Ol(1))⊕2

is four-dimensional. �
The above lemma implies that Ext1

�3 (E, E) is 4c-dimensional. Since HomR(X, X) is
c-dimensional, the orbit O(X) is of dimension c2 − c. But then the dimension of Modc

R
at X is at most c2 − c + 4c = c2 + 3c. Since the pre-image of the closed subscheme
ϕ(Sc�4) in Modc

R is of dimension at least 4c + (c2 − c) (as all the fibers of the restricted
map contain closed orbits of dimension at least c2 − c), we see that ϕ(Sc�4) is an
irreducible component of M0(�3; 0, c). �

REMARK 6.9. One can easily see that dim Ext2
�3 (Ol,Ol) = 3. Therefore the

instanton E from the above proof has dim Ext2
�3 (E, E) = 3c so it is potentially

obstructed (cf. Theorem 9.1). On the other hand, the above proof shows that the
corresponding point in M0(�3; 0, c) is smooth.

The following example shows that M0(�3; 0, c) need not be irreducible (unlike in
the case of ADHM data for a point). But it is still possible that it is a connected locally
complete intersection of dimension 4c.

EXAMPLE 6.10. Let us consider ADHM data on �1 for r = 0 and c = 2 in the
characteristic zero case. In this case one can compute that μ̃−1(0) has two irreducible
and reduced components: X1 of dimension 11 and X2 of dimension 10 intersecting
along an irreducible and reduced scheme of dimension 9 (to see this fact we first
performed a computer assisted computation in Singular). We can explicitly describe
these two components as follows.
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Let V1 and V2 denote varieties of pairs of commuting 2 × 2 matrices (see Example
6.6). Let us note that μ̃−1(0) is a subvariety in V1 × V2 given by equation [B11, B22] +
[B12, B21] = 0, where (B11, B21) ∈ V1 and (B12, B22) ∈ V2 are pairs of 2 × 2 matrices.

Let us set

B1k =
(

1 0

y1k 1

)(
y3k y2k(y3k − y4k)

0 y4k

)(
1 0

−y1k 1

)
,

and

B2k =
(

1 0

y1k 1

)(
y5k y2k(y5k − y6k)

0 y6k

)(
1 0

−y1k 1

)
.

As in Example 6.6 the condition [B1k, B2k] = 0 is satisfied for both k = 1 and k = 2.
Thus we can define a map ψ from �12 to the product V1 × V2 by sending (yij ) to

(B11, B21, B12, B22) defined above. Computations in Singular show that ψ−1(μ̃−1(0))
has three irreducible components Y1, Y2, Y3 given by the following ideals:

I1 = ((y31 − y41)(y52 − y62) − (y51 − y61)(y32 − y42)),

I2 = (y11 − y12, y21 − y22)

and

I3 = (y21y12 − y21y11 + 1, y21 + y22).

Further computations show that ψ(Y1) is eleven-dimensional and ψ(Y2) and
ψ(Y3) are equal and ten-dimensional. This shows that the restriction ψ|Y1 is a
generically finite morphism from Y1 to the eleven-dimensional component X1 of
μ−1(0). Similarly, ψ |Y2 and ψ |Y3 are generically finite morphisms from Y2 and Y3

to the ten-dimensional component X2.
We have dominant morphisms Y1 → X1/ GL(2) and Y2 → X2/ GL(2). For a

quadruple of matrices (B11, B21, B12, B22) ∈ X2 obtained as the image of a point
(yij ) ∈ Y2, the isotropy group of GL(2) contains matrices of the form(

1 0

y11 1

)(
t1 y21(t1 − t2)

0 t2

)(
1 0

−y11 1

)

for arbitrary t1, t2 ∈ �m. One can see that Y2 is mapped dominantly onto the image of
S2�4 in μ̃−1(0)/ GL(2) and therefore for a generic quadruple (B11, B21, B12, B22) ∈ X2

the isotropy group is two-dimensional and it is equal to the above described group
(one can also compute this isotropy group explicitly for all such quadruples).

One can also check that the isotropy group of a generic point in X1 is one-
dimensional (so the corresponding R-module is simple) and therefore μ̃−1(0)/ GL(2) is
pure of dimension 8 with irreducible components given by X1/ GL(2) and X2/ GL(2).

This also proves that the injection ϕ : S2�4 → μ̃−1(0)/ GL(2) maps S2�4 onto an
irreducible component of the quotient μ̃−1(0)/ GL(2).

Now we need to check that the components X1/ GL(2) and X2/ GL(2) do not
coincide. For this we need the following lemma:
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LEMMA 6.11. Let G be a linear algebraic group acting on a reducible variety X with
two irreducible components X1 and X2. Then X1/G ∩ X2/G = (X1 ∩ X2)/G.

Proof. First, observe that since G is irreducible, the closure of an orbit of a point
x ∈ X is contained in the same irreducible component as x. The intersection X1 ∩ X2 is
closed and G-invariant so (X1 ∩ X2)/G can be regarded as subvariety in X1/G ∩ X2/G.

Let us take y ∈ X1/G ∩ X2/G ⊂ X/G. By assumption it is the image of a closed
orbit of a point x ∈ X . We claim that x ∈ X1 ∩ X2. Note that y is the image of some
points x1 ∈ X1, x2 ∈ X2. Since each Gxi ⊂ Xi for i = 1, 2 contains a unique closed
orbit, it must be the orbit of x and it is contained in X1 ∩ X2. Therefore y lies in
(X1 ∩ X2)/G. �

The image of a quadruple (B11, B21, B12, B22) ∈ X2 in the image of S2�4 in
μ̃−1(0)/ GL(2) is given by quadruples of pairs of eigenvalues of matrices Bij . But
for a quadruple of 2 × 2 matrices (B11, B21, B12, B22) ∈ X1 ∩ X2 obtained as the image
of (yij ) ∈ Y1 ∩ Y2 we have the equation

(y31 − y41)(y52 − y62) = (y51 − y61)(y32 − y42)

for the eigenvalues. Therefore the image of Y1 ∩ Y2 in μ̃−1(0)/ GL(2) has dimension 7.
Together with the above lemma this proves the following corollary:

COROLLARY 6.12. M0(�3; 0, 2) has two eight-dimensional irreducible components
intersecting along a seven-dimensional variety.

7. Examples and counter-examples. In this section we consider generalised
ADHM data in the case X = �1. We provide a few examples showing, e.g. a relation
between our notion of stability and that of Frenkel and Jardim. We also show a few
counter-examples to some expectations of Frnekel and Jardim.

In this section we keep notation from Section 2.4.

7.1. Relation between GIT semistability and FJ-semistability. The following
lemma follows immediately from definitions:

LEMMA 7.1. Let us fix an ADHM datum x ∈ B̃ = B ⊗ H0(O�1 (1)). If x is FJ-
semistable then it is also stable.

Jardim in [17, Proposition 4] claims that the opposite implication also holds but
the following example shows that this assertion is false.

EXAMPLE 7.2. We consider ADHM data in case r = 1 and c = 2. Let us fix
coordinate systems in V and W and consider an element x = (B̃1, B̃2, ĩ, j̃) ∈ B̃ given
by

B̃1 =
[

x0 x0

x1 x1

]
, B̃2 =

[
x0 −x0

x1 −x1

]
, ĩ =

[
x0

x1

]
and j̃ = [−2x1 2x0

]
.

It is easy to see that μ̃(x) = 0. Hence x is an ADHM datum.
We claim that this ADHM datum is stable and costable. To prove that consider

a vector subspace S ⊂ V such that im ĩ ⊂ S ⊗ H0(OX (1)). We claim that S must be
two-dimensional. Otherwise, there exist constants a, b ∈ k such that every element in
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S ⊗ H0(OX (1)) can be written as [ a f (x0,x1)
b f (x0,x1) ] for some linear polynomial f in x0 and x1.

But [ x0
x1

] ∈ im ĩ cannot be written in this way. Therefore S = V , which proves that the

ADHM datum x is stable. Since ker j̃ = 0, the ADHM datum x is also costable.
Now fix a point p = [a : b] ∈ �1 and consider the subspace S ⊂ V = k2 spanned

by vector s = [ a
b ]. Then

(B̃1(p))(s) = (a + b) · s, (B̃2(p))(s) = (a − b) · s, (ĩ(p))(1) = s and (j̃(p))(s) = 0.

Therefore (x(p))(S) ⊂ S and x restricted to any point of �1 is neither stable nor costable.
In particular, the ADHM datum x is regular but not FJ-semistable.

Let us focus on the example given above and study cohomology groups of the
complex C•

x corresponding to the ADHM datum x.
First, let us describe the locus of points p = [x0, x1, x2, x3] ∈ �3 where the map

α(p) is not injective. It is equivalent to describing the locus

rk

⎛
⎜⎜⎜⎜⎜⎜⎝

x0 + x2 x0

x1 x1 + x2

x0 + x3 −x0

x1 −x1 + x3

−2x1 2x0

⎞
⎟⎟⎟⎟⎟⎟⎠ ≤ 1.

Easy computations show that this set is an intersection of two planes:{
x0 + x1 + x2 = 0

x0 − x1 + x3 = 0
.

Similarly, the locus of points p ∈ �3 where

β(p) =
(

−x0 − x3 x0 x0 + x2 x0 x0

−x1 x1 − x3 x1 x1 + x2 x1

)

is not surjective is the line given by equations x2 = x3 = 0.
Using this one can see that H1(C•

x) is a pure sheaf of dimension 1 and H0(C•
x) is a

torsion-free sheaf whose reflexivisation is locally free.

7.2. Relation to Diaconescu’s approach to ADHM data. We will use notation
from [7, Section 2] (see also [34, 2.9.2]). Let us set X = (X, M1 = OX (−1), M2 =
OX (−1), E∞ = W ⊗ OX (−1)) and consider an ADHM sheaf E = (E = V ⊗
OX ,�1,�2, ϕ, ψ) for this data.

DEFINITION 7.3. We say that E is stable if for every subspace S � V (possibly
S = 0) such that �k(S ⊗ OX (−1)) ⊂ S ⊗ OX for k = 1, 2 we have im � �⊂ S ⊗ OX .

The above stability notion is similar to Diaconescu’s stability [7, Definition 2.2] but
with stability condition only for subsheaves E′ of the form S ⊗ OX for some 0 � S � V .

Let B̃k : V → V ⊗ H0(OX (1)) be induced by �k and let ĩ : W → V ⊗ H0(OX (1))
and j̃ : V → W ⊗ H0(OX (1)) be induced by ψ and ϕ, respectively.
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Then giving E is equivalent to giving a point x = (B̃1, B̃2, ĩ, j̃) ∈ B̃ such that μ̃(x) =
0. Moreover, E is stable in the above sense if and only if x is stable.

7.3. Counter-example to the Frenkel–Jardim conjecture. In [9] Frenkel and Jardim
conjectured that the moduli space Mf (�3; r, c) of framed instantons is smooth and
irreducible. Here we show that this conjecture is false.

Let us consider the map ϕ : O4
�3 → O3

�3 (1) given by

ϕ =

⎛
⎜⎜⎝

x2 x3 0 0

0 x2 x3 0

0 0 x2 x3

⎞
⎟⎟⎠ .

Now let us consider the sheaf E defined by the short exact sequence

0 → E −→ O4
�3

ϕ̃−→Om(1)3 → 0,

where m is the line x0 = x1 = 0 and ϕ̃ is the composition the natural restriction map
O�3 (1)3 → O3

m(1) with ϕ. It is easy to see that E is a (4, 3)-instanton, trivial on the line
l∞ := (x2 = x3 = 0). From the defining sequence we have an exact sequence

Ext2(O4
�3 , E) → Ext2(E, E) → Ext3(Om(1)3, E) → Ext3(O4

�3 , E).

Then Extl(O4
�3 , E) = Hl(E)4 = 0 for l = 2, 3 and Ext3(Om(1)3, E) is Serre dual to

Hom(E,Om(−3)3). But after restricting to m we have

E|m � Om(−3) → O4
m → Om(1)3 → 0,

and it is easy to see that Hom(E,Om(−3)) is one-dimensional. In particular,
dim Ext2(E, E) = 3.

On the other hand, by Lemma 2.8 there exists a locally free (4, 3)-instanton F such
that Ext2(F, F) = 0. It corresponds to a smooth point of an irreducible component
of expected dimension (see Theorem 9.1). Therefore the point corresponding to E in
the moduli space of framed instantons is either singular or lives in a component of
unexpected dimension (in which case the moduli space would not be irreducible).

Another way of looking at this example is defining an ADHM datum for �1, for
r = 4, c = 3. We define an ADHM datum x = (B̃1, B̃2, ĩ, j̃) by setting B̃1 = 0, B̃2 =
0, j̃ = 0 and

ĩ =

⎛
⎜⎜⎝

x0 x1 0 0

0 x0 x1 0

0 0 x0 x1

⎞
⎟⎟⎠ .

It is easy to see that these matrices satisfy the ADHM equations and define an FJ-stable
ADHM datum (in fact, ĩp is surjective for every p ∈ �1). The corresponding torsion-free
framed (4, 3)-instanton E can be described by the above sequence. In terms of ADHM
data we proved that the moment map μ is not submersion at x (see Theorem 9.1) but
there exist ADHM data at which μ is a submersion.
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More generally, one can easily see that if c < r < 3c/2 then M(l∞; r, c) is either
singular or reducible. Indeed, one can find an FJ-stable complex ADHM data x ∈ �

for which only ĩ is non-zero. Then the rank of dμx is at most 2cr < 3c2, so dμx is not
surjective. On the other hand, by Lemma 2.8 there exists an irreducible component of
expected dimension which proves our claim.

7.4. Weak instantons.

DEFINITION 7.4. A weakly instanton sheaf (or a weak instanton) is a torsion-free
sheaf E on �3 such that
� c1(E) = 0,
� H0(E(−1)) = H1(E(−2)) = H3(E(−3)) = 0.

Weak instantons were introduced by Frenkel and Jardim (see [9, 2.4]) to deal with
FJ-semistable data in the rank 1 case.

We say that a torsion-free sheaf on �3 has trivial splitting type if there exists a
line such that the restriction of this sheaf to a line is a trivial sheaf. In this case the
restriction to a general line is also a trivial sheaf.

LEMMA 7.5. Let E be a locally free sheaf on �3 of trivial splitting type. Then
H0(E(−1)) = H3(E(−3)) = 0. In particular, if H1(E(−2)) = 0 then E is a weak
instanton.

Proof. If E is of trivial splitting type then both E(−1) and E∗(−1) have no sections.
Since H3(E(−3)) is Serre dual to H0(E∗(−1)) this shows the first part. The second one
follows from the first one by noting that for a sheaf of trivial splitting type we have
c1(E) = 0. �

DEFINITION 7.6. We say that a perverse instanton C is mini-perverse if H0(C) is
torsion-free and H1(C) is a sheaf of finite length.

Obviously, any instanton is mini-perverse, but the opposite implication does not
hold.

LEMMA 7.7. An ADHM datum x ∈ B̃ is FJ-semistable if and only if the corresponding
perverse instanton C•

x is mini-perverse.

Proof. The “if” implication is a content of [9, Proposition 17]. To prove the converse
note that the restriction of a mini-perverse instanton CA corresponding to A ∈ B̃ to a
general hyperplane containing l∞ gives a locally free sheaf on �2. But this shows that
for a general point x ∈ �1 the ADHM datum A(x) (corresponding to this restriction)
is regular. �

Note that in Example 7.2 the constructed perverse instanton is not mini-perverse.
So the above lemma gives another proof that this perverse instanton is not FJ-
semistable.

LEMMA 7.8. If C is a mini-perverse instanton then H0(C) is a weak instanton of trivial
splitting type.

Proof. Let us set E = H0(C) and T = H1(C). If C is a perverse instanton then we
have the distinguished triangle

E → C → T [−1] → E[1].
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The long cohomology exact sequence for this triangle gives exactness of the following
sequence:

0 = H0(C(−2)) → H1(T(−2)) → H1(E(−2)) → H1(C(−2)) = 0.

Since T has dimension zero we see that H1(E(−2)) = 0 and so E is a weak instanton.
The fact that it is of trivial splitting type follows from the fact that H0(C) is trivial on
l∞. �

LEMMA 7.9. A zero-dimensional coherent sheaf E on a smooth variety X has
homological dimension equal to the dimension of X.

Proof. By the Auslander–Buchsbaum theorem it is sufficient to prove that
Ex = E ⊗ OX,x has depth zero. Assume that it has depth at least 1. Then there
exists an element y ∈ mx ⊂ OX,x such that multiplication by y defines an injective
homomorphism ϕy : Ex → Ex. Note that ϕy is an isomorphism since Ex is zero-
dimensional and H0(ϕy) is an isomorphism as it is a linear injection of k-vector spaces
of the same dimension. But this implies that mxEx = Ex which contradicts Nakayama’s
lemma. �

LEMMA 7.10. If a locally free sheaf E appears as H0(C) for some mini-perverse
instanton C then H1(C) = 0. In particular, E is an instanton.

Proof. By Lemma 3.15 C is isomorphic in Db(�3) to the complex

(0 → O�3 (−1)c α−→O2c+r
�3

β−→O�3 (1)c → 0).

Set T = H1(C). We have a short exact sequence

0 → O�3 (−1)c� im α → ker β → E → 0

which, together with our assumption on E, implies that ker β is locally free. On the
other hand, we have an exact sequence

0 → ker β → O2c+r
�3 → O�3 (1)c → T → 0,

which implies that the homological dimension of T is at most two.
But if T �= 0 then Lemma 7.9 implies that the homological dimension of T is equal

to 3, a contradiction. �
EXAMPLE 7.11. In [9, 2.4] Frenkel and Jardim ask if every weak instanton of trivial

splitting type come from some FJ-semistable ADHM datum. In view of Lemma 7.7
this would imply that such an instanton is of the form H0(C) for some mini-perverse
instanton C. Here we give a negative answer to this question. Note that if the answer
were positive then by Lemma 7.10 every locally free weak instanton of trivial splitting
type would be an instanton. So it is sufficient to show a weakly instanton sheaf which
is locally free of trivial splitting type but which is not an instanton.

We use [5, Example 1.6] to show a rank 3 locally free sheaf E on �3 which is trivial
on a general line and has vanishing H1(E(−2)) and it does not appear as H0(C) for
some mini-perverse instanton (there are no such sheaves in the rank 2 case). This gives
a negative answer to the question posed in [9, 2.4].

Let q ≥ 1 and c2 ≥ 2q be integers. Let Z1 and Z2 be plane curves of degree c2 − q
and q contained in different planes. Assume that they intersect in 0 ≤ s ≤ q simple
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points and set Z = Z1 ∪ Z2. Then there exists a rank 3 vector bundle E which sits in a
short exact sequence

0 → O2
�3 → E → IZ → 0.

Then E is trivial along any line disjoint with Z.
Using the short exact sequence

0 → IZ → O�3 → OZ → 0

we see that H1(IZ(−2)) = 0. Therefore H1(E(−2)) = 0. Obviously, H0(E(−1)) = 0.
Since E is locally free, the Serre duality implies that H3(E(−3)) is dual to H0(E∗(−1)).
But E is slope semistable and hence E∗(−1) has no sections. Thus E is a weak instanton
of trivial splitting type.

On the other hand, H2(E(−2)) has dimension χ (E(−2)) as all the other
cohomology of E(−2) vanish. But the Riemann–Roch theorem implies that
χ (E(−2)) = 1

2 c3 = s + q2 + 1
2 c2(c2 − 2q + 1), so E is not an instanton.

7.5. Perverse instantons of charge 1. In [9] the moduli spaces of framed torsion-
free instantons with c = 1 and r ≥ 2 were described quite explicitly. Let us recall that
such instantons come from FJ-stable ADHM datum. We can generalise this description
to the case of stable ADHM datum. For c = 1 general ADHM datum consists of
complex numbers Blk and ik, jk which can be regarded as vectors in W . The ADHM
equation reduce to

ĩj̃ = 0. (10)

Stability is equivalent to ĩ �= 0 and costability to j̃ �= 0. The group GL(V ) is just �m and
t ∈ �m acts trivially on B̃k, it acts on ik by multiplication by t and on jk by multiplication
by t−1. The moduli of perverse instantons for fixed r ≥ 1 and c = 1 is isomorphic to
�4 × B(r) where B(r) is the set of solutions of equation (10) modulo the action of �m.
Note however, that there exist stable ADHM data also for r = 1 whereas there are no
FJ-stable ones (see [9, Propositions 4 and 15]).

PROPOSITION 7.12. For r ≥ 2 B(r) is a quasi projective variety of dimension 4(r − 1)
and B(1) � �1.

Proof. We follow the proof of Proposition 7 in [9]. Let

i1 = (x1, . . . , xr), i2 = (y1, . . . , yr),

j1 =

⎛
⎜⎜⎝

z1

...

zr

⎞
⎟⎟⎠ , j2

⎛
⎜⎜⎝

w1

...

wr

⎞
⎟⎟⎠ .

Then equation (10) reduces to

r∑
k=1

xkzk =
r∑

k=1

ykwk =
r∑

k=1

xkwk + ykzk = 0. (11)
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Such an ADHM datum is stable if and only if i1 or i2 is not a zero vector. One can
also easily show that FJ-stability is equivalent to the vectors i1 and i2 being linearly
independent. B(r) is the complete intersection of the three quadrics (11) in the open
subset of the (4r − 1)-dimensional weighted projective space

X = �(1, . . . , 1︸ ︷︷ ︸
2r

,−1, . . . ,−1︸ ︷︷ ︸
2r

).

This shows that B(r) is quasi-projective.

REMARK 7.13. A point in the complete intersection of the quadrics (11) in X
corresponds to an ADHM datum which is either stable or costable.

Let us consider the map

μ : �4r → �3

given by

μ(x1, . . . , xr, y1, . . . , yr, z1, . . . , zr, w1, . . . , wr)

=
(

r∑
k=1

xkzk,

r∑
k=1

ykwk,

r∑
k=1

xkwk + ykzk

)
.

The derivative of μ is given by

Dμ =

⎛
⎜⎝

z1 . . . zr 0 . . . 0 x1 . . . xr 0 . . . 0

0 . . . 0 w1 . . . wr 0 . . . 0 y1 . . . yr

w1 . . . wr z1 . . . zr y1 . . . yr x1 . . . xr

⎞
⎟⎠

Frankel and Jardim claimed that for r ≥ 2 the matrix Dμ has maximal rank 3 if and only
if (x1, . . . , xr) and (y1, . . . , yr) are linearly independent. However, only the implication
"⇐" is true and their result on non-singularity at points corresponding to FJ-stable
ADHM data remains correct. It also follows that dimB(r) = 4r − 4. In characteristic
different from 2, setting x1 = z2 = w2 = 1, y1 = 2 and all other coefficients equal 0
gives an example of stable ADHM datum which is not FJ-stable but it corresponds to
a non-singular point in the moduli space of perverse instantons. On the other hand, if
i1 and i2 are linearly dependent and j1 = j2 = 0 then Dμ has clearly rank 2. This shows
a stable ADHM datum which is neither costable nor FJ-stable but it gives a singular
point.

In the case r = 1, equations (11) reduce to ĩ = 0 or j̃ = 0. Stability is equivalent to
ĩ �= 0 so Dμ has rank 2 for all stable ADHM datum. Clearly, we have B(1) � �1. �

8. A general study of ADHM data for �1. In this section we introduce a
hypersymplectic reduction which is a holomorphic analogue of a hyper-Kähler
structure. We also relate the moduli space of framed instantons to the moduli space of
framed modules of Huybrechts and Lehn. The relation is not as straightforward as in
the surface case since many framed instantons are not Gieseker δ-semistable framed
modules on �3 for all parameters δ. The relation shows existence of the moduli space
of framed instantons without Theorem 5.2.
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8.1. Hypersymplectic reduction. Let X be a a smooth quasi-projective k-variety.
As an analogue of a hyper-Kähler structure we introduce the following:

DEFINITION 8.1. We say that X has a hypersymplectic structure if there exist a non-
degenerate symmetric form g on TX and maps of vector bundles I, J, K : TX → TX
such that

(1) g(Iv, Iw) = g(Jv, Jw) = g(Kv, Kw) = g(v,w),
(2) I2 = J2 = K2 = IJK = −1.

If we have a hypersymplectic manifold then we can define non-degenerate
symplectic forms ω1, ω2, ω3 on X by ω1(v,w) = g(Iv,w), ω2(v,w) = g(Jv,w) and
ω3(v,w) = g(Kv,w). Assume that there exists a reductive k-group G acting on X and
preserving g, I, J, K . As an analogue of a hyper-Kähler moment map we have the
following:

DEFINITION 8.2. A map μ = (μ1, μ2, μ3) : X → k3 ⊗ g∗ is called a hypersymplectic
moment map if it satisfies the following properties:

(1) μl is G-equivariant for l = 1, 2, 3,
(2) 〈dμl,x(v), ξ 〉 = ωl(ξx, v) for l = 1, 2, 3 and for any x ∈ X , v ∈ TxX and ξ ∈ g.

Let Vx be the image of the tangent map (at the unit) to the orbit map ϕx : G → X
sending g to g · x.

PROPOSITION 8.3. Let us take a point x ∈ X. Then the following conditions are
equivalent:

(1) dμx is surjective.
(2) dϕx is an injection and S = IVx + JVx + KVx is a direct sum.
(3) The map g ⊕ g ⊕ g → TxX given by (ξ1, ξ2, ξ3) → (Iξ1,x, Jξ2,x, Kξ3,x) is

injective.

Proof. Since

〈dμx(v), ξ 〉 = (g(Iξx, v), g(Jξx, v), g(Kξx, v)),

the kernel of dμx is equal to the orthogonal complement S⊥ of S (with respect to g).
Since g is non-degenerate we have

dim S + dim S⊥ = dim X.

Hence dμx is surjective if and only if dim S = 3 dim g. This is clearly equivalent to
saying that dϕx is injective (i.e. dim Vx = dim g) and IVx + JVx + KVx is a direct sum.
Equivalence with the last condition is clear. �

PROPOSITION 8.4. Let η = (η1, η2, η3) ∈ g∗ ⊕ g∗ ⊕ g∗ satisfy Ad∗
g(ηi) = ηi for all

g ∈ G. If x ∈ μ−1(η) and g|Vx is non-degenerate then dμx is surjective.

Proof. By assumption μ sends a G-orbit of x into a point. Hence dμx(Vx) = 0.
This immediately implies that Vx, IVx, JVx, KVx are orthogonal to each other
(with respect to g). But then the assertion follows from the above proposition.
Indeed, if there exists (ξ1, ξ2, ξ3) such that Iξ1,x + Jξ2,x + Kξ3,x = 0 then g(ξ1,x, ζx) =
g(Iξ1,x + Jξ2,x + Kξ3,x, Iζx) = 0 for any ζ ∈ g. Therefore ξ1,x = 0 and similarly ξ2,x =
ξ3,x = 0. �
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Note that it can easily happen that the form g restricted to Vx + S is zero and
dμx(S) = 0 although dμx is surjective (this happens, e.g. in Example 7.3).

8.2. Hypersymplectic moment map for ADHM data on �1. In this subsection we
assume that the characteristic of the base field is zero.

Let us fix a basis x0, x1 of H0(�1,O�1 (1)). Then a point x ∈ B̃ = B ⊗
H0(�1,O�1 (1)) can be thought of as a matrix

x =
(

B11 B12 i1 j1
B21 B22 i2 j2

)
,

where (Bl1, Bl2, il, jl) ∈ B for l = 1, 2 is written as in case of the usual ADHM data.
Using this notation we define a symmetric form g on TB̃ by

g(x, x′) = Tr(B11B′
22 + B22B′

11 − B21B′
12 − B12B′

21 + i1j′2 + i′1j2 − i2j′1 − i′2j1).

Let us choose a standard quaternion basis:

I =
(√−1 0

0 −√−1

)
, J =

(
0 1

−1 0

)
, K =

(
0

√−1√−1 0

)
.

Then I, J, K can be thought of as operators acting on TB̃. Let us write μ̃ :
B̃ ⊗ H0(�1,O�1 (1)) → End V ⊗ H0(�1,O�1 (2)) as the sum μ1x2

0 + μ2x0x1 + μ3x2
1 in

which μl : B̃ → End V for l = 1, 2, 3 are the corresponding components. Let us set
μ̃1(x) = √−1μ2(x), μ̃2(x) = μ1(x) + μ3(x) and μ̃3(x) = √−1(−μ1(x) + μ3(x)).

By a straightforward computation we get the following proposition:

PROPOSITION 8.5. (g, I, J, K) define a hypersymplectic structure on B̃. Moreover,
μ̃ = (μ̃1, μ̃2, μ̃3) : B̃ → k3 ⊗ g∗ is a hypersymplectic moment map.

This, together with Proposition 8.3, implies the following corollary which can be
used for checking smoothness of the moduli space of framed perverse instantons:

COROLLARY 8.6. Let x ∈ B̃ be a stable ADHM datum. Then dμ̃x is surjective if and
only if there exist no (ξ1, ξ2, ξ3) ∈ g ⊕ g ⊕ g − {(0, 0, 0)} such that

ξ1,x + Iξ2,x + Jξ3,x = 0.

8.3. Relation to moduli spaces of framed modules. Let X be a smooth n-
dimensional projective variety defined over an algebraically closed field k. Let us fix
an ample line bundle OX (1) and a coherent sheaf F on X . Let us also fix a polynomial
δ ∈ �[t] of degree ≤ (n − 1). When writing δ as

δ(m) = δ1
mn−1

(n − 1)!
+ δ2

mn−2

(n − 2)!
+ · · · + δn,

we will assume that the first non-zero coefficient is positive.
Let us recall a few definitions from [14]. A framed module is a pair (E, α), where E

is a coherent sheaf and α : E → F is a homomorphism. Let us set ε(α) = 0 if α = 0 and
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ε(α) = 1 if α �= 0. Then we define the Hilbert polynomial of (E, α) as P(E, α) = P(E) −
ε(α) · δ. If E has positive rank then we also define the slope of (E, α) as μ(E, α) =
(deg(E) − ε(α)δ1) · rk E.

DEFINITION 8.7. A framed module (E, α) is called Gieseker δ-(semi)stable if for
all framed submodules (E′, α′) ⊂ (E, α) we have rk E · P(E′, α′)(≤) rk E′ · P(E, α).

If E is torsion-free than we say that (E, α) is slope δ1-(semi)stable if for all framed
submodules (E′, α′) ⊂ (E, α) of rank 0 < rk E′ < rk E we have μ(E′, α′)(≤)μ(E, α).

Let us assume that F is a torsion-free sheaf on a divisor D ⊂ X . In the following
we identify F with its push forward to X .

LEMMA 8.8. Let E be a slope semistable torsion-free sheaf on X and let E|D � F
be a framing. Then the corresponding framed module (E, α), where α : E → E|D � F, is
slope δ1-stable for any small positive constant δ1. In particular, (E, α) is Gieseker δ-stable
for all polynomials δ of degree n − 1 with a small positive leading coefficient.

Proof. Note that ker α = E(−D). Let E′ ⊂ E be a subsheaf of rank r′ < r = rk E.
If E′ ⊂ ker α then

μ(E′, α′) = μ(E′) ≤ μ(E) − Dc1(OX (1))n−1 < μ(E) − δ1 = μ(E, α).

If E′ �⊂ ker α then

μ(E′, α′) = μ(E′) − δ1

r′ ≤ μ(E) − δ1

r′ < μ(E) − δ1

r
= μ(E, α),

which proves the lemma. �
Now [14, Theorem 0.1], together with appropriate modifications in positive

characteristic (see [23] for the details) imply the following corollary:

COROLLARY 8.9. There exists a quasi-projective scheme M(X ; D, F, P) which
represents the moduli functor M(X ; D, F, P) : Sch /k → Sets, which to a k-scheme
of finite type S associates the set of isomorphism classes of S-flat families of pairs
(E, E|D � F), where E is a slope semistable torsion-free sheaf on X with fixed Hilbert
polynomial P. It can be constructed as an open subscheme of the projective moduli
scheme of Gieseker δ-stable framed modules Ms

δ(X ; D, F, P) = Mss
δ (X ; D, F, P) for any

polynomial δ of degree n − 1 with a small positive leading coefficient.

Let X be a surface and let F be a semistable locally free sheaf on a smooth
irreducible curve D ⊂ X . Assume that D is numerically proportional to the polarisation
c1(OX (1)). Then any torsion-free sheaf E on X for which there exists a framing E|D � F
is automatically slope semistable. So in this case we have a quasi-projective moduli
space for torsion-free sheaves with framing without any need to introduce the stability
condition.

This in particular implies that the moduli spaces of torsion-free sheaves E on �2

with fixed rank r, second Chern class and framing E � Or
l∞ at the fixed line l∞ can be

considered as an open subscheme of the moduli space of framed modules of [14] and
it is a fine moduli space for the corresponding moduli functor (cf. [28, Remark 2.2]).

However, the situation becomes more subtle if we want to consider moduli spaces
of (r, c)-instantons E on �3 with framing E � Or

l∞ at the fixed line l∞ ⊂ �3:
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PROPOSITION 8.10. Let Ẽ be an (r − 1, c)-instanton on �3 and let E|l∞ � Or
l∞ be

a framing of E = Ẽ ⊕ O�3 . If c = c2(E) > r(r − 1) then E is an (r, c)-instanton but
the corresponding framed module (E, α) is not Gieseker δ-semistable for any positive
polynomial δ.

Proof. Assume (E, α) is Gieseker δ-semistable for some positive polynomial δ. Then
the stability condition for E′ = Il∞E ⊂ E gives P(E′)

r ≤ P(E)−δ

r , i.e. δ ≤ P(E) − P(E′) =
rP(Ol∞ ). Hence

δ(m) ≤ r(m + 1)

for large m. On the other hand, we have P(O�3 ) − δ ≤ P(E)−δ

r , which translates into

δ(m) ≥ c(m + 2)
r − 1

.

Hence c ≤ r(r − 1). �
Below we show that the moduli space of framed instantons on �3 can be

constructed as an open subscheme of the moduli space of framed modules but on
a different variety. Before giving a precise formulation of this result let us introduce
some notation.

Let � � �1 be the pencil of hyperplanes passing through l∞ = {x0 = x1 = 0} in
�3. The coordinates of this �1 are denoted by y0, y1. Let X = {(H, x) : x ∈ H} ⊂
�1 × �3 be the incidence variety. It is defined by the equation y1x0 = y0x1. Let p and
q denote the corresponding projections of X onto � and �3. We will write OX (a, b)
for p∗O�1 (a) ⊗ q∗O�3 (b). The projection q : X → �3 is the blow up of �3 along the
line l∞. The exceptional divisor of q will be denoted by D. It is easy to see that
OX (D) � O�3 (−1, 1). Note that X is equal to the projectivisation of N = O2

�1 ⊕ O�1 (1)
on �1. The relativeO�(N)(1) for this projectivisation is equal to q∗O�3 (1). We will denote
this line bundle by OX (1).

THEOREM 8.11. There exists a quasi-projective scheme Mf (�3; r, c) which represents
the moduli functor M̃f (�3; r, c) : Sch /k → Sets given by

S →
{

Isomorphism classes of S-flat families

of framed (r, c)-instantons E on �3.

}

It is isomorphic to M(X ; D,Or
D, P) for a suitably chosen Hilbert polynomial P and an

arbitrary polarisation.

Proof. Let E be an instanton on �3.

LEMMA 8.12. q∗E is slope H̃-semistable for any ample line bundle H̃ on X.

Proof. Let us set ξ = c1(OX (1)). It is easy to see that q∗E is slope ξ -semistable as
otherwise the push forward of the destabilising subsheaf would destabilise E = q∗(q∗E)
(see Lemma 2.6).

Moreover, the restriction of q∗E to a general fibre of p is isomorphic to the
restriction of E to a hyperplane in �3 containing l, which is clearly semistable. So
q∗E is slope f ξ -semistable (i.e. slope in the semistability condition is computed as
c1 · f ξ/ rk).
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The nef cone of X is generated by divisors ξ and f = p∗c1(O�1 (1)). So we can write
H̃ = aξ + b f for some positive numbers a and b. Then H̃2 = a2ξ 2 + 2abf ξ , so slope
H̃-semistability of q∗E follows from the above. �

In the proof we also need a generalisation of Ishimura’s generalisation [16,
Theorem 1] of Schwarzenberger’s theorem. For a moment let us switch to a different
notation:

Let X and Y ⊂ X be smooth varieties and let S be an arbitrary noetherian k-
scheme. Let π : X̃ → X be the blow up of X along Y . Let E be the exceptional divisor
and let π̃ = π |E : E → Y . Let us set πS = π × IdS : X̃ × S → X × S etc.

THEOREM 8.13. (cf. [16, Theorem 1]) Let F be a coherent sheaf on X̃ × S such that
F |E×S � π̃∗G for some locally free sheaf G on Y × S. Then the coherent sheaf E = πS∗F
is locally free in an open neighborhood of Y × S and the natural map π∗

SE → F is an
isomorphism.

Proof. The theorem can be proven in exactly the same way as [16, Theorem 1]
using the fact that cohomology commutes with flat base extension. �

Coming back to the proof of the theorem we will show that the functor M(l; r, c)
is represented by the quasi-projective moduli scheme M(X ; D,Or

D, P) (for a suitably
chosen P and an arbitrary fixed polarisation).

First, let us note that by Lemma 8.12 there exists a natural transformation of
functors

� : M̃f (�3; r, c) → M(X ; D,Or
D, P)

given by sending a flat S-family (ES, E|l×S � Or
l×S) of framed (r, c)-instantons to the

family (q∗
SES, q∗

SES|D×S � Or
D×S). To show the above claim it is sufficient to prove that

the transformation � is an isomorphism of functors. First, note that

qS∗q∗
SES � ES ⊗ qS∗OX×S � ES,

where the first isomorphism comes from the projection formula (note that ES is locally
free around l × S) and the second isomorphism follows since push-forward commutes
with flat base extension. Similarly, we have

R1qS∗(q∗
SES(−D × S)) � ES ⊗ R1qS∗OX×S(−D × S) = 0,

so qS∗(q∗
SES|D×S) � ES|l×S and the push-forward of q∗

SES|D×S � Or
D×S gives an

isomorphism ES|l×S � Or
l×S.

Hence Theorem 8.13 implies that the natural transformation

� : M(X ; D,Or
D, P) → M̃f (�3; r, c)

given by sending a flat S-family (FS, F |D×S � Or
D×S) to the family (qS∗FS, (qS∗FS)|l×S �

Or
l×S) is inverse to �. �

9. Deformation theory and smoothness of moduli spaces of instantons. In this
section we give a very quick review of deformation theory for framed perverse
instantons. We sketch only a quite simple fact from deformation theory used a few
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times throughout the paper without going into long technical results showing, e.g.
virtual smoothness of the moduli space of stable perverse instantons.

Then we show that if E1 and E2 are locally free instantons then Ext2(E1, E2)
vanishes for low ranks and second Chern classes. This implies that the moduli space
of locally free instantons embeds as a Lagrangian submanifold into the moduli space
of sheaves on a quartic. It also proves that the moduli space of framed locally free
(r, c)-instantons is smooth for low values of r and c.

9.1. Deformation theory for framed perverse instantons. Let (C,�) be a stable
framed perverse instanton corresponding to an ADHM datum x ∈ B̃. Let ϕ : G → �

be the orbit map sending g to gx.

THEOREM 9.1. Let us consider the complex K

0 → K0 = g
dϕe−→ K1 = TxB̃

dμ̃x−→ K2 = T0(End(V ) ⊗ H0(O�1 (2))) → 0

Then Hi(K) = 0 for i �= 1, 2, H1(K) = Ext1(C, Jl∞ ⊗ C) and H2(K) = Ext2(C, C). In
particular, if Ext2(C, C) = 0 then the moduli space M(�3; r, c) is smooth of dimension
4cr at [(C,�)].

Proof. We know that C is quasi-isomorphic to the following complex

0 → C−1 := V ⊗ O�3 (−1)
α→ C0 := W̃ ⊗ O�3

β→ C1 := V ⊗ O�3 (1) → 0,

where dim V = c and dim W̃ = r + 2c (more precisely W̃ = V ⊕ V ⊕ W ) and α, β

are defined by the ADHM datum x as in 2.4. Let us consider the complex D =
Hom•(C, Jl∞ ⊗ C). Then we see that

Exti(C, Jl∞ ⊗ C) = �i(�3,D),

where �i(X,D) denotes the ith hypercohomology group of the complex D. Let us
consider a spectral sequence

Ht(�3,Ds) ⇒ �s+t(�3,D).

Using this spectral sequence we see that we have a complex

0 → L0 = H2(�3,D−2)
d 0

L→ L1 = H0(�3,D1)
d1

L→ L2 = H0(�3,D2) → 0

such that H1(L) = �1(�3,D) and H2(L) = �2(�3,D). We have L0 = Hom(V, V ) ⊗
H2(�3, Jl∞ (−2)), L1 = (Hom(W̃ , V ) ⊕ Hom(V, W̃ )) ⊗ H0(�3, Jl∞ (1)) and L2 =
Hom(V, V ) ⊗ H0(�3, Jl∞ (2)). Note that H2(�3, Jl∞ (−2)) � k but H0(�3, Jl∞ (2)) � k7,
so this is not yet the complex we were looking for. However, if we write down everything
in coordinates we see that d1

L is an isomorphism on Hom(V, V ) ⊗ k4 and after splitting
off the corresponding factors from L1 and L2 we get exactly complex K . Obviously,
we need to write down everything in coordinates to check that the obtained maps are
essentially the same. We leave the details to the reader. Now the theorem follows from
the following lemma:
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LEMMA 9.2. Let C be a framed perverse (r, c)-instanton on �3. Then

Ext2(C, C) = Ext2(C, Jl∞ ⊗ C).

Proof. We have a distinguished triangle

Jl∞ ⊗ C → C → C ⊗ Ol∞ → Jl∞ ⊗ C[1].

This triangle gives

Ext1(C, C ⊗ Ol∞ ) → Ext2(C, Jl∞ ⊗ C) → Ext2(C, C) → Ext2(C, C ⊗ Ol∞ ).

But Extl(C, C ⊗ Ol∞ ) = hl(Or2

l∞ ) = 0 for l = 1, 2, so we get the required equality. �
This finishes proof of Theorem 9.1. �
REMARK 9.3. Let (C,�) be a stable framed perverse instanton. Then by a

standard computation one can see that the tangent space to M(�3; r, c) at the point
corresponding to (C,�) is isomorphic to Ext1(C, Jl∞ ⊗ C). Moreover, one can show
that there exists an appropriate obstruction theory with values in Ext2(C, C) (cf. [15,
2.A.5]).

9.2. Smoothness of the moduli space of framed locally free instantons.

LEMMA 9.4. Let E be a locally free instanton of rank r = 2 or r = 3. Then for any
plane � ⊂ �3 the restriction E� is slope semistable.

Proof. Let us note that we have a long exact cohomology sequences:

0 = H0(E(−1)) → H0(E�(−1)) → H1(E(−2)) = 0

and

0 = H0(E∗(−1)) → H0(E∗
�(−1)) → H1(E∗(−2)) � (H2(E(−2)))∗ = 0,

where the isomorphism in the second sequence comes from the Serre duality. This
implies that E�(−1) and E∗

�(−1) have no sections which in ranks 2 and 3 implies
semistability of E�. �

LEMMA 9.5. Let Ei be a locally free (ri, ci)-instanton on �3, where i = 1, 2. Then
Ext2(E1, E2(−2)) has dimension at most c1c2.

Proof. Our assumption implies that Ei is the cohomology of the following monad
C•

i

0 → Vi ⊗ O�3 (−1)
d−1
Ci→ W̃i ⊗ O�3

d0
Ci→ Vi ⊗ O�3 (1) → 0,

where dim Vi = ci and dim W̃i = 2ci + ri. Let us consider the complex C• =
Hom•(C•

1 , C•
2 ) defined by

C i :=
⊕

k

Hom(Ck
1 , Ck+i

2 )
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with d(f ) := dC•
2
◦ f − (−1)deg f f ◦ dC•

1
. Since C•

i are complexes of locally free sheaves
we see that

Extp(E1, E2(−2)) = �p(�3, C• ⊗ O�3 (−2)),

where �p denotes the pth hypercohomology group. But then the spectral sequence

Ht(�3, Cs ⊗ O�3 (−2)) ⇒ �s+t(�3, C• ⊗ O�3 (−2))

gives an exact sequence

0 → Ext1(E1, E2(−2)) → Hom(V1, V2) → Hom(V1, V2) → Ext2(E1, E2(−2)) → 0.

Clearly, this implies the required inequality. �
The proof of the following theorem uses the method of proof of [25, Théorème 1].

THEOREM 9.6. Let Ei be a locally free (ri, ci)-instanton on �3, where i = 1, 2. If
r1, r2 ≤ 3 and c1c2 ≤ 6 then Ext2(E1, E2) = 0.

Proof. Let Z = {(x,�) ∈ �3 × (�3)∗ : x ∈ �} be the incidence variety of planes
containing a point in �3. Let p1, p2 denote projections from �3 × (�3)∗ onto �3 and
(�3)∗, respectively, and let us set q1 = p1|Z and q2 = p2|Z. On �3 × (�3)∗ we have a
short exact sequence

0 → O�3×(�3)∗ (−1,−1) → O�3×(�3)∗ → OZ → 0.

Let us tensor this sequence with p∗
1Hom(E1, E2(i)) and push it down by p2. Then we

get an exact sequence

Ext2(E1, E2(i − 1)) ⊗ O(�3)∗ (−1)
ϕi→ Ext2(E1, E2(i)) ⊗ O(�3)∗ → R2q2∗q∗

1Hom(E1, E2(i)).

But for any plane � ⊂ �3 the group Ext2((E1)�, (E2)�(i)) is Serre dual to
Hom((E2)�, (E1)�(−i − 3)). By Lemma 9.4 both (E1)� and (E2)� are semistable of
the same slope so if i > −3 then Hom((E2)�, (E1)�(−i − 3)) = 0. This implies that
R2q2∗q∗

1Hom(E1, E2(i)) = 0 for i > −3 and hence for such i we have a short exact
sequence

0 → Fi = ker ϕi → Ext2(E1, E2(i − 1)) ⊗ O(�3)∗ (−1)
ϕi→ Ext2(E1, E2(i)) ⊗ O(�3)∗ → 0.

Now Fi is a vector bundle (again only for i > −3). Let si denotes its rank. If si < 3
and Ext2(E1, E2(i)) �= 0 then csi+1(Fi) is non-zero which contradicts the fact that Fi is
locally free. Therefore if Ext2(E1, E2(i)) �= 0 for some i ≥ −2 then

si = dim Ext2(E1, E2(i − 1)) − dim Ext2(E1, E2(i)) ≥ 3.

Applying this inequality for i = 0 and i = −1 we see that if Ext2(E1, E2) �= 0 then
Ext2(E1, E2(−2)) has dimension at least 7. By Lemma 9.5 this contradicts our
assumption on c1c2. �

COROLLARY 9.7. Let r ≤ 3 and c ≤ 2. Then the moduli space of framed locally free
(r, c)-instantons is smooth of dimension 4cr.

https://doi.org/10.1017/S0017089510000558 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089510000558


94 MARCIN HAUZER AND ADRIAN LANGER

Proof. Let E be a locally free (r, c)-instanton. Then Ext2(E, E) = 0 and by
Theorem 9.1 the tangent space to the moduli space is isomorphic to Ext1(E, Jl∞E), so
the dimension is equal to 4cr. �

Let M�3 (r, c) denotes the moduli space of Gieseker stable locally free (r, c)-
instantons on �3. In case of rank r = 2 or 3 Gieseker stability of instanton E is
equivalent to h0(E) = h0(E∗) = 0.

Let S ⊂ �3 be any smooth quartic with Pic S = �. Let MS(r, 4c) denotes the
moduli space of slope stable vector bundles on S with rank r and Chern classes c1 = 0
and c2 = c · h2|S = 4c (h stands for the class of a hyperplane in �3).

Using an idea of A. Tyurin (see [2, Section 9]) one can show the following theorem:

THEOREM 9.8. Let r ≤ 3 and c ≤ 2. Then M�3 (r, c) is smooth and the restriction
r : M�3 (r, c) → MS(r, 4c) is a morphism which induces an isomorphism of M�3 (r, c) onto
a Lagrangian submanifold of MS(r, 4c).

Proof. Smoothness of M�3 (r, c) follows directly from Theorem 9.6. To prove that
the restriction map r : M�3 (r, c) → MS(r, c) is a morphism we need the following
lemma:

LEMMA 9.9. Let E be a locally free instanton of rank r = 2 or r = 3. Assume that
h0(E) = h0(E∗) = 0. Then E is slope stable and for any smooth quartic S ⊂ �3 with
Pic S = �, the restriction ES is slope stable.

Proof. The (saturated) destabilising subsheaf of E has either rank 1 and then it
gives a section of E or it has rank 2 and then E has rank 3 and the determinant of
the destabilising subsheaf gives a section of ∧2E � E∗. This proves the first assertion.
By the same argument to show the second assertion it is sufficient to prove that
h0(ES) = h0(E∗

S) = 0. But this follows from sequences:

0 = H0(E) → H0(ES) → H1(E(−4)) = 0

and

0 = H0(E∗) → H0(E∗
S) → H1(E∗(−4)) � (H2(E))∗ = 0.

�
Let E be a Gieseker stable locally free (r, c)-instanton. By Lemma 9.9 and

Theorem 9.6 we know that the restriction of E to S is slope stable and Ext2(E, E) = 0.
This implies that r is an immersion at the point [E] (see [2, 9.1]). Therefore we only
need to show that r is an injection.

To prove that let us take two Gieseker stable locally free (r, c)-instantons E1 and
E2. Then by Theorem 9.6 we have an exact sequence

Hom(E1, E2) → Hom((E1)S, (E2)S) → Ext1(E1, E2(−S)) � (Ext2(E2, E1))∗ = 0.

This shows that we can lift any isomorphism (E1)S → (E2)S to an isomorphism of E1

and E2 and hence r is injective. �
REMARK 9.10. It is very tempting to conjecture that Theorem 9.6 holds for all

pairs of locally free instantons (maybe with some additional assumptions concerning
stability of these bundles). This would imply a well known conjecture on smoothness
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of the moduli space of locally free instantons. Even then, an analogue of Theorem 9.8
does not immediately follow. But if one restricted to the open subset of bundles for
which all exterior powers remain instantons then one could embed it into MS(r, 4c) as
a Lagrangian submanifold.

However, it seems that all these conjectures are just a wishful thinking similar to the
original conjecture on smoothness of the moduli space of locally free instantons: there
are very few known results and all the methods work only for instantons of low charge.

EXAMPLE 9.11. For r = 2 and c = 1 the moduli space M�3 (2, 1) parameterizes only
null-correlation bundles and it is known that M�3 (2, 1) � �5 \ Gr(2, 4), where Gr(2, 4)
is the Grassmannian of planes in �4 (see [30, Chapter II, Theorem 4.3.4]). By the above
theorem this is a Lagrangian submanifold of the moduli space MS(2, 4). Over complex
numbers MS(2, 4) is known to have a smooth compactification to a holomorphic
symplectic variety (see [29]). Note that Lagrangian fibrations MS(2, 4) → �5 for some
K3 surfaces S were constructed by Beauville in [2, Proposition 9.4]. It is possible
that the Lagrangian submanifold M�3 (2, 1) extends to a section of some Lagrangian
fibration (possibly after deforming the compactification) providing another example
when this is possible (see [33] for the proof that some Lagrangian fibrations can be
deformed to Lagrangian fibrations with a section in case of four-dimensional varieties).
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12. J. Holbrook and M. Omladič, Approximating commuting operators, Linear Algebra
Appl. 327 (2001), 131–149.

13. D. Happel, I. Reiten and S. O. Smalø, Tilting in abelian categories and quasitilted
algebras, Mem. Amer. Math. Soc. 120 (1996), viii+88 pp.

14. D. Huybrechts and M. Lehn, Framed modules and their moduli, Int. J. Math. 6 (1995),
297–324.

15. D. Huybrechts and M. Lehn, The geometry of moduli spaces of sheaves, Asp. Math. 31
(1997), xiv+269 pp.

16. S. Ishimura, A descent problem of vector bundles and its applications, J. Math. Kyoto
Univ. 23 (1983), 73–83.

17. M. Jardim, Moduli spaces of framed instanton sheaves on projective spaces,
arXiv:0801.2550v2.

18. M. Jardim, Atiyah–Drinfeld–Hitchin–Manin construction of framed instanton sheaves,
C. R. Math. Acad. Sci. Paris 346 (2008), 427–430.

19. D. Kaledin, M. Lehn and Ch. Sorger, Singular symplectic moduli spaces, Invent. Math.
164 (2006), 591–614.

20. P. Katsylo and G. Ottaviani, Regularity of the moduli space of instanton bundles
MIP3 (5), Transform. Groups 8 (2003), 147–158.

21. A. King, Moduli of representations of finite-dimensional algebras, Q. J. Math. Oxford
Ser. (2) 45 (1994), 515–530.

22. H. Kraft and C. Procesi, Classical invariant theory. A primer, preprint (1996).
23. A. Langer, Moduli spaces of sheaves in mixed characteristic, Duke Math. J. 124 (2004),

571–586.
24. A. Langer, Instanton bundles, Arbeitstagung 2007, MPI preprint 07-75.
25. J. Le Potier, Sur l’espace de modules des fibrés de Yang et Mills, in Mathematics and

physics (Paris, 1979/1982), Progress in Mathematics, vol. 37 (de Monvel L. B., Douady A. and
Verdier J.-L., Editors) (Boston, MA, 1983), 65–137.

26. K. Morrison, The scheme of finite-dimensional representations of an algebra, Pacific J.
Math. 91 (1980), 199–218.

27. T. S. Motzkin and O. Taussky, Pairs of matrices with property L. II, Trans. Amer. Math.
Soc. 80 (1955), 387–401.

28. H. Nakajima, Lectures on Hilbert schemes of points on surfaces, University Lecture
Series, vol. 18 (American Mathematical Society, Providence, RI, 1999), xii+132 pp.

29. K. O’Grady, Desingularized moduli spaces of sheaves on a K3, J. Reine Angew. Math.
512 (1999), 49–117.

30. C. Okonek, M. Schneider and H. Spindler, Vector bundles on complex projective spaces,
Progress in Mathematics 3 (Birkhaüser, Boston, Mass., 1980).
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