
STANDARD REPRESENTATIONS OF 
SIMPLE LIE ALGEBRAS 

I. Z. BOUWER 

Summary. Le tL be any simple finite-dimensional Lie algebra (defined over 
the field K of complex numbers). Cartan's theory of weights is used to define 
sets of (algebraic) representations of L that can be characterized in terms of 
left ideals of the universal enveloping algebra of L. These representations, 
called standard, generalize irreducible representations that possess a dominant 
weight. The newly obtained representations are all infinite-dimensional. Their 
study is initiated here by obtaining a partial solution to the problem of 
characterizing them by means of sequences of elements in K. 

Notation, K denotes the field of complex numbers. Whenever the word 
algebra is used, it will mean algebra over K. The words basis, dimension, and 
dual, when applied to an algebra, will refer to the underlying linear space of the 
algebra. An associative algebra will always be assumed to have a multiplicative 
unit. The multiplication in a Lie algebra will be denoted by square brackets 
and that in an associative algebra by juxtaposition (with the usual conventions). 

1. Introduction. With any Lie algebra L an associative algebra U(L), 
called the universal enveloping algebra of L, can be associated (4). I t is defined 
as the algebra T(L)/I, where T(L) is the tensor algebra of the space L and / is 
the two-sided ideal of T(L) generated by all elements of the form xy — yx 
— [x, y] for x, y G L Ç TÇL). The space L may be considered as a subspace of 
U(L). Any representation of L induces a representation of U(L) and any 
representation of U(L) subduces a representation of L. This correspondence is 
one-to-one and preserves irreducibility. Complete information about the 
irreducible representations of a Lie algebra L may therefore be obtained by 
studying the irreducible representations of the associative algebra U{L). 

The irreducible representations of any associative algebra A may be analysed 
in terms of the inherent structure of A (7, Chapter 2, §2). For that purpose the 
left regular representation pA/J of A modulo / , for any left ideal / of A, is 
defined as the mapping a —> pA/J(a) on A, where pA/j(a) is the operator on the 
quotient space A/J given by pA/j(a) . (b + J) = (ab) + J, for each b £ A. 
The representation pA/J is irreducible if and only if J is a maximal left ideal of 
A. Now let (p, V) be any irreducible representation of A. Let VQ be any one-
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dimensional subspace of V and let Jo be the annihilator ideal of Vo, that is, 
Jo = {x G A| p(x)v = 0 for any non-zero v G Vo}. Then J0 is a maximal left 
ideal of A and p is equivalent to the left regular representation of A modulo J0. 

Since, in general, different one-dimensional subspaces of a representation 
space V have different annihilator ideals, the above correspondence between 
the set of inequivalent irreducible representations of A and the set of maximal 
left ideals of A is not one-to-one. However, if for a set S of irreducible represen
tations of A, there can be specified a mapping \j/ that associates with each 
(p, V) G S a unique one-dimensional subspace V0 of V, then the correspon
dence (p, V) —> Jo between S and the set J(S, \j/) of corresponding maximal left 
ideals of A will be one-to-one. The characterization problem for S will then be 
equivalent to that for J(S, \p). The following problems thus arise: 

(a) to define pairs of the form (S, \(/), and 
(b) to characterize the elements of the corresponding sets J(S, \f/). 
When A has the form U(L), where L is a simple Lie algebra satisfying 

1 < dim L < oo, Cartan's theory of weights may be used to define suitable 
pairs (S ,^) . 

Chevalley (2) and Harish-Chandra (3) introduced and characterized the set 
S(0) (our notation) of all those irreducible representations of U(L) that possess 
a dominant weight. (For a very clear and concise formulation of this work, see 
(8, Exposé 17).) With the set S(0) we may associate the mapping \p(Q) that 
maps each (p, V) £ S(0) to the (one-dimensional) subspace of V that belongs 
to the dominant weight of p. In this paper the concept of a dominant weight is 
generalized (Definition (3.1)), in a natural way, to give rise to more general 
pairs (S(A), ^(A)), where the index A ranges through all subsets of a given set of 
simple roots of L. The sets S(A), for A ^ 0, thus consist of irreducible infinite-
dimensional representations that do not possess dominant weights. (They may, 
for instance, be seen to include the "continuous classes" Cq° and C^ of 
irreducible representations of ( a real form of) A\ obtained by Bargmann (1 ).) 
The author calls the elements of S (A) ^-standard representations of U(L). The 
problem of characterizing these representations is solved only partially. A 
formula is established (§4) by means of which, for each given L and A, the 
elements of a certain subset S'(A) (conjectured to be not proper) of S (A) may be 
characterized. In §§5 and 6 this characterization process is carried through 
explicitly for all cases covered by: (i) L arbitrary, |A| = 1, and (ii) L = A2, 
|A| = 2. For the cases (i) it is shown that S'(A) = S (A), so that when A consists 
of a single element, the problem of characterizing the A-standard representa
tions of U(L) is completely solved. Two conjectures, borne out by these 
examples, are stated in the final §7. 

The methods of proof and exposition used in this paper are based upon those in 
(8, Exposé 17). As to the extent of our generalization we note that for irreduc
ible representations that possess a dominant weight, condition (b) of Theorem 
(4.4) is trivially satisfied while condition (c) of the same theorem is satisfied 
vacuously. 
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The author takes this opportunity to acknowledge that the paper (2) by 
Chevalley has been the main stimulus for the study presented here. He is 
greatly indebted to his Ph.D. supervisor, Professor A. J. Coleman (Queen's 
University), for his interest and suggestions. 

2. Preliminaries. Let L be a simple Lie algebra satisfying 1 < m = dim L 
< oo and let D be a fixed Cartan subalgebra of L. Let n = dim D. Let 
S = {«i, . . . , an} be a set of simple roots of L (defined with respect to D) and 
let P be the corresponding set of positive roots of L. The set S forms a basis of 
D*} the space dual to D. 

The space L has a basis of the form (É. Cartan) 

B = {et\ i = 1, . . . , m\ = {da, q$} pp\ a G S, /3 G P}, 

where the da (a G S) form a basis of D, where an element pp (or q&)y for each 
/3 G P , belongs (as an eigenvector of the restriction to D of the adjoint 
representation of L) to the positive root ft (or, respectively, the negative root 
—j8), and where they satisfy certain wrell-known commutation relations (8, 
p. 17-01). We may assume (as we do in Lemma (2.7) in particular) that these 
elements are so normed (with respect to the Cartan-Killing form) that 
[pay qa] = da, [da, pa] = 2pa, and [da, qa] = — 2qa for all a G 5 . When a = at 

(i = 1, . . . , s), we shall write dupuqi for da,pajqa> respectively. 
Let e\ < . . . < em denote any linear order on B. Then the Birkhoff-Witt 

theorem (8, p. 1-07, théorème V) states that a basis of U(L) is given by the 
set of all elements u of the form 

(2.1) u = eiw(1) . . . e^m) 

where the exponents u(J) are integers > 0 . 
The following lemma is useful for exhibiting different bases of U(L). I t is a 

direct consequence of (8, p. 1-06, théorème 1 ), which is a basis independent 
form of the Birkhoff-Witt theorem. 

(2.2) LEMMA. Any set of elements which can be derived (bijectively) from the set 
of all elements of the form (2.1) by allowing the factors et(i = 1, . . . , m) to 
commute appears as a basis of U(L). 

Let F denote any basis of U(L) as determined by (2.2). 
For any u G F and any ft G P, let n{fi) (or m(fi)) be the number of times 

that the factor p$ (or, respectively, qp) is contained in u. Then the mass n{u) of 
•u is defined to be the element Ylfep (n(P) — m(P))P of D*. If an element z in 
U(L) is such that its linear decomposition with respect to the basis F consists of 
summands of equal mass, then the mass fx{z} of z is defined to be the mass of 
any one of its summands. The masses of elements of U(L) occur as the points of 
the integral lattice through the origin in D*, that is, they are the elements 
5^1 = 1 mt ai where the mt are integers. For any £ in D* of this form the set of 
elements of U(L) that have mass J forms an (infinite-dimensional) subspace M% 

https://doi.org/10.4153/CJM-1968-031-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1968-031-5


SIMPLE LIE ALGEBRAS 347 

of U(L). We may state: (i) U(L) is the direct sum of the mass spaces M^ and 
(ii) z £ M$, zf G Mv =$zz G M^+v. (i) clearly holds while (ii) follows from the fact 
that the linear decomposition of zz' with respect to the basis F proceeds by 
application of the commutation relations of L and these are mass-preserving, 
(i) and (ii) state that U(L) is a graded algebra, graded by the mass. 

From (ii) it follows that the mass of a product is independent of the order of 
its factors, which implies that the existence and the value of the mass of an 
element of U(L) do not depend upon the particular basis F chosen for U(L). 

An element z in U(L) is called a cycle in U(L) if n{z} = 0. The space Mo 
forms a subalgebra of U(L) which will be called the cycle algebra of L. 

By induction on the lengths of words we verify that 

(2.3) [d, x] = £(d)x 

for any x G Mç and any d G D (where [d, x] denotes dx — xd). From (2.3) it is 
seen that Mo is the centralizer algebra in U(L) of the universal enveloping 
algebra U(D) of D. 

The significance of the (mass-)graded structure of U(L) as far as the theory 
of (weight-possessing) irreducible representations of U(L) is concerned is due to 
equation (2.4) below. If an irreducible representation (p, V) of U{L) has at 
least one weight, then V is the direct sum of weight spaces FM. For any fixed 
weight X of p and any fixed non-zero vector w in V\, the irreducibility of p 
implies that every vector v in V has the form p(u)w with u G U(L). Using 
(2.3) it is seen that this condition implies that 

(2.4) V, = p(il^_x)w 

for any weight \x of p. In particular, (2.4) implies that the weights of p occur as a 
subset of the integral lattice through X in D*, that is, each weight of p has the 
form X + ]C!=i w< ai} where the mt are integers. 

We now discuss the concept of primitivity as defined for elements of a basis F 
of U(L). For any u G F, let u(j) be the number of times that the factor ej is 
contained in u(j = 1, . . . , m). With any u G F we associate its (ordered) 
m-tuple of exponents: [u] — (u(j)) = (u(l), . . . , u(m)). This defines a bijective 
mapping from F to the set I(m) of all m-tuples of integers > 0 . In I(m) we 
introduce the following partial order: m = (m(j)) > n = (n(j)) if and only if 
mU) > n(j) f° r e a c n J — 1» • • • > m> while m > n if and only if m > n and 
m 9e n. 

(2.5) DEFINITION. For any u,u' G F, u is said to contain {or properly contain) 
u' if [u] > [uf] (or [u] > [u']). An element u ^ 1 of F is called a primitive 
element of F if it does not properly contain a cycle ^ 1. 

The proof of the following lemma has been communicated to the author by 
G. E. Burger: 
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(2.6) LEMMA. For any mass space M^ the number of primitive elements of F 
belonging to M$ is finite. 

Proof. We first note that for an element u in F of mass £ the condition of 
primitivity is equivalent to the condition that u does not properly contain any 
element u' ^ 1 satisfying ix{uf) = £. Now let W be any subset of B = {eu 
. . . , em). Let E(W) be the set of all those primitive elements z of F that belong 
to Mi and that have the property that each element of W occurs with a non
zero exponent in z while all other elements of B occur with zero exponents. If 
E(W) 9e 0, let x G E(W). Let a\ be the highest exponent occurring in the m-
tuple [x] of exponents of x. We now construct, recursively, a sequence of positive 
integers a\ < #2 < • . . < ar(r = \W\) such that any element of E(W) has at 
least t non-zero exponents <a* for each t = 1, 2, . . . , r. The first step has just 
been described (that a\ has the desired property follows from the condition of 
primitivity on the elements of E(W)). For the feth step we assume that ak-\ has 
been found. We then form W{k~l\ the set of all subsets of W having k — 1 
elements. The linear order on B induces a linear order on each of these subsets 
so that each element of W(k~1) may be regarded as a (k — 1)-tuple of elements 
of W. Define an allowable (k — 1)-tuple of positive integers to be a (k — 1)-tuple 
(hi, • • • , hk-i) of integers with 0 < ht < ak-.\ for each i. To each element 
(Xi(i), . • • , xujc-v)) in W{1c~l) we now assign consecutively all allowable (k — 1)-
tuples of positive integers. For each such assignment, keeping (xî(i), . . . , 
Xi(k-i)) momentarily fixed, consider the set of all elements of E(W) in which 
Xi(j) occurs with exponent hjy for each j = 1, . . . , & — 1. If this set is non
empty, let x be an element of it. (If it is empty, ignore it.) Write down the 
highest exponent appearing in [x]. Repeat this process for all allowable 
(k — l)-tuples of positive integers, and for all elements of W{1i~l). Let ak be the 
greatest of all the positive integers that have been written down. We prove now 
that every element of E(W) has at least k non-zero exponents <aA. By the in
duction hypothesis every element of E( W) has at least k — 1 non-zero exponents 
Kak-u Now, ak > ak-u Therefore, if the above assertion is false, there must 
exist a y G E(W) such that [y] has exactly k — 1 non-zero entries Kak. This 
means that y has exponents mi, . . . , mk-i (occurring, respectively, with 
y ai) j • • • » ytot-D £ W, say) with 0 < mt < ak-i(i = 1, . . . , k — 1) and all 
other non-zero entries of [y] >ak. By the method of construction of ak there 
exists a y1 in E(W) in which the elements y au, . . . , yuk-i) appear with the 
same exponents mi, . . . , mk_i but in which all other exponents are <a#. Then 
[y] > ly']- But then y (t E(W) (by the condition of primitivity). This contra
diction proves the assertion. It follows that ar is an upper bound for the 
exponents appearing in any [z], z G E(W). Therefore E(W) is finite (\E(W)\ 
< a/). Since this is true for any W CZ B, the lemma is proved. 

Finally, for later reference, we state: 
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(2.7) LEMMA. For any simple root a of L, the following relations hold in U(L): 

t 

Q.«P« = El fa Pa - (* " i)(t - i + 1 + da)) 
2 = 1 

t 

and paga = f i (Çapa— (t+ 1 — i)(t - i — da)), 

for any integer t > 0. 

Proof. Let g, £, d denote qa, paj da, respectively. The relations follow by 
induction, writing qt+lpt+l = q(qlp)p\ pt+1qt+1 = p(ptq)qt

1 and using the 
identities, also proved by induction: 

a tp = -t(t - l)q l~l - tdq l~l + pq l 

and p'q= -t{t - l)p ^ + tdp l~l + qp K 

3. Standard representations of L. Let A denote any fixed subset of the 
set S of simple roots of L. Let | A| = 5. The simple roots of L will be considered 
to be numbered in such a way that A = jai, . . . , as}. Let A+ denote the set of 
positive roots of L spanned by A and let A0 be the complement in P of A+. 

(3.1) DEFINITION. An irreducible representation p of U(L) (or, equivalently, of 
L) is called A-standard if it possesses a weight X such that: 

(i) for each a Ç A, the a-ladder through X is doubly infinite, that is, X + ma 
occurs as a weight of pfor every integer m, 

(ii) the fi ÇA0 are roots that annihilate X, that is, p contains no weight of the 
form \ + {3 (P e A0), 

(iii) the X weight space of p has dimension equal to one, 
(iv) if s > 1, then for j = 1, . . . , s, the coefficients k(j) of 

X = Ê *(*)«< (Hi) G K) 
i= l 

satisfy 0 < (real part of k(j)) < 1. A weight X of p satisfying (i) to (iv) is called a 
characteristic weight of p. The order s of A is called the order of p. A representation 
of U(L) is called standard if it is A-standard, for some A C S. 

The set of all the A-standard representations of U(L) will be denoted by 
S(A). 

For s = 0, A equals the empty set 0 and A0 = P . The set S(0) consists of all 
those irreducible representations of U(L) that possess a dominant weight (8, 
Exposé 17). ((3.1) (iii) then follows as a property.) The characterization 
problem for S(0) has been completely solved (see 8, Exposé 17): each p Ç S(0) 
has a unique dominant weight X and the corresponding mapping p —> X from 
S(0) to J9* is bijective. 

It follows from (3.1) (i) that if A ^ 0, then each A-standard representation of 
U(L) is infinite-dimensional. 
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Remark. We briefly comment on condition (iv) of (3.1). If Conjectures (7.1) 
and (7.2) are true, then (for s > 1) there will exist an infinity of weights X 
satisfying (3.1) (i) to (iii), while exactly one of them will satisfy (3.1) (iv). I t is 
therefore anticipated that condition (iv) of (3.1) will not act as a restriction on 
the representations to be considered, but simply as a prescription for associating 
a unique weight with each representation. 

In analysing the A-standard representations of U(L) the structure of U(L) is 
to be studied in terms of the favoured role accorded in Definition (3.1) to the 
subset A of S. 

From (2.1) it follows that a basis of U(L) is given by the set of all elements of 
the form: 

(3.2) n zM ri dr n ^ n *>H n *<- n PSM 

y L <=1 6 8 Ji=H-l 7 

where the ranges of /?, y are A+, A0, respectively, where the exponents are 
integers > 0 and where each of the product signs respects a fixed order on its 
index set. 

Z/(A), or simply U, will denote the subalgebra of L generated (as a Lie 
algebra) by the set {qa, pa\ a € A}. A basis for U is given by the set {dai qp, pp\ 
a G A, P G A+} (the proof being similar to the proof that U+ is an algebra, in 
(8, p. 17-01)). A basis for U(Lf) is thus given by the set of all elements of the 
form as given within square brackets in (3.2). The cycle algebra C(L') ofL' is the 
subalgebra of U(Lf) whose underlying linear space is the space M0 Pi U(L'). A 
basis for C(L') is provided by the set of all those basis elements of U(Lf) that 
have mass equal to zero. If an element of U(Lf) (or C(L')) is a primitive element 
of the basis (3.2), it is called a primitive element (or, respectively, a primitive 
cycle) of U. 

By Lemma (2.6) the number of primitive cycles of L' is finite. Let w denote 
the set of all the primitive cycles of L' other than the elements dt(i = 1, . . . , s). 
For any element X of D* and any mapping k from T to K, J(X, k) will denote the 
left ideal of U(L) generated by the elements 

dt - \(dt) . 1 (i = 1, . . . , »), 

(3.3) py ( 7 € A°), 

c - k(c) . 1 (ce TT). 

(3.4) LEMMA. Any A-standard representation p of U(L) is equivalent to a left 
regular representation pV/j of U(L) modulo J, where J is a maximal left ideal of 
U(L) containing a left ideal of the form J(X, k) . 

Proof. Let X be a characteristic weight of p and let J be the annihilator ideal 
of the one-dimensional X weight space of p. Then pc^Lpv/J (§1). Since p, 
possessing at least one weight, is not the zero representation, it follows that 
J 9^ U(L). Since p is irreducible, J is maximal. By Definition (3.1) (ii) and 
(iii), and the form of the generators (3.3) of J(X, k) , it follows (using (2.4)) that 
/contains an ideal of the form J(X, k). This proves the lemma. 
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By (3.4) we have that to each A-standard representation p of U(L) there 
corresponds a couple (X, k) , where X is an element of D* and where k is a 
mapping from T to K. The correspondence is defined by: 

(3.5) / : P - > / - > / ( X , k ) - » ( X , k ) 

where X is a characteristic weight of p, and J, containing /(X, k), is the annihi-
lator ideal of the X weight space of p. We shall show (Theorem (3.12)) t h a t / is 
an injective mapping, so that the A-standard representations of U(L) will be 
characterized by the couples (X, k) associated with them. 

(3.6) THEOREM. For XÇi)* and a mapping kfrom T to K let J(\, k) 9e U(L). 
Let J be any proper left ideal of U(L) containing J(\, k) . Let p* denote the left 
regular representation of U(L) modulo J. Then: 

(a) each weight of p* has the form: 

s n 

X + X) mjOij— ] £ in'i<Xi, 
3=1 i=S-t-l 

where the m' t are integers > 0 and where the mj are any integers, 
(b) the weight spaces of p* are finite-dimensional, and 
(c) the X weight space of p* has dimension equal to one. 

Proof. I t follows from the form of the first two sets of generators (3.3) of 
J(\, k) that any element u of the form (3.2) reduces modulo J(\, k) , and thus 
modulo J, to a i£-multiple of an element 

(3.7) V =ri7€Aog7
W ( 7 )x(^) 

with x(u) G U(Lr), so that U/J is spanned by classes of the form v + J. 
Modulo J we have 

dv = vd + (ix{v}){d)v for each d G D (by (2.3)) 

= (X + ii{v})(d)v (since d = \(d) . 1 mod J(X,k)). 

Since, in the expression for ix{v], the coefficients of the at{i = s + 1, . . . , n) 
are all negative or zero, (a) is proved. By supposition, J ^ U(L), that is, 
1 j£ Omod J. Also, 1 + J <E (U/J)\ (by the form of the first set of the 
generators (3.3) for J(\, k)). The element 1 generates U/J (as left U(L)-
module modulo J) and by (2.4) we have that for any weight X + £ of p*, the 
(X + £) weight space of p* is spanned by the classes of the form v + J where 
li{v) = £. From (3.7) we may state that 

(3.8) £ = fi{v} = -X^GAO m(y)y + n{x(u)}. 

Comparing coerhcients of the at(i = s + 1, . . . , n) in (3.8), all the m(y) 
appear in the equations while no coefficients from n{x(u)} appear (since x(u) 
Ç U(Lr)). Since the m(y) are positive integers, it follows that for fixed £ there 
are only a finite number of solutions (^(7)) for the equations of the comparison. 
Thus, by (3.8), IJL{X(U)\ can assume only a finite number of values. It remains to 
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be shown that for any fixed mass f, the solutions x of the equation f = M{#}> 
where x is any basis element of U(Lr), determine only a finite number of 
classes x + / . By allowing factors to commute, each element x of the form as 
given within square brackets in (3.2) and of mass f may be brought into the 
form 

(3.9) x = p(x)U cmU) n dt
mi, 

where p(x) is a primitive element of V having mass equal to f, where the 
exponents are integers > 0 , and where the first product sign respects a fixed 
order on w. (For f = 0, £(x) is defined to be the constant 1.) By an application 
of Lemma (2.2), as restricted to the algebra U(Lf), we find that a basis for 
M$ C\ U(L') is provided by a set of elements of the form (3.9). Since the primitive 
cycles of Lr all reduce, modulo J, to multiples of 1, an application of Lemma 
(2.6) yields (b). For £ = 0, the coefficients m(y) in (3.8) are all 0, so that 
n{x(u)} = 0. But for f = Oin (3.9), ^(x) = 1. This proves (c) and the theorem. 

For any A-standard representation p of L and for any characteristic weight X 
of p, we have by Lemma (3.4) (and its proof) that Theorem (3.6) (a) and (b) 
hold for p and X. Using this we may state: 

(3.10) COROLLARY. Each p £ S (A) has exactly one characteristic weight and 
each weight space of p is finite-dimensional. 

Proof. We still need to prove the first statement. This follows from the fact 
that condition (iv) of Definition (3.1) uniquely determines X within the weight 
set of p as given by Theorem (3.6) (a). 

The mapping ^(A), defined on S (A) (see §1), may now be considered to be 
given by ^(A): p —> (the one-dimensional space belonging to the characteristic 
weight X of p). 

(3.11) COROLLARY. If A ^ A'', then the sets S (A), S(Ar) are disjoint. 

Proof. Let p Ç S (A), p' 6 S(Ar). By Theorem (3.6) (a) and condition (i) of 
Definition (3.1) the weight sets of p and p are distinct, so that p and p cannot 
be equivalent representations. 

(3.12) THEOREM. The A-standard representations p of U(L) are characterized 
by the couples (X, k) that, by (3.5), are associated with them. 

Proof. Consider the correspondence / given by (3.5). From Corollary (3.10) 
and Definition (3.1) (iii) it follows that the first composant of / is a mapping. 
Since p ~ pn/j (§1), this mapping is injective. That the last two composants of/ 
are injective mappings is a consequence of the following two assertions. These 
assertions are mild extensions of results in (8, Exposé 17), and the proofs are 
omitted: (1) Two proper ideals of the form J(\, k) are equal if and only if the 
corresponding couples (X, k) are equal. (2) Any (proper) maximal left ideal of 
U(L) containing an ideal of the form J(\, k) contains exactly one such ideal. 
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Conversely, if J(\, k) ^ U(L), then there exists exactly one maximal left ideal J 
of U(L) containing it. (The one-dimensionality of the X weight space of 
Pu/j(\,k) (Theorem (3.6) (c)) is used in the proof of the second part of this 
assertion). This proves the theorem. 

Let A be any subset of S. Then Z/(A) and the set w of primitive cycles of 
Z/(A) are defined. Let / = |7r| and let the elements of T be linearly ordered, say 
7T = {c(l), . . . , c(l)}. Then by Theorem (3.12) and Corollary (3.11) we may 
state: 

(3.13) COROLLARY. The standard representations of L are characterized by the 
(2 + I)-tuples (A, X, k(c(l)), . . . , k(c(/))) associated with them. 

4. The characterization problem. For any given L and A, the problem 
remains to characterize (in terms of X and k explicitly) those couples (X, k) that 
determine (by Theorem (3.12)) the A-standard representations of L. 

Given any couple (X, k), with \ C D * and with k a mapping from T to K, 
choosing J to be the maximal left ideal of U(L) containing J(\, k), it follows 
from Theorem (3.6) that to (X, k) there corresponds an irreducible representa
tion of L, denoted by p(X, k), which (if it is not the zero representation) 
satisfies (ii) and (iii) of Definition (3.1). The couple (X, k) therefore determines 
a A-standard representation of L if and only if the following three conditions 
hold: 

(A) the non-triviality condition: J(\, k) ^ UÇL) ; 
(B) p(X, k) satisfies (i) of Definition (3.1) ; and 
(C) X satisfies (iv) of Definition (3.1). 

We need to express (A) and (B) explicitly in terms of X and k, that is, as 
(algebraic) relations in K holding between the image elements of the mappings 
X and k. 

We first consider condition (A) : 

(4.1) DEFINITION. A c-basis of U(L) is a basis of U(L) consisting of elements 
of the form: 

(4.2) u = v(u) n cmM n dr n p,™ 
where the exponents are integers > 0 , where each product sign respects a fixed order 
on its index set, and where the elements v(u) are primitive elements of L of the 
form (3.7). 

By an application of Lemma (2.2) it follows that c-bases of U(L) exist. 
Using (3.9) it is seen that if c', cn are any two primitive cycles of Z/, then the 

linear decomposition of c'c" with respect to any given c-basis of U(L) has the 
form 
(4.3) c'c" = a i^-linear sum of elements of the form 

n cm(c) n d?\ 
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(4.4) T H E O R E M . For any couple (X, k) the following three conditions are 

equivalent: 
(a) J ( A , k ) * U(L). 
(b) The mapping defined by 

di-*\(di) ( i = l , . . . , s ) , c->k(c) (c Ç TT), 

can &e extended to a (one-dimensional) representation of C(Lf). 
(c) Given #^3/ c-basis of U(L),for each pair (V, c") of primitive cycles ofL', the 

corresponding equation (4.3) holds with each c £ T replaced by k(c) and eac/z 
di( i = 1, . . . , s) replaced by \(di). 

Proof, (a) => (b): By lett ing x in (3.9) be any basis cycle in U(L') (so t h a t 
p(x) = 1), it follows t h a t C(Lr) is generated, as an algebra, by the set IT U {dt\ 
i = 1, . . . , s} of all primitive cycles of U. Le t £((d*)> (c)) = 0 be any algebraic 
relation holding in C(L') between the primit ive cycles of Z/. Modulo J(\, k ) 
the relation takes the form £((\(di)), (k(c))) . 1* = 0*, where x* denotes the 
class of x modulo / (X, k ) . Since 1 $ J(X, k ) , we have t h a t 1* ^ 0*, so t h a t 
£((A(di)),(k(c))) = 0 holds in K. Th i s implies (b). 

(b) => (c): Trivial . 
(c) => (a): Set g(c) = c — k(c) for each c (E 7r, and g(<^) = dt — \(dt) for 

each i = 1, . . . , n. Using the binomial theorem it can be seen t h a t a basis for 
U(L) is given by all those elements t h a t are obtainable from the elements (4.2) 
of a c-basis by replacing each c by g(c) and each dt by g{dx). Such a basis will be 
called dig-basis of U(L). Now suppose 1 £ J(\, k ) , t h a t is, 1 has the form: 

n  

(4.5) 1 = X) u(c)g(c) + YJ utg(di) + X) u(y)py 
C-£TT t = l 7 ÇA 0 

where the elements u(c), uu u(y) are in UÇL) and considered to be expressed in 
terms of t h a t g-basis of U(L) which is determined by the couple (X, k) and the 
given c-basis of U(L). I t will be shown, using (c), t h a t the decomposition of the 
r ight-hand side of (4.5), writh respect to the chosen g-basis of U(L)t contains no 
non-zero ^ - m u l t i p l e of 1 as summand , so t h a t (4.5) contradicts the uniqueness 
proper ty of decomposition with respect to a basis. 

By the form of the elements of a g-basis it will suffice to prove t h a t any 
product of two elements, selected from the set 

{g(c),g(di),py\ c Ç TT; i = 1, . . . yn; y £ A 0 } , 

contains, in its decomposition writh respect to the g-basis, no non-zero cons tan t 
term. W e proceed to do so. 

(i) pypy' = [py, py>] +py'py Now in L, [py, py>] is ei ther zero or a K-
multipleof py+y>. Also, 7, y' 6 A0 => y + y' £ A0. T h u s no g-basis summand of 
py py is a non-zero multiple of 1. 

(ii) Let b be any element of the set TT VJ \dt\ i = 1, . . . , n\. For any 8 £ A0, 
the mass of ps b is defined and equal to 8. For any element u of the c-basis of 
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U(L), the equation ti{u\ = ô has as solutions u only elements for which at 
least one of the exponents n(y) in (4.2) is different from zero (by the definitions 
of mass, A4" and A0). By the mass-graded structure of U(L) it follows that each 
£-basis summand of ps b has mass <5 and thus contains a factor of the form py, 
y £ A0. It now easily follows that each g-basis summand of pi g(b) contains a 
factor of the form £7, y Ç A0. 

(iii) Let b, V be any two cycles of the form b as in (ii). If any one (or both) of 
b and V is of the form dt(i = 1, . . . , n), then bbf = b'b (by (2.3)), so that 
g(b)g(b') = g(br)g(b). There remains the case where both of b and V are in T. 
It is at this point that condition (c) is used. Letting b — c, V = c', we have: 

g(c)g(c') = cd - W)c - k(cW + k(c)k(c'). 

Using (4.3), then substituting g{c) + k(c) for each c and g(dt) + X(dt) for each 
du it follows from the binomial theorem and condition (c) that the constant 
term of the g-basis decomposition of the right-hand side of this equation is zero. 

All cases are covered by the products in (i), (ii), and (iii), so that (c) => (a). 
This completes the proof of the theorem. 

Theorem (4.4) (c) expresses the non-triviality condition J(\, k) ^ U(L) as 
an explicit set of |7r|2 algebraic relations (which need not be independent) on the 
images in K of the mappings X and k. 

We now turn to condition (B) : 
The set T contains the 5 primitive cycles Çj p3(j = 1, . . . , s) of V. For any 

couple (X, k) we may formulate the following condition: that the k{([jpj) 
(j = 1, . . . , s) satisfy 

(4.6) kiqjPj) ^r(r + l+\(d3)) 

for every integer r. We shall show that (4.6) (together with the non-triviality 
condition) implies condition (B). 

Let J'(A) denote the set of all maximal left ideals of U(L) that contain a left 
ideal of the form /(X, k), where X satisfies (iv) of Definition (3.1) and where 
(4.6) and Theorem (4.4) (c) hold for (X, k). 

(4.7) THEOREM. If J € J'(A), then PulJ Ç S (A). 

Proof. Since Theorem (4.4) (c) holds for (X, k), pu/j is not the zero represen
tation. Thus we need only prove that (4.6) implies condition (B). Now for any 
a G A, the first relation in Lemma (2.7) implies that 

QaW = I I (kfe A,) - (f - i)(t - i + 1 + X(4))) . 1 
i=i 

mod J for any integer / > 0. From (4.6) it follows that the right-hand side is a 
non-zero X-multiple of 1 modulo J. Thus since 1 ? J ,we have that pj g J for 
any integer / > 0. By (2.4), pa

l + / has weight X + ta so that it follows that, 
with X, X + ta is a weight of pv/j for each integer / > 0. Similarly, using the 
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second relation in Lemma (2.7), it follows that (4.6) implies that, with X, 
X — ta is a weight of pu/j for each integer / > 0. This proves the theorem. 

Thus, for any given L and A, we may state that those couples (X, k) that 
satisfy (c) of Theorem (4.4), (iv) of Definition (3.1), and (4.6) characterize a 
subset, denoted by S'(A), of the set S (A) of all A-standard representations of L. 
We have not been able to resolve the question as to whether S'(A) is the whole 
of S(A), that is, whether the scalars k(g^ pj)(j = 1, . . . , s) associated with any 
A-standard representation of L must of necessity satisfy (4.6). 

(4.8) CONJECTURE. S'(A) = S(A). 

Also, although a method has now been provided to characterize explicitly, 
for any given L and A, a set S'(A) of A-standard representations of L, there is no 
assurance that a simultaneous solution (X, k) to the above three conditions on 
(X, k) exists, so that the existence problem in general remains unsolved. 

5. The standard order 1 representations of L. Let L be arbitrary. Let A 
be any subset of 5* consisting of a single simple root a of L. (The analysis will be 
independent of the particular simple root a used.) Then A+ = A = {a} while 
A0 = P — {a}. The Lie algebra!/, being the Lie algebra spanned by {da,qa,pa}, 
is isomorphic to the simple Lie algebra A± (8, p. 14-01). A basis for U{L') is 
provided by the set of all elements of the form 

u = 4w(1)g«m(2)£/*(3) 

where the exponents m(l) , m(2), m(3) are integers > 0 . The mass ii{u] of u is 
(m(3) — m(2))a. The basis cycles in U(Lr) are accordingly all of the form u 
with m (2) = m (S). An easy inspection yields that there exist exactly two 
primitive cycles of U, namely the elements da and qa pa. The set 7r consists of the 
single cycle qa pa. Let k be any mapping from -K to K. Then k is specified by the 
single scalar k = k(qapa). 

Since (c) of Theorem (4.4) is trivially satisfied, it follows (from §4) that the 
elements of S'(A) are characterized by all couples of the form (X, k), where X is any 
element 

n 

X = 22 k(a-i)cLi 

of D* satisfying: 

(5.1) 0 < (real part of k(a)) < 1 

and where k is any element of K satisfying: 

(5.2) k 7* r(r + 1 + \(da)) 

for every integer r. In particular, we note that S'(A) ^ 0. 
We proceed to show that the unique scalar k(ga pa) associated with any given 

{a}-standard representation of U(L) must of necessity satisfy (5.2), that is, 
that Conjecture (4.8) is true for the case A = {a}. 
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Let p denote any {a}-standard representation of U(L) and let X be the 
characteristic weight of p. 

(5.3) LEMMA. The weight spaces of p belonging to the doubly infinite a-ladder 
through X are all one-dimensional. 

Proof. We use the proof of Theorem (3.6). An element v of the form (3.7) has 
mass ta, where / is any integer, if and only if m(y) = 0 for each y G A0 = P 
— {a}. For any integer /, it is easily seen that there is only one primitive 
element of Lf having mass equal to ta, namely pj if t > 0 and qa

l if t < 0. Thus 
for f = ta, (3.9) has exactly one solution p(x). This establishes the lemma. 

(5.4) LEMMA. The unique scalar k = k(ga pa) associated with p satisfies (5.2). 

Proof. Let k = r(r + 1 + \(da)) for some integer r. Suppose r > 0. Then by 
Lemma (2.7) and (3.3) 

(5.5) qar+jPar+j = 0 mod J(\, k) 

for each integer j > 1. We now consider all basis elements x of U(L) of the 
form (3.2) such that the product xpa

r+1 has mass equal to zero. If x does not 
contain a factor of the form py(y G A0 = P — {a}), then it is easily seen that 
apart from factors da(a G S), x has the form qa

T+1+ipJ for i = an integer > 0 . 
Using (5.5) this implies that xpa

r+1 = 0 mod J(\, k) . If x contains a factor of 
the form py(y G A0), then since [py, pa] is either zero or a multiple of pa+y (where 
a + 7 G A0), it follows that each summand in the decomposition of xpa

r+1 with 
respect to the basis (3.2) contains at least one factor of the form ps(8 G A0), so 
that again xpa

r+l = 0 mod J(\, k) . There thus exists no element y in U(L) such 
that ypa

r+1 = c. 1 mod J(\, k), where c G K, c 9* 0. With respect to the left 
regular representation of U(L) modulo J(\, k), the annihilator ideal / of the 
class 1 + J(X, k) is accordingly a proper left ideal of U(L) containing not only 
the ideal J(X, k) but also the element pa

T+l- But by the proof of Lemma (5.4), 
the (X + (r + \)a) weight space of p(c^pu/j) is spanned by pa

r+1 + / , and 
since this weight space is one-dimensional, pa

r+1 g / . This is a contradiction. 
To prove the lemma for the case when r < 0, it is convenient to use the basis of 
U(L) which, by Lemma (2.2), can be derived from the set of elements (3.2) by 
interchanging the two products involving, respectively, the factors qa and pa. 
The argument is then similar to the above, with g« | r |+1 substituted for^>a

r+1 and 
with the second relation in Lemma (2.7) used. (We need also to note that, for 
7 G A0, [p7, qa] is either zero or a multiple of py-a, y — a G A0.) This concludes 
the proof of the lemma. 

Thus for A = {a}, it holds that S (A) = S^A), and by §4 and (3.13) we may 
state: 

(5.6) THEOREM. The standard order 1 representations of U(L) are characterized 
by all the triples of the form (a, X, k), where a is any simple root of L, where X is 
any element of D* satisfying (5.1), and where k is any element of K satisfying 
(5.2). 
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6. Standard order 2 representations of A2. The simple Lie algebra A2 

(8, p. 14-01) has two simple roots which we denote by a0i and ai0. It has one 
other positive root, namely a n = a0i + «io- A basis for Ai is given by eight 
elements, d0i, îo> Po\, pio, Pw, <Zoi> ffioi and gn, that satisfy the Lie multiplication 
table as given in Fig. 1. (The elements pti (or g^), for ij = 01, 10, 11, belong to 
the roots atj (or, respectively, — atj).) 

dio àoi pio poi £11 gio qoi 2 n 

dio 0 0 2pio —poi £ n -2qio Soi - 2 n 
doi 0 0 — pio 2poi pu 2io — 2g0i - 2 n 
pio -2pi0 Pio 0 pu 0 ^ 1 0 0 — 2oi 

poi poi -2poi — pu 0 0 0 ^ 0 1 2io 

pu —pu —pu 0 0 0 —poi £l0 dio ~\r doi 

ÇlQ 2gio —gio — ̂ io 0 poi 0 - 2 n 0 

2oi — 2oi 2<?oi 0 —doi —pio 2 n 0 0 

2n 2ii 011 2oi — 0io —dio — doi 0 0 0 

FIGURE 1 (The entry [x, y] appears in the row of x and the column of y.) 

If a A-standard representation of A2 is of order 2, then there is only one 
choice for A, namely A = S = {a0i, aio}. Thus, A+ = P = {a0i, «IO, «11} while 
A0 = 0. The Lie algebra L'(A) is accordingly the whole of A2. A basis for £7(^2) 
is given by the set of all the elements of the form: 

(6.1) u ^ giiw(1>gor ( 2 )giom ( 3 )^iom ( 4 )Poim ( 5 )^iim ( 6 )^ioM ( 7 )^oim ( 8 ) 

where the exponents are integers > 0 . The mass n{u} of u is equal to 

(— m(\) — w(3) + m (4) + m(6))ai0 + ( —ra(l) — w(2) + ra(5) + m(6))a0i. 

Thus, u is a cycle in £7(̂ 4 2) if and only if 

m(6) — w(l) = ra(3) — w(4) = m(2) — m(5). 

By an inspection of possibilities we find that there exist exactly seven primitive 
cycles of A2, namely: d0i, dï0, c\ = q0i pou c2 = qio pio, £3 = qn pu, d = qn pi0 

poi, and c$ = g0i #10 pn. The set w consists of the last five of these, so that any 
mapping k from IT to K is specified by the five scalars k t = k(c*) {i = 1, . . . , 5). 

By allowing the factors in the elements (6.1) to commute, it is clear that a 
c-basis of U(A2) is provided by the set of all elements u of the form: 

(6.2) u = x(u)cj
n^Czn^c2

nWc1
nWdlo

n^doina) 

where j Ç {4, 5}, where the exponents are integers > 0 , where x(u) is a primi
tive element of A2 of the form (6.1), and where priority in the construction of 
the elements (6.2) is given to cycles that appear to the right (for example, the 
element qn pio poi pn of the form (6.1) determines the element pi0 poi (qn pn) 
(and not £n (qn pio poi)) as the corresponding element (6.2)). 
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Using the table in Fig. 1, the obasis decompositions of the pairwise products 
of the primitive cycles of A2 may be found. It turns out that the following four 
of these: 

C\ C2 = d — C5 + C2 Ci, 

ci C4 = c\ doi + (c2 — c?)ci + c\ ci, 

Ci £4 = —C\ dio — C2 Ci + £3(^10 + c2) + £4 c2, 

C4C5 = Cz(c2 + di0)(ci + doi) + c^doi + Ci — c2 + cz), 

are sufficient for the application of condition (c) of Theorem (4.4). We have 
verified that this condition becomes equivalent to the condition that the 
scalars ki, . . . , k5 have the form 

ki = z(z — 1 — A(doi)), 

(6.3) k2= (z- l)(z + \(di0)), 

zkz = &4 = kb = z(z — 1 — \(d0i))(z + \(dio)), 

where z € K, A £ £>*. For z 5̂  0, — \(di0), 1 + A(d0i), the couples of the form 
(X, 2) are in one-to-one correspondence with the 5-tuples (fei, . . . , &5) deter
mined by them. 

It is readily seen that the conditions (4.6) on ki and k2 become equivalent to 

(6.4) Z9*t,t + \(doi),t - \(dio) 

for every integer t. 
Thus, by §4, we may state: 

(6.5) THEOREM. For L = A2 and A = {a0i, aio}, the elements of S'(A) are 
characterized by all couples of the form (X, z), where X = &(01)a0i + &(10)a:io 
(fe(01), fe(10) e K) satisfies 

(6.6) 0 < (real part of k(ij)) < 1 

for ij = 01, 10, and where z G K satisfies (6.4). 

We note that again S'(A) •£ 0. 
We now turn to a description of the weight spaces of any p £ S'(A). 
We recall that any couple of the form (X, z), with X (in D*) and z (in K) 

satisfying (6.6) and (6.4), respectively, determines an element p of S'(A) as 
follows: Let /(A, k) be the left ideal of U(A2) generated by the seven elements 
doi — X(doi), dio — A (dio), and ct — kt(i = 1, . . . , 5), where the kt are 
expressed in terms of X and z by (6.3). (By Theorem (4.4), J(\, k) is proper.) 
Let / be the unique maximal left ideal of U(A2) containing J(\, k) . Then p is 
equivalent to the left regular representation of U(A2) modulo / . 

Let J* be the left ideal of U(A2) generated by the above seven generators for 
/(A, k) as well as by two elements of the form 

hi = pio poi — kepn and h2 = g0i #io — h qn, 
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where ^6, ki 6 K. 

(6.7) LEMMA. The following three conditions are equivalent: 
(1) 1 <2 J*, 
(2) qn fti, g0i <Zio Ait pu h2, and pi0 poi h2 belong to J(\, k) , 
(3) k& = k7 = z. 

Proof. (1) <=> (2): Given (1). Each of the terms in (2) has mass equal to zero 
so that each reduces modulo J(X, k) to a i^-multiple of 1. If one of them 
reduces to a non-zero multiple of 1, then 1 Ç /*, contradicting (1). Conversely, 
let (2) hold. Let 1 = j + z\ hx + z2 h2, where j € J(\, k) and zh z2 G U(A2). 
By the mass-graded structure of U(A2)y each summand on the right-hand side 
may be assumed to have mass equal to zero. Then MÎ^I} = — a n and 
ix{z2) = an. Using Lemma (2.2), a basis of U(A2) may be chosen such that 
each basis element of mass equal to —an (or an) is expressed as a product 
terminating in a factor qn or g0i (Zio (or> respectively, in a factor pu or poi pi0) 
with all other factors being primitive cycles of A2. Let z\ and z2 be so expressed. 
Then (2) implies that 1 Ç J(\} k) , which is a contradiction. 

(2) <=> (3): By reducing each term in (2) modulo J(\, k) and applying (6.3) 
and (6.4), this equivalence is easily verified. This concludes the proof of the 
lemma. 

(6.8) THEOREM. ForL = A2andA = {a0i, aio], let pin S; (A) be determined by 
the couple (X, z). Then each weight space of p is one-dimensional and the weights 
of p are given by all elements of the form X + m\ a0i + w2 ai0 where mi, m2 are 
integers. 

Proof. We choose k& = k7 = z. Then the unique maximal left ideal J of 
U(A2) containing J(\, k) also contains the ideal J* defined above. Taking into 
account the explicit forms of the elements x(u) appearing in (6.2), we have 
verified that, modulo J*, each element of the form (6.2) reduces, up to a 
i£-multiple, to one of the following forms: 

(6.9) pioTpoi\ piorqoi\ poirqio\ qoi'qio1 

where the exponents r, t range through all integers > 0 . (The computations 
involved are laborious and are omitted.) Since two distinct elements of the 
form (6.9) have distinct masses, (2.4) implies that the weight spaces of pu/j*, 
and thus of p, are one-dimensional. The inequalities (6.4) now ensure that for 
each of the classes (6.9) there exists an operator of pn/j* that transforms the 
class into a non-zero ^-multiple of the class 1 + J*. (Again we omit the 
details.) It thus follows that 7* is maximal, that is J* = / . The second state
ment of the theorem now follows by computing the masses of the elements 
(6.9). 

7. Conjectures. The results of Lemma (5.3) and Theorem (6.8) lead us 
to state, for arbitrary L and A, the following two conjectures: 

https://doi.org/10.4153/CJM-1968-031-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1968-031-5


SIMPLE LIE ALGEBRAS 361 

Let p Ç S'(A). Let À be the characteristic weight of p and let W be the set of 
weights of p. Let B(\, A) denote the set of all elements in D* of the form 
^ + Z)a€A fn(a)a, where the m(a) are integers. The set B(\, A) Pi W may be 
called the boundary of W. 

(7.1) CONJECTURE. Eac& boundary weight space of p has dimension equal to 
one. 

(7.2) CONJECTURE. B(\ A) C W. 

Note added in proof. I t has come to the author's attention that a proof of the 
result of Lemma (2.6) is also given by F. W. Lemire in his doctoral dissertation: 
Infinite dimensional irreducible representations of simple Lie algebras (Queen's 
University, 1967), pp. 49-57. 
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