GROUPS OF MATRICES WITH INTEGER EIGENVALUES

M. R. FREISLICH
(Received 26 June 1969)
Communicated by G. E. Wall

1

Let F be an algebraic number field, and S a subgroup of the general linear group $G L(n, F)$. We shall call S a U-group if S satisfies the condition (U): Every $x \in S$ is a matrix all of whose eigenvalues are algebraic integers. This is equivalent to either of the following conditions:
a) the eigenvalues of each matrix x are all units as algebraic numbers;
b) the characteristic polynomial for x has all its coefficients integers in F.

In particular, then, every group of matrices with entries in the integers of F is a U-group.

Our aim is to examine the structure of completely reducible soluble U-groups. We use the results given by Suprunenko [1] for soluble and nilpotent linear groups, and obtain some special conditions that must be satisfied by completely reducible soluble U-groups. We show that such groups are polycyclic, and we obtain some arithmetical conditions that must be satisfied by primitive irreducible soluble U-groups, depending on the degree of the group and the field F. The results obtained depend on results for irreducible abelian and nilpotent U-groups, which we examine separately.

2. Abelian \boldsymbol{U}-groups

The structure of abelian linear groups over the integers of an algebraic number field has been described by Dade [2]. In this section we give a generalisation of his result to completely reducible U-groups.
2.1 Theorem. Let A be an irreducible abelian U-group in $G L(n, F)$, and let the degree $[F: Q]$ of F over Q be d. Then A is finitely generated, of rank at most $n d-1$, and A_{T}, the torsion subgroup of A, is cyclic of order t, where $\phi(t)($ the Euler function) divides nd.

Note: the estimate for $\left|A_{T}\right|$ depends only on the fact that A is an irreducible abelian subgroup of $G L(n, F)$, not on the condition (U).

Proof. Let [A] be the linear hull of A over F (i.e. $[A]$ is the subalgebra of the full matrix algebra $M(n, F)$ generated by elements of $A)$. $[A]$ is irreducible, and therefore is a simple ring ([3], p. 56). Since $[A]$ is also a commutative ring with unity, the fact that it is simple makes it a field. Let a_{1}, \cdots, a_{s} be a basis for $[A]$ over F. Let V be an n-dimensional F-module, and identify $\operatorname{End}_{F} V$ and $M(n, F)$. Let $v \in V, v \neq 0$. Because $[A]$ is a field, $v a_{1}, \cdots, v a_{s}$, are linearly independent over F. They span a subspace W of V which is invariant under [A]. Since [A] is irreducible, $W=V$, and the dimension $[[A]: F]$ of $[A]$ over F is equal to n.

The group A is therefore isomorphic to a subgroup of the multiplicative group of a finite extension E of F such that $[E: Q]=n d$. The condition (U) satisfied by the elements of A implies that each $a \in A$ corresponds to a unit in the integers of E. By Dirichlet's theorem on units in an algebraic number field ([4], Ch. XI), the rank of the group of units of E cannot exceed $n d-1$.

Suppose A has an element of order $r>1$. Then E contains a primitive r-th root of unity, ζ, say, and $\phi(r)=[Q(\zeta): Q]$ divides $[E: Q]=n d$. Since each finite multiplicative group in a field is cyclic, we conclude that A_{T} is a cyclic group of order t such that $\phi(t)$ divides $n d$. By an obvious argument we obtain the following corollary.
2.2 Corollary. A completely reducible abelian U-group in $G L(n, F)$ requires at most nd generators, where $d=[F: Q]$.

3. Irreducible nilpotent \boldsymbol{U}-groups

Let N be an irreducible nilpotent U-group in $G L(m, F)$.
3.1 Theorem. If the class of N is c, then

$$
c \leqq \begin{cases}2 m\left(1+\log _{2} d\right) & \text { if } d>1 \\ 2.12 m & \text { if } d=1\end{cases}
$$

where $d=[F: Q]$.
Note: This estimate depends only on the fact that $N \subseteq G L(m, F)$, not on the condition (U).

Proof. Let $N=\gamma_{1}(N) \supset \gamma_{2}(N) \supset \cdots \supset \gamma_{c+1}(N)=1$ be the lower central series for N, and let s be the smallest index such that $\gamma_{s}(N)$ is abelian. Since $\left[\gamma_{i}(N), \gamma_{j}(N)\right] \subset \gamma_{i+j}(N)$ we must have $s \leqq[c / 2]+1$.

By Clifford's theorem, $\gamma_{s}(N)$ is completely reducible over F. Suppose $\gamma_{s}(N)$ has r homogeneous components. We shall show that $c \leqq 2 r\left(1+\log _{2} m d / r\right)$.

In any irreducible nilpotent linear group the index of the centre is finite ([1], p. 64). $|N: Z(N)|$ finite implies $\left|\gamma_{2}(N)\right|$ finite ([6], problem 5.24). If $s \neq 1$, $\gamma_{s}(N)$ is therefore finite, and is a subgroup of a direct product of r cyclic groups of order t_{1}, where $\phi\left(t_{1}\right)$ divides $m d / r$. Let Q_{s} be the Sylow q-subgroup of $\gamma_{s}(N)$, and suppose $\left|Q_{s}\right|=q^{l}$. Let Q_{s+j} be the Sylow q-subgroup of $\gamma_{s+j}(N)$. Then
$Q_{s+l}=1$. Let p^{α} be the highest prime power dividing t_{1}. Then for each Q_{s}, $l \leqq r \alpha$, and so $\gamma_{s+r \alpha}(N)=1$, and $c+1 \leqq s+r \alpha \leqq[c / 2]+1+r \alpha$. Hence $c \leqq 2 r \alpha$. Since $\phi\left(t_{1}\right)$ divides $m d / r, p^{\alpha-1}$ divides $m d / r$, and so $\alpha-1 \leqq \log _{2} m d / r$. We have now $c \leqq 2 r\left(1+\log _{2} m d / r\right)$, and the result follows from this if we consider the maximum value of $2 x\left(1+\log _{2} m d / x\right)$ over $1 \leqq x \leqq m$.
3.2 Corollary. There exist maximal irreducible nilpotent U-groups in $G L(m, F)$.

This follows from 3.1 by an application of Zorn's Lemma.
3.3 Divisors of $|N: Z(N)|$: All prime factors of $|N: Z(N)|$ divide the exponent m_{2} of $Z_{2}(N) / Z(N)$, and m_{2} divides m ([1], Chapter III, Lemmas 19 and 22). Also, if $x Z(N)$ is of order k in $Z_{2}(N) / Z(N)$, there exists $y \in N$ such that $[x, y$] has order k ([1], Chapter III, Lemma 20). In our case we have an additional condition on $m_{2} .[x, y]$ lies in the torsion subgroup of $Z(N)$, which is cyclic, of order t_{2}, m_{2} divides t_{2}, and $\phi\left(t_{2}\right)$ divides $m d$.
3.4 In particular, if $m d$ is odd, there are no non-abelian irreducible nilpotent U-groups in $G L(m, F)$.

Proof. If $m d$ is odd, $t_{2}=1$ or 2 , since $\phi\left(t_{2}\right)$ divides $m d$, and m_{2} must be odd. Hence $m_{2}=1$ and N is necessarily abelian.
3.5 Structure of N / A, where A is a maximal normal abelian subgroup of N.

Lemma. (i) N / A is isomorphic to a nilpotent permutation group \hat{N} of degree k, where k divides m.
(ii) If N is primitive (see [5], p. 346), \hat{N} is semiregular (i.e. a permutation group in which only the identity leaves any symbol fixed).

Proof. (i) A is finitely generated. Choose a finite set of generators for A, and adjoin their eigenvalues to F. The field E obtained is a normal extension of F. If we consider N as a subgroup of $\operatorname{GL}(m, E), N$ is completely reducible, and all its irreducible components are of equal degree. ([5], Theorems 69.4 and 70.15). A is also completely reducible over E. Since A is abelian, and each of a set of its generators can be diagonalised in $G L(m, E), A$ is reducible to a diagonal group.

Let W be a minimal invariant space for N in V^{E} (where V^{E} is an m-dimensional E-module, and we have identified $\operatorname{End}_{E} V$ with $M(m, E)$). Then $\operatorname{dim} W$ divides m. Let $\tau: x \rightarrow x \mid W$ (the restriction of $x \in N$ to W). Let $y \in \operatorname{ker} \tau \cap Z(N) . Z(N)$ is isomorphic to one of its own irreducible components. Hence $y \mid W=1$ implies $y=1$, and we have $\operatorname{ker} \tau \cap Z(N)=1 . \tau$ is therefore faithful. Define $N^{*}=N \mid W$, $A^{*}=A \mid W$. We shall prove the result for N^{*} / A^{*}.
A^{*} is reducible to a diagonal group. Let W_{1}, \cdots, W_{k} be the distinct eigenspaces for A in $W . A^{*}\left|W_{1}, \cdots, A^{*}\right| W_{k}$ are the homogeneous components of A^{*}, and the spaces W_{1}, \cdots, W_{k} are permuted by the elements of N^{*} (see [5], p. 345).

Since A^{*} is its own centralizer in $N^{*}\left([6]\right.$, problem 6.36) we have $N^{*} / A^{*} \simeq \hat{N}$, a nilpotent permutation group on k symbols. k divides $\operatorname{dim} W$, which divides m.
(ii) If N is a primitive group in $G L(m, F), A$ is isomorphic to one of its own irreducible components over F. Hence if $a \in A, a-1$ is either zero or invertible. If $x^{*} \in N^{*}$ fixes an eigenspace W_{1} of A^{*} in W, then $[x, a] \mid W_{1}=1$ for all $a \in A^{*}$. This implies $[x, a]=1$ for all $a \in A$, and so $x \in A . \hat{N}$ is therefore semiregular.
3.6 In particular, suppose \hat{N} is transitive, and $E=Q$ or $Q(\theta)$, where θ is complex of degree 2 over Q. Then N is finite.

Proof. $Z\left(N^{*}\right)$ is a group of scalar matrices $f \cdot 1, f \in E$, if \hat{N} is transitive. By Dirichlet's Theorem, the group of units of E is finite, and so $Z\left(N^{*}\right)$ is finite. Hence $Z(N)$ and $|N: Z(N)|$ are both finite, and the result follows.
3.7 Theorem. If the class of N is 2 , then N has a faithful absolutely irreducible representation in $G L(s, E)$ where E is the field defined in 3.5 , and s divides m. It follows that $|N: Z(N)|=s^{2}$.

Proof. We shall show that the group N^{*} defined in 3.6 is absolutely irreducible.
(i) If the class of N is $2, \hat{N}$ is semiregular. For: Let W be the space defined in 3.5, and W_{1} an eigenspace for A^{*} in W. We have already: if $x^{*}=x \mid W \in N^{*}$ fixes W_{1}, then $[x, a] \mid W_{1}=1$ for all $a \in A$. Since the class of N is $2,[x, a] \in Z(N)$. $Z(N)$ is isomorphic to one of its own irreducible components, and so $[x, a]=1$ for all $a \in A$. Hence $x \in A$, and \hat{N} must then be semiregular.
(ii) Let $w \neq 0 \in W_{1}$ and let $1=x_{1}, x_{2}, \cdots, x_{5}$ be a complete set of coset representatives for A in N. Let L_{1} be the space spanned by $w, x_{i}^{*}=x_{i} \mid W$, and define $L_{j}=L_{1} x_{j}^{*} j=1, \cdots, s$. By (i) the L_{j} belong to distinct eigenspaces of A^{*} in W. They are permuted transitively by the elements of N^{*}. The space $L=L_{1} \oplus \cdots \oplus L_{s}$ is a nonzero invariant space for N^{*} in W, and so $L=W$.

The construction of L shows that the centralizer of N^{*} in $M(s, E)$ can contain scalar matrices only. N^{*} is therefore the required representation of N. (see [5], p. 202).
(iii) $|N: Z(N)|=s^{2}$. This can be deduced from [1] Chapter I, Lemma 10. The following more elegant argument is due to Professor J. D. Dixon.

The linear hull of N^{*} over E has dimension s^{2} ([5], Theorem 27.8). We can therefore find elements $x_{1}^{*}, \cdots, x_{s^{2}}^{*} \in N^{*}$ that form a basis for $M(s, E)$. Since $Z\left(N^{*}\right)$ is a group of scalar matrices, $x_{1}^{*}, \cdots, x_{s^{2}}^{*}$ are in distinct cosets of $Z\left(N^{*}\right)$ in N^{*}. We show that they form a complete set of coset representatives for $Z\left(N^{*}\right)$ in N^{*}.

Let $x^{*} \in N^{*}, x^{*} \notin Z\left(N^{*}\right)$. Then there exists $y^{*} \in N^{*}$ such that $\left[x^{*}, y^{*}\right]=$ $z^{*} \in Z\left(N^{*}\right), z^{*}=\zeta \cdot 1, \zeta \neq 1$, i.e. $\left(y^{*}\right)^{-1} x^{*} y^{*}=\zeta x^{*}, \zeta \neq 1$. Trace $x^{*}=$ trace $\left(y^{*}\right)^{-1} x^{*} y^{*}=\operatorname{trace} \zeta x^{*}=\zeta$ trace x^{*}. Since $\zeta \neq 1$, trace $x^{*}=0$. Now let x^{*} be
any element of $N^{*} . x^{*}=\sum_{i=1}^{s^{2}} \alpha_{i} x_{i}^{*}, \alpha_{i} \in E$. At least one $\alpha_{j} \neq 0$. Trace $x^{*}\left(x_{j}^{*}\right)^{-1}$ $=\sum_{i=1}^{s^{2}} \alpha_{i}$ trace $\left(x_{i}^{*}\left(x_{j}^{*}\right)^{-1}\right)=s \alpha_{j} \neq 0$. As we have just seen, this implies $x^{*}\left(x_{j}^{*}\right)^{-1} \in Z\left(N^{*}\right)$, and gives the result.

4. Completely reducible soluble \boldsymbol{U}-groups

4.1 Let S be an irreducible soluble U-group in $G L(n, F)$. Suppose S is maximal with respect to the property of being soluble.

Suppose S is imprimitive. Let V be an n-dimensional F-module, and identify End $_{F} V$ with $M(n, F)$. Let $V=V_{1} \oplus \cdots \oplus V_{k}$ be a complete decomposition of V into systems of imprimitivity for S (cf. [1], p. 7). By an argument similar to that used in the proof of Lemmas 3 and 4 of [1], Chapter I, S has a normal subgroup G for which each $V_{i}, i=1, \cdots, k$, is an invariant space, such that S / G is isomorphic to a maximal soluble permutation group of degree k. G is the direct product of the groups $G \mid V_{i}, i=1, \cdots, k$. Each $G \mid V_{i}$ is isomorphic to $G \mid V_{1}$, which is a maximal irreducible primitive soluble U-group in $G L(n / k, F)$.
4.2 Let S be a primitive irreducible soluble U-group in $G L(n, F)$. We describe S by describing the factors in the series

$$
1 \triangleleft A \triangleleft B \triangleleft C \triangleleft S
$$

where A is a maximal normal abelian subgroup of S, C the centraliser of A in S, and B the Fitting subgroup of C. Suprunenko ([1], Chapter I) uses a similar decomposition to describe primitive soluble linear groups, except for a different choice of B. Our choice of B allows us to use information about irreducible nilpotent U-groups.
4.3 The group A : By Clifford's Theorem A is completely reducible over F. Since S is primitive, all the irreducible components of A are equivalent, and so A is isomorphic to an irreducible abelian U-group in $G L(t, F)$, where t divides n. The results of 2.1 then apply to A.
4.4 Lemma. B is nilpotent, of class at most 2.

Proof. The Fitting subgroup of any linear group is nilpotent ([9], Theorem 1 (ii)). Let the class of B be $c, B=\gamma_{1}(B) \supset \gamma_{2}(B) \supset \cdots \supset \gamma_{c+1}(B)=1$ the lower central series for B, and r the smallest index such that $\gamma_{r}(B)$ is abelian. $\gamma_{r}(B) \subset C$, and so $\gamma_{r}(B) \cdot A$ is abelian, and normal in S. By the maximality of A, $\gamma_{r}(B) \subset A=Z(B)$. We have therefore $c \leqq r$, and, by the argument used in 3.1, $r \leqq[c / 2]+1$. Hence $c \leqq 2$.
4.5 Since S is primitive, B is isomorphic to one of its own irreducible components, and so, if $c=2$, we can apply 3.7 , with s a divisor of n / t (where t is the degree of an irreducible component of A). The primes dividing s must satisfy the conditions of 3.3.
4.6 In particular, if $n d$ is odd, $B=A=C=H$, where H is the Fitting subgroup of S.

Proof. By 3.4, nd odd implies B and H are both abelian. If $C \neq A, C / A$ contains a non-trivial characteristic abelian subgroup K / A, and K is necessarily nilpotent, giving a contradiction.
4.7 The group B / A : Suppose B / A is non-trivial. Since B is the Fitting subgroup of $C, B / A$ is the maximal normal abelian subgroup of $C / A . B / A$ is equal to its own centralizer in C / A (cf. [1], Chapter I, proof of Theorem 4). By [1], Chapter I, Lemma 15, the Sylow q-subgroups of B / A are elementary abelian q-groups.
4.8 The groups C / B and S / B : By [1], Chapter I, Theorem 11, if $s=q_{1}^{\alpha_{1}} \cdots q_{k}^{\alpha_{k}}$, C / B is isomorphic to a soluble subgroup of the direct product of the symplectic groups $\operatorname{Sp}\left(2 \alpha_{1}, q_{1}\right), \cdots, \operatorname{Sp}\left(2 \alpha_{k}, q_{k}\right)$.

By an argument similar to that of 3.5 we obtain: S / C is isomorphic to a soluble semiregular permutation group of degree t. (cf. [1], p. 12). For these two factors we obtain no special restrictions.
4.9 Theorem. A completely reducible soluble U-group S in $G L(n, F)$ satisfies the maximum condition for subgroups.

We shall prove the equivalent condition that all subgroups of S are finitely generated.

Proof. (i) If S is a primitive irreducible soluble U-group, it is a finite extension of a finitely generated abelian group, and the result follows. This extends to the maximal imprimitive irreducible case by 4.1 , and therefore to any irreducible soluble U-group in $G L(n, F)$.
(ii) If S is completely reducible, with $V=V_{1} \oplus \cdots \oplus V_{k}$ a direct sum of minimal S-invariant subspaces, then S is isomorphic to a subgroup of $S \mid V_{1} \times$ $S\left|V_{2} \times \cdots \times S\right| V_{k}$. Each $S \mid V_{i}, i=1, \cdots, k$, is an irreducible soluble U-group in $G L\left(n_{i}, F\right)$, where $n_{i}=\operatorname{dim} V_{i}$. The result then holds for each $S \mid V_{i}$, and hence for $S\left|V_{1} \times \cdots \times S\right| V_{k}$ and for S.
4.10 Corollary. If S is any completely reducible soluble U-group in $G L(n, F)$, we can apply two theorems of Hirsch to conclude:
(i) S is polycyclic [7], p. 193.
(ii) If S is infinite, S has a normal subgroup H such that $|S: H|$ is finite, and H has a normal series $H=H_{0} \supset H_{1} \supset \cdots \supset H_{k}=1$, in which each factor $H_{i-1} / H_{i}, i=1, \cdots, k$, is an infinite cyclic group [8], $p .188$. We can actually take H to be a finitely generated torsion-free abelian group, since we have a bound on the orders of torsion elements in a maximal normal abelian subgroup of finite index in S.

Note. It follows from Mal'cev's Theorem ([1], p. 31) that any completely reducible soluble linear group is an extension of an abelian group by a finite group. 4.9 and 4.10 can therefore be made to follow directly from 2.1 (but without intermediate results 4.4-4.6). I am indebted to the referee for this comment.

References

[1] D. A. Suprunenko, Soluble and Nilpotent Linear Groups (Translations of Math. Monographs, Vol. 9, Amer. Math. Soc., Rhode Island, 1963).
[2] E. C. Dade, 'Abelian Groups of Unimodular Matrices', Illinois J. Math. 3 (1959), 11-27.
[3] M. Burrow, Representation Theory of Finite Groups (Academic Press, 1965).
[4] H. Pollard, Algebraic Number Theory (Wiley 1961).
[5] C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras (Interscience, 1962).
[6] J. D. Dixon, Problems in Group Theory (Blaisdell, 1967).
[7] A. Kurosh, Theory of Groups (Chelsea, 1958).
[8] K. A. Hirsch, 'On Infinite Soluble Groups (III)', Proc. Lond. Math. Soc. (2) 49 (1946), 184 194.
[9] B. A. F. Wehrfritz, 'Locally Nilpotent Linear Groups', J. London Math. Soc. 43 (1968), 667 674.

University of New South Wales

