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Let F be an algebraic number field, and S a subgroup of the general linear
group GL(n, F). We shall call S a U-group if S satisfies the condition ([/): Every
x 6 S is a matrix all of whose eigenvalues are algebraic integers. This is equivalent
to either of the following conditions:

a) the eigenvalues of each matrix x are all units as algebraic numbers;

b) the characteristic polynomial for x has all its coefficients integers in F.

In particular, then, every group of matrices with entries in the integers of F
is a [/-group.

Our aim is to examine the structure of completely reducible soluble [/-groups.
We use the results given by Suprunenko [1 ] for soluble and nilpotent linear groups,
and obtain some special conditions that must be satisfied by completely reducible
soluble [/-groups. We show that such groups are polycyclic, and we obtain some
arithmetical conditions that must be satisfied by primitive irreducible soluble
[/-groups, depending on the degree of the group and the field F. The results ob-
tained depend on results for irreducible abelian and nilpotent [/-groups, which we
examine separately.

2. Abelian {/-groups

The structure of abelian linear groups over the integers of an algebraic number
field has been described by Dade [2]. In this section we give a generalisation of his
result to completely reducible [/-groups.

2.1 THEOREM. Let A be an irreducible abelian U-group in GL(n, F), and let
the degree [F: Q] of F over Q be d. Then A is finitely generated, of rank at most
nd— 1, and AT, the torsion subgroup of A, is cyclic of order t, where <j)(t) (the Euler
function) divides nd.

Note: the estimate for \AT\ depends only on the fact that A is an irreducible
abelian subgroup of GL(n, F), not on the condition (U).
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PROOF. Let [A] be the linear hull of A over F (i.e. [A] is the subalgebra of
the full matrix algebra M(n, F) generated by elements of A). [A] is irreducible,
and therefore is a simple ring ([3], p. 56). Since [A] is also a commutative ring
with unity, the fact that it is simple makes it a field. Let at, • • •, as be a basis for
[A] over F. Let Kbe an w-dimensional F-module, and identify EndF V and M(n, F).
Let v e V, v # 0. Because [A] is a field, valf • • •, vas, are linearly independent
over F. They span a subspace W of V which is invariant under [A]. Since [A] is
irreducible, W = V, and the dimension [[A] : F] of [A] over Fis equal to n.

The group A is therefore isomorphic to a subgroup of the multiplicative group
of a finite extension E of F such that [E : Q] = nd. The condition (U) satisfied
by the elements of A implies that each ae A corresponds to a unit in the integers
of E. By Dirichlet's theorem on units in an algebraic number field ([4], Ch. XI),
the rank of the group of units of E cannot exceed nd— 1.

Suppose A has an element of order r > 1. Then E contains a primitive r-th
root of unity, £, say, and <j)(r) = [(?(() : Q] divides [E : Q] = nd. Since each
finite multiplicative group in a field is cyclic, we conclude that AT is a cyclic group
of order t such that <f){t) divides nd. By an obvious argument we obtain the follow-
ing corollary.

2.2 COROLLARY. A completely reducible abelian U-group in GL(n, F) requires
at most nd generators, where d = [F : Q],

3. Irreducible nilpotent {/-groups

Let JV be an irreducible nilpotent [/-group in GL(m, F).

3.1 THEOREM. If the class of N is c, then

c < | 2 m ( l + l o g 2 < / ) if d>\

° = I 2.12m if d=\

where d = [F: Q].

Note: This estimate depends only on the fact that N s GL(m, F), not on
the condition ([/).

PROOF. Let N = yi(N) •=> y2(N) :=>•••=> yc+1(N) = 1 be the lower central
series for N, and let s be the smallest index such that ys(N) is abelian. Since
[yt(N), yj(N)] c yi+J(N) we must have s ^ [c/2] + l.

By Clifford's theorem, ys(A
r) is completely reducible over F. Suppose ys(N)

has r homogeneous components. We shall show that c ^ 2r(l +log2 mdfr).
In any irreducible nilpotent linear group the index of the centre is finite

([1], p. 64). \N: Z(N)\ finite implies |y2(JV)| finite ([6], problem 5.24). If s =£ 1,
ys(N) is therefore finite, and is a subgroup of a direct product of r cyclic groups
of order tlt where 4>(t1) divides md/r. Let Qs be the Sylow ^-subgroup of ys(N),
and suppose \QS\ = ql. Let Qs+j be the Sylow ^-subgroup of ys+J(iV). Then
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Qs+I = 1. Let p" be the highest prime power dividing t1. Then for each Qs,
I ^ m, and so ys+rx(N) = 1, and c+1 g s + rcc ^ [c/2] + l+ra. Hence c ^ 2m.
Since <£(?i) divides md\r, p*^1 divides md[r, and so a—1 g| log2 md[r. We have
now c ^ 2r(l+log2 md[r), and the result follows from this if we consider the
maximum value of 2x(\ +log2 mdjx) over 1 ^ x ^ m.

3.2 COROLLARY. There exist maximal irreducible nilpotent {/-groups in
GL(m, F).

This follows from 3.1 by an application of Zorn's Lemma.

3.3 Divisors of \N : Z(N)\: All prime factors of \N: Z(N)\ divide the expo-
nent m2 of Z2(N)/Z(N), and m2 divides m ([1], Chapter III, Lemmas 19 and 22).
Also, if xZ(N) is of order k in Z2(N)fZ(N), there exists y e N such that [x, y]
has order k ([1], Chapter III, Lemma 20). In our case we have an additional
condition on m2- [x,y] lies in the torsion subgroup of Z(N), which is cyclic, of
order t2. m2 divides t2, and <j)(t2) divides md.

3.4 In particular, ;/ md is odd, there are no non-abelian irreducible nilpotent
U-groups in GL(m, F).

PROOF. If md is odd, t2 = 1 or 2, since (j>(t2) divides md, and m2 must be odd.
Hence m2 — 1 and N is necessarily abelian.

3.5 Structure of N/A, where A is a maximal normal abelian subgroup of N.

LEMMA, (i) N/A is isomorphic to a nilpotent permutation group N of degree k,
where k divides m.

(ii) If N is primitive {see [5], p. 346), N is semiregular (i.e. a permutation
group in which only the identity leaves any symbol fixed).

PROOF, (i) A is finitely generated. Choose a finite set of generators for A,
and adjoin their eigenvalues to F. The field E obtained is a normal extension of F.
If we consider N as a subgroup of GL(m, E), N is completely reducible, and all
its irreducible components are of equal degree. ([5], Theorems 69.4 and 70.15).
A is also completely reducible over E. Since A is abelian, and each of a set of its
generators can be diagonalised in GL(m, E), A is reducible to a diagonal group.

Let Wbea minimal invariant space for iVin VE (where VE is an w-dimensional
^-module, and we have identified End£ V with M(m, E)). Then dim W divides
m. Let T : x -> JC| W (the restriction of x e N to W). Let y e ker x n Z(N). Z(N)
is isomorphic to one of its own irreducible components. Hence y\ W = 1 implies
y = 1, and we have ker T n Z(N) = 1. z is therefore faithful. Define N* = N\ W,
A* = A\ W. We shall prove the result for N*/A*.

A* is reducible to a diagonal group. Let Wy, • • •, Wk be the distinct eigen-
spaces for A in W. A*\ Wlt- • •, A*\ Wk are the homogeneous components of A*,
and the spaces Wt, • • •, Wk are permuted by the elements of N* (see [5], p. 345).
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Since A* is its own centralizer in TV* ([6], problem 6.36) we have N*jA* m ft, a
nilpotent permutation group on k symbols, k divides dim W, which divides m.

(ii) If TV is a primitive group in GL(m, F), A is isomorphic to one of its own
irreducible components over F. Hence if a e A, a — \ is either zero or invertible.
If x* e TV* fixes an eigenspace Wx of A* in W, then [x, a]\ Wx = 1 for all a e A*.
This implies [x, a] = 1 for all as A, and so x e A. ft is therefore semiregular.

3.6 In particular, suppose ft is transitive, and E = Q or Q(9), where 6 is
complex of degree 2 over Q. Then TV is finite.

PROOF. Z(TV*) is a group of scalar matrices/- 1,/e E, if ft is transitive. By
Dirichlet's Theorem, the group of units of E is finite, and so Z(TV*) is finite.
Hence Z(TV) and |TV : Z(N)\ are both finite, and the result follows.

3.7 THEOREM. If the class of N is 2, then TV has a faithful absolutely irreducible
representation in GL(s, E) where E is the field defined in 3.5, and s divides m. It
follows that |TV : Z(TV)| = s2.

PROOF. We shall show that the group TV* defined in 3.6 is absolutely irreduc-
ible.

(i) If the class of TV is 2, ft is semiregular. For: Let W be the space defined
in 3.5, and Wx an eigenspace for A* in W. We have already: if x* = x\We TV*
fixes Wx, then [x, a]\ Wi = 1 for all aeA. Since the class of TV is 2, [x, a] e Z(TV).
Z(TV) is isomorphic to one of its own irreducible components, and so [x, a] = 1
for all aeA. Hence xe A, and ft must then be semiregular.

(ii) Let w 7̂  Oe Wl and let 1 = xlf x2, • • •, xs be a complete set of coset
representatives for A in TV. Let Ll be the space spanned by w, x* = xt\ W, and
define L} = LtxJ j = 1, • • •, s. By (i) the Lj belong to distinct eigenspaces of
A* in W. They are permuted transitively by the elements of TV*. The space
L = Lt © • • • © Ls is a nonzero invariant space for TV* in W, and so L = W.

The construction of L shows that the centralizer of TV* in M(s, E) can contain
scalar matrices only. TV* is therefore the required representation of TV. (see [5],
p. 202).

(iii) |TV : Z(TV)| = s2. This can be deduced from [1] Chapter I, Lemma 10.
The following more elegant argument is due to Professor J. D. Dixon.

The linear hull of TV* over E has dimension s2 ([5], Theorem 27.8). We can
therefore find elements x*, • • •, x*2 e TV* that form a basis for M(s, E). Since
Z(TV*) is a group of scalar matrices, x*, • • •, x% are in distinct cosets of Z(TV*)
in TV*. We show that they form a complete set of coset representatives for Z(TV*)
in TV*.

Let x*eN*, x* $ Z(TV*). Then there exists y* e TV* such that [x*,y*] =
z* e Z(TV*), z* = C • 1, C # 1, i-e. (y*)~lx*y* = £**, C # 1. Trace x* = trace
(y*)~1x*y* = trace (x* = ( trace x*. Since C # 1, trace x* = 0. Now let x* be
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any element of N*. x* = Jf=1 txtxf, a; e E. At least one a; # 0. Trace x*(xj)~i

= Yf=iat trace (xf(x*)~1) = socj ^ 0. As we have just seen, this implies
x*(x*y1 e Z(N*), and gives the result.

4. Completely reducible soluble (/-groups

4.1 Let S be an irreducible soluble {/-group in GL(n, F). Suppose S is maxi-
mal with respect to the property of being soluble.

Suppose S is imprimitive. Let V be an n-dimensional F-module, and identify
EndF V with M(n, F). Let V = Vl ® • • • © Vk be a complete decomposition of
F into systems of imprimitivity for S (cf. [1], p. 7). By an argument similar to
that used in the proof of Lemmas 3 and 4 of [1 ], Chapter I, S has a normal
subgroup G for which each Vt, i = 1, • • •, k, is an invariant space, such that SjG
is isomorphic to a maximal soluble permutation group of degree k. G is the direct
product of the groups G\Vt, i = 1, • • •, k. Each G\Vt is isomorphic to G\VX,
which is a maximal irreducible primitive soluble [/-group in GL(n/k, F).

4.2 Let S be a primitive irreducible soluble {/-group in GL(n, F). We describe
S by describing the factors in the series

l < i < B<i C o S

where A is a maximal normal abelian subgroup of S, C the centraliser of A in S,
and 5 the Fitting subgroup of C. Suprunenko ([1], Chapter I) uses a similar de-
composition to describe primitive soluble linear groups, except for a different
choice of B. Our choice of B allows us to use information about irreducible nil-
potent {/-groups.

4.3 The group A: By Clifford's Theorem A is completely reducible over F.
Since S is primitive, all the irreducible components of A are equivalent, and so A
is isomorphic to an irreducible abelian {/-group in GL(t, F),where t divides n.
The results of 2.1 then apply to A.

4.4 LEMMA. B is nilpotent, of class at most 2.

PROOF. The Fitting subgroup of any linear group is nilpotent ([9], Theorem
1 (ii)). Let the class of B be c, B = y^B) => y2(B) =>•••=> ye+1(B) = 1 the
lower central series for B, and r the smallest index such that yr(B) is abelian.
yr(B) cz C, and so yr{B) • A is abelian, and normal in S. By the maximality of A,
yr(B) c A = Z(B). We have therefore c ^ r, and, by the argument used in 3.1,
r ^ [c/2] + l. Hence c S 2.

4.5 Since S is primitive, B is isomorphic to one of its own irreducible com-
ponents, and so, if c = 2, we can apply 3.7, with s a divisor of nft (where t is the
degree of an irreducible component of A). The primes dividing s must satisfy the
conditions of 3.3.
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4.6 In particular, if nd is odd, B = A = C = H, where H is the Fitting
subgroup of S.

PROOF. By 3.4, nd odd implies B and H are both abelian. If C # A, CjA
contains a non-trivial characteristic abelian subgroup KjA, and K is necessarily
nilpotent, giving a contradiction.

4.7 The group BjA: Suppose BJA is non-trivial. Since B is the Fitting subgroup
of C, BjA is the maximal normal abelian subgroup of CjA. BjA is equal to its
own centralizer in CjA (cf. [1 ], Chapter I, proof of Theorem 4). By [1 ], Chapter I,
Lemma 15, the Sylow ^-subgroups of BjA are elementary abelian ^-groups.

4.8 The groups C/B and SIB: By [1 ], Chapter I, Theorem 11, if s = q\l • • • qlk,
CfB is isomorphic to a soluble subgroup of the direct product of the symplectic
groups Sp(2a1; qj, • • ; Sp(2a)i, qk).

By an argument similar to that of 3.5 we obtain: S/C is isomorphic to a
soluble semiregular permutation group of degree t. (cf. [1], p. 12). For these two
factors we obtain no special restrictions.

4.9 THEOREM. A completely reducible soluble U-group S in GL(n, F) satisfies
the maximum condition for subgroups.

We shall prove the equivalent condition that all subgroups of S are finitely
generated.

PROOF, ( I ) If S is a primitive irreducible soluble {/-group, it is a finite extension
of a finitely generated abelian group, and the result follows. This extends to the
maximal imprimitive irreducible case by 4.1, and therefore to any irreducible
soluble (/-group in GL(n, F).

(ii) If S is completely reducible, with V — Vt ® • • • ® Vk a direct sum of
minimal S-invariant subspaces, then S is isomorphic to a subgroup of S l ^ x
S\V2x • • • xS\Vk. Each S\Vt, i = 1, • • •, k, is an irreducible soluble (/-group
in GL(nt, F), where «; = dim Vt. The result then holds for each S| Vt, and hence
for S\ Vx x • • • x S\ Vk and for S.

4.10 COROLLARY. IfS is any completely reducible soluble U-group in GL(n, F),
we can apply two theorems of Hirsch to conclude:

(i) S is polycyclic [7], p. 193.
(ii) IfS is infinite, S has a normal subgroup H such that \S : H\ is finite, and

H has a normal series H — Ho => Hx => • • • r> Hk = 1, in which each factor
Hf-i/Hi, i = 1, • • •, k, is an infinite cyclic group [8], p. 188. We can actually take
H to be a finitely generated torsion-free abelian group, since we have a bound on
the orders of torsion elements in a maximal normal abelian subgroup of finite
index in S.

https://doi.org/10.1017/S1446788700009812 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700009812


[7] Groups of matrices with integer eigenvalues 357

Note. It follows from Mal'cev's Theorem ([1], p. 31) that any completely re-
ducible soluble linear group is an extension of an abelian group by a finite group.
4.9 and 4.10 can therefore be made to follow directly from 2.1 (but without inter-
mediate results 4.4-4.6). I am indebted to the referee for this comment.
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