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Abstract

In this paper, we consider a class of systems governed by second order linear
parabolic delay-partial differential equations with first boundary conditions.
Our main results are reported in Theorems 3.1 and 3.2. As in [9, Theorems
4.1 and 4.2], the coefficients and forcing terms of the system considered in
Theorem 3.1 are linear in the control variables. On the other hand, the
forcing terms of the system considered in Theorem 3.2 are allowed to be
nonlinear in the control variables at the expense of dropping the control
variables in the cost integrand.

1. Introduction

It appears that there are only few results [5, p. 262; 9,11] available in the literature
on the existence of optimal controls for systems governed by parabolic partial
delay-differential equations with controls and delayed arguments appearing in the
coefficient.

In this paper, we present two existence theorems for optimal controls (Theorems
3.1 and 3.2). As in [9, Theorems 4.1 and 4.2], the coefficients and forcing terms of
the system considered in Theorem 3.1 are linear in the control variables. However,
Theorem 3.1 contains Theorems 4.1 and 4.2 of [9] as special cases. On the other
hand, the coefficients and forcing terms of the system considered in Theorem 3.2
are allowed to be nonlinear in the control variables at the expense of dropping the
control variables in the cost integrand.
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22 K. L. Teo [2]

It is known [10] that a class of stochastic optimal control problems can be con-
verted into a class of optimal control problems of systems governed by parabolic
partial differential equations. This reduced problem is contained as a very special
case of the class of optimal control problems currently under consideration.

Let Q be a domain in H-dimensional Euclidean space Rn, bounded by a smooth
surface dQ. satisfying the following properties: each point of 8Q. is locally repre-
sentable by functions with the Holder continuous second order partial derivatives.

We denote the coordinates of a point x in Rn by xv ...,xn, time by t. Let Tbe a
fixed time instant, T<co, and hK (K = 0,1,..., v) be certain given numbers such that
O = ho<h1<...<hv<T. We denote the intervals Io = [-hv,0], Jj = (0,T),
h = [-K,Tl

Now let us consider the following second order linear partial delayed differential
equations of parabolic type with a first boundary condition.

<&(«) (*> 0 = 2 au(x, t) • <j>x (u) {x, t)

S S KKix,t-hK,u{x,t-K)y<t>Xi{u){x,t-hK)

+ S cK(x,t-hK,u(x,t-hK)y<t>(uHx,t-hK)
\ (1)

v

+ £ /«(•*> t—hK,u{x,t—hK)), for (x,t)eClxIi

u) (X, 0 = (f>0{x, t), for (x,t)eClxIo

u) (x, t) = 0, for (x, t) e 8Q. x 72

where fa = ty/3/, ^X( = ty/dx* <l>XfXj = Pfldxtdx, (i,j = 1, ...,n), and i) is the set
of admissible controls to be defined later.

Let M be a bounded measurable function from U x [—Aw0) into Rr and let £/ be
a non-empty compact convex subset of Rr. Now let us define the set of admissible
controls on O x [—hy, T] by

D = {u:u measurable on U x [-hv,T], u(x, t) = u(x, t)

almost everywhere on U x [—hv, 0) and u(x, t)eU

almost everywhere on H x [0,3"]}.

https://doi.org/10.1017/S0334270000001880 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000001880


[3] Existence of optimal controls 23

2. Auxiliary results

With reference to system (1), it is assumed that, for each ueD, the coefficients,
forcing terms and data are defined and measurable on their appropriate domains.
Before stating more specific assumptions, we shall introduce some useful notations.

Let 101 denote the Lebesgue measure of the measurable set 0 of any finite
dimensional Euclidean space. Let E be any connected subset of an j-dimensional
Euclidean space R" and denote by C'(E) the class of all / times continuously
differentiable functions on E, where l^/<oo is an integer. Further, let Cl(E) be
the class of functions from C\E) with compact support on E. For any ZeRa, let
\Z\ = (Si-i^?)*. Let zx = [zX(, ...,z.J denote the gradient of the scalar valued
function on Rn.

Let E be as before and denote by L'(E), 8 ̂  1, the Banach space consisting of all
measurable functions on E that are S/A-power integrable on E. The norm on it is
defined by the equalities

II 4»,E = j [J *G01'^p for U 8 <co
and

II z||oo,E = ess sup I z{y) | for S = co.
E

Measurability and integrability are to be understood in the sense of Lebesgue.
The elements of L*(E) are the equivalence classes of the functions on E (functions
belonging to the same equivalence class are equal almost everywhere).

Let A be a real number such that 1 < A<co and denote by W\\E) the Banach
space of functions from L\E) having generalized derivatives of the form
(dr/dtr)(d"/dxB) with any r and s satisfying the inequality 2r+s^2. The norm on it
is defined by the equality

\\v,; ft
Note that if z is only a function of x defined in Q. then we denote W\(Q) the
Banach space of functions from LA(ii) having generalized derivatives of the form

with s = 0, 1 and 2. The norm on it is defined by the equality

For any non-integral positive number A, HX>XI\E) denotes the Banach space of
functions z that are continuous on E and have derivatives of the form
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(each pt is a non-negative integer, 2a+j8 < A), and have a finite norm

Note that [A] denotes the largest integral part of A and

!!z|b«» = !-%«» = max] z(x,t)\,

I 7 | | _(A) _ y
I \\x,E t->

2a+^»

Mb(A/2) = S
0<A-2a-

| 2 |Ls < y > = max

W - -ax

Throughout this paper, the coefficients, the forcing terms and data of the system
(1) are assumed to satisfy the following assumptions which will be referred to
collectively as (A).

(i) ayO, •) (i,j: = 1, ...,n) are continuous on Q, where g = i lx / j and Q is the
closure of Q,

(ii) there exist numbers au>a,>0 such that

«JZ|2^ £ ow(x,0-Zi-Zi>o%-|Z|»

for all ZG-R71 uniformly on Q (uniformly parabolic), where |Z|2 = SjLiI ̂ il2»

(iii) max
U

where /, /' e [0, T]; x, x' eH; and M is a constant,
( i v ) biiK(-, • -hK, •), cK{-, • -hK, • ) , / » ( • . • - ^ . ) ( ' = 1 . • • • » « ; * = 0 , 1 , . . . v ) a r e

bounded measurable on Q x J7 and continuous on 1/ for almost all (x, t) e Q,
(v) <f>0 e C2(U x [ - hv, 0]) and ^0(x, r) = 0 for all x $ D,, and t e [ - hv, 0], where Qo

is a compact subset of Cl.
Note that all the results to be presented in this paper remain valid if the condi-

tion <f>0 e C2(Q x [-hv, 0]) is replaced by a weaker condition <f>0 e W^U x[-hv, 0]).

https://doi.org/10.1017/S0334270000001880 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000001880


[5] Existence of optimal controls 25

The reason for imposing this more restrictive assumption is merely for con-
venience.

With this preparation, we state the following optimal control problem P.
Given the dynamic system (1), find a control u^eD that minimizes the cost

functional

/(«) = j ^ j G(x, t, u(x, 0, <£(«) (x, t), <[,x(u) (x, t)) dx dt, (2)

where
G(x, t, u(x,/), </>(u) (x, t), <f>x(u) (x, 0 )

= G^x, t, u(x, 0 ) + Gt(x, t, <f>(u) (x, 0,4>JL>*) (*. 0).

For brevity, the following assumptions on the cost integrand G will be referred
to collectively as 'S.

(i) Gt(x,t,v) is measurable in Q for each veRr, continuous in Rr for each
(x,t)eQ and convex in U for each (x,t)eQ; further, there exists a non-
negative function gx eL\Q, R1) and a constant m > 0 so that

for some constant a^l almost everywhere on Q; and
(ii) there exist a real number y ^ 0 and a non-negative measurable function

almost everywhere on Q.
For ease in future references, the statement: "C depends on the structure of the

differential equation of system (1)" will be used to mean that C is determined by
the quantities <x,,ocu,M, and the bounds of the functions biK, cK (i=\,...,n;
K = 0,1,... ,«).

Corresponding to system (1) we need the following definition.

DEFINITION 2.1. A function <f>: D x 72->- R1 is said to be a solution of system (1) if
(0 i>(x,t) = <f>0(x,t)on^lxl0;

(ii) <j>(x,t) = 0ondQ.xI2;
(Hi) the restriction of<j>toQ belongs to W\\Q) (M + 2 < A < O O ) ; and
(iv) <f> satisfies the differential equation of system (1) almost everywhere in Q.

Note that, in Definition 2.1, <f>, and <f>X(X are, respectively, understood to be the
generalized derivative of <f> with respect to / and the generalized derivative of <f>Xl

with respect to xy
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The existence and uniqueness of solutions of system (1) together with two
a priori estimates are known [8, Theorem 2.3, pp. 123-124]. This result is quoted
without proof in the following theorem.

THEOREM 2.1. Under the assumptions {A), system (1) admits, for each ueD, a
unique solution <b(u). Further <j>(u) satisfies the following estimates.

\\K\U (3)
and

(4)

for all X > n + 2 and /A = 1 — ((«+2)/A), where the positive constants Nx and N2 depend

only on n, X, v, Q, d£l, the structure of the differential equation of system (1), the bounds

for the functions fK (K = 0 , 1 , . . . . v), |<Aolnx[-^o]<0)> I W * i | o x [ - f t , , o ] ( 0 ) 0" = U ••••«)

In the sequel, Theorem 3.2 of [9] will be quoted without proof in the following
theorem.

THEOREM 2.2. Let {uj^^D and let {^(KJ)}^ be the corresponding sequence of
solutions of system (1). Suppose that the assumptions {A) are satisfied. Then there
exists a subsequence {uty^,l

c=-{u^,1 so that

/ « ( • . • -K, uk(-, • -hK)) (/ = 1,. . . ,«; K = 0 , 1 , . . . . v)

converge, respectively, to

h*(- • —h 1 p*(- • —h ~\ f*(' -—A \ ( i = \ n- K = 0 1 i;)viK\ ' "K)> eK\ ' " K ) > J K \ ' nK) \t — i, . . . , n , K — \J, i,...,v)

in the weak * topology ofL^iQ,^) as t-*oo. Further,

uniformly on Q

weakly in L\Q) as i->oo,
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[7] Existence of optimal controls

where \>n + 2and <f>* is the unique solution of the system

tf{x, t) = jt^x, 0 <l>ZXl(x, t)

27

V

(C=0

<f>*(x, t) = (f>0(x, t) (x, t)eQ.x Io,

<j>*(x,t) = 0, (x,t)edQxI2. )

For brevity, let us introduce the following notation.

FK(x, t, v) = [bliK(x, t, v), b2iK(x, t,v),..., bn>K{x, t, v), cK(x, t, v), fK(x, t, v)]

FK(x,t,v) =
FK(x, t, v), (x, t) e Q. x [0, T- hK],

(5)

(6)

(7)

(8)

[FK(x,T-hK,v) (x,t)eQx(T-hK,T]
(K = 0,1, . . . , v); and

F(x,t) = {[FQ(x,t,v),F^x,t,v),...,Fv(x,t,u)]T: veU},

where the superscript "T" denotes transpose.
Clearly, Fis a set-valued function from Q into J?(»+2»1'+1).
In the sequel, we need

DEFINITION 2.2. A set-valued function P:Ux[0,T]^-Rin+2n''+1) is said to be
measurable if {(x,t)eUx [0,T]: BnF(x,t)^0} is measurable for every closed
subset B o//?("+2>c+i).

As an immediate consequence of [3, Theorem 3, p. 281], we have the following
Filippov-type lemma.

LEMMA 2.1. Let biK, cK,fK{i= 1,...,«; K = 0,1, . . . , v) satisfy the condition (iv) of
the assumptions (A) and let zbe a measurable function from Q into j?(™+2><"+1) so that
z(x, t) e F{x, t) a.e. on Q. IfF is a measurable set-valued function, then, there exists a
measurable function u* on Q such that

2{X, t) = [/„(*, t, U*(X, 0), FX{X, t, U*(X, 0) Ux, t, U*(X, tW

and u*(x, t)eU a.e. on Q.
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Using Theorem 2.2 and Lemma 2.1, we obtain

LEMMA 2.2. Let the assumptions of Theorem 2.2 be satisfied and let F{x, t) be con-
vex for each (x,t)eQ. If, in addition, F is a measurable set-valued function, there
exists a control u*eD so that

*&(*. '"*«) = bUx> f-h«> «*(*. ' -*«)) .
c*(x, t-hK) = cK(x, t - hK, u*(x, t - hK)),

f*{x,t-hK) =fK(x, t-hK, u*(x,t-hK))

(i = 1 n; K = 0 , 1 , . . . , v) almost everywhere on Q.

PROOF. Let {ul}?=1<^{uHtg.1<=Dbe as defined in Theorem 2.2. Let

H'(x,0 = [F0(x, t,uk(x, t)),Fx(x, t,uh(x, t)),...,/,(*> t,uh(x,0)]T

and let the set ^V be defined by

Jf = {y: y measurable on Q and y(x, t)eF{x, t) for almost all (x, t)e Q}.

Recall that U is non-empty. Thus, D is non-empty. Now, by using appropriate
assumptions of (A), we see that [/„(-, -,«(-, ) ) , / i ( - , - ,«(-, •))» —,FV{-, - , " ( - , -))]T

is measurable on G for any ueD. Further, by the definition of F, it is clear that
[F0(x,t,u(x,0),Fx(x,t,u(x,t)),...,Fv(x,t,u(x,t))]TeF(x,t) for all (x,t)eG for any
u e D. Thus, the set ^Vis non-empty.

By hypothesis, F{x, i) is convex for each (x, t) e Q. Thus, it is easily observed
that ,/F is convex. On the other hand, it follows from the definitions of/'(equation
8) and ^V and the condition (iv) of the assumptions (A) that, for each (x, t) £ Q,
F{x,t) is a compact subset of J?(n+2)("+1) and there exists a constant K>0 so that

almost everywhere in Q for all y e *V. Let *V be the class of functions defined by

Jr = {z:z measurable on Q with values in R^+ZHV+D

and |z(x,t)\^Kfor almost all (x,t)eQ}.

Clearly, Jf<^rf. From [2, Theorem 7.1, p. 19], the closed unit ball of
Lco(0 <̂n+2)o>+i>) is compact in the weak * topology of L!»(Q, RSn+2"v+1)); clearly
a closed ball of any finite radius is also compact in the weak * topology of
Z,°°(g, JR(»+2)<"+i). This obviously implies that Jf is compact in the weak * topology
of JL»(g,/?<n+2)<"+1)). Now, in view of the definitions of the FK (K = 0,1, ...,v) and
Hl, we observe that {H'}?^ jVczjP'.On the other hand, it follows from Theorem
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2.2 and the definitions of the FK (/c = 0,1 v) that

in the weak * topology of L^Q, Rn+2) as t->oo, where

(F*(x,t), (x,t)eQx[0,T-hK],

and

*•?(*,o = [6j«(*.o, - . . .AJU* .o , c* (* .0 , / ;? (* .o ] ( « = o, I, ...,v).

This, in turn , implies tha t H'(, )->H*(,) in the weak * topology of
L0 0(e , .R< n + 2 ) < H-1 ) ) , where

//*(*, 0 = [/•(*, 0, /•(*, r),..., /•(*, OF-

Since { / f ' ^ c ^ c J / " and ^P is compact in the weak * topology of
L00(e,/?("+2)("+1»), it follows that H*eJ*. Next, we shall show that H*eJf.
This is equivalent to showing that H*(x,t)eF(x, t) almost everywhere on Q. For
each t = 1,2,..., let

Qt = {(x,t)eQ:u,<ix,t)$U}.

Let Q= [JJLiQr Since ult{x,i)eU almost everywhere on Q for all integers i^ 1,
it follows that | Q \ = 0. By hypothesis, F is a measurable set-valued function
defined on Q. Thus, by virtue of Theorem 1 of [6, p. 857], there exists, for any
£! > 0, an open set E1 <= Q \ Q = Q1 so that | Ex | < ex and F( •, •) is continuous in the
Hausdorff metric topology on 21\£1. Now, by Lusin's Theorem, there exists, for
any e2 >0, an open set £2<= Q1 so that |E2\ < e2 and H*(-, •) is continuous on Q1 \E2.
Let £ = £'1u£'2. Then, it is obvious that |£ |<e 1 + e2 = e3. Further, F(-,-) is
continuous in the Hausdorff metric topology on Q1\E=Qi and H*(-,) is
continuous on Q*. Let (x0, tQ) e Q2 be arbitrary but fixed. Then, for any e4 > 0, there
exists a S = $(£4) such that

F{x,t)<=F«(xo,to) (9)

whenever | (x, t) — (x0, t0) \ < 8, where F^x, t) denotes the closed ^-neighborhood of
F{x,t). We shall now show that H*(xo,to)eF(xo,to). Since (xo,to) is a continuity
point of the function H*, it follows that, for any measurable set Ac Q2 containing
(x0, /„) and contracting to the one point set {(x0, /„)}, we have

//*(*„, fo^limfr-Lf \H*(x,t)dxdt). (10)
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Let Mg = {(x,t)eQ2:\(x,t)- (x0, t0) \ < 8} and let @ = {B e Ms: B is measurable
and contains (x0, t0)}.

Then, by virtue of the fact that H(x0, t0, uti(x0, to))eF(xo, t0) for all positive
integers t, it follows from (9) that, for any Be£8,

H(x, t, uh(x, t)) e F<*(xQ, t0) (11)

for all (x, t)e£ and for all t = 1,2,.... Now, we note that Fei(x0, 'o) ' s convex and
compact (and hence closed). Thus, it can be easily deduced from relation (11) that

,-4 J f #(x, t, uh(x, t)) dxdteF«(x0, t0) (12)

for all i = 1,2,.... Further, since Fei(x0,t0) is closed and H(-, •,%{-, •)) converges
to H*(-, •) in the weak * topology of L^iQ, R{n+2Hv+1)), it follows from (12) that

, t, uh(x, t))dxdt = | i j j ^ JH*(x, t) dx dt e F°*(x0, t0) (13)

for any Be&. Again, by the fact that Fei(x0, t0) is closed, we deduce readily from
(13) and (10) that if the set BeSS contracts to the one-point set {(x0, t0)} then

H*(*„, t0) = lim [jL f f H*(x,t)dxdt] eF«(x0, t0).
\B\IO\\B\JBJ )

Since e4>0 is arbitrary and F(x0, t0) is closed, H*(xo,to)eF(xo,to). Further,
(xo,to)eQ2 is also arbitrary. Thus, H*(x,t)eF(x,t) for all (x,t)eQ\ Again, since
ex>0 and e2>0 are arbitrary, e3>0 is arbitrary and hence it follows that
H*(x,t)eF(x,t) almost everywhere in Q. At this stage, we can easily convince
ourselves the validity of the lemma by using the definitions of the / * (*c = 0,1,... , v)
JV and Lemma 2.1.

Combining Theorem 2.2 and Lemma 2.2, we have

THEOREM 2.3. Let {wJjS,ic D and let {^(uj}^ be the corresponding set of solutions
of the system (1). Let the set-valued function F defined by equation (8) be measurable
and let F(x, t) be convex for each (x, t) e Q. Suppose that the assumptions {A) are
satisfied. Then, there exist a subsequence {WJ}^IC:{«J}J™1 and a control u*eD so that

uniformly on Q,

weakly in LX(Q)
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as i -> co, where A > n + 2 and <£(«*) is the unique solution of system (1) with u replaced
byu*.

LEMMA 2.3. Let the function Y satisfy the condition (i) of the assumptions &'. If
{"j}£ic D and ut converges in the weak * topology ofLm(Q, Rr) to u* e D, then there
exists a subsequence {uti{-, •)}%1

C1 {«j(-, 0}£i so that

lim f f Y(x, t,uh(x, i))dxdt>[ f r(af, t,u*(x,0)rfxA (14)

PROOF. By hypothesis, the sequence { « ^ c £) converges to u*eD in the weak
* topology of L™(Q, Rr). Since | Q \ < oo, the sequence also converges, in particular,
weakly in L\Q, Rr) to u*. In view of the second part of the condition (i) of the
assumptions <& and the fact that U is compact, we can easily show that the set
defined by

satisfies the sufficient conditions stated in [1, Corollary 11, p. 294] and hence it is
compact in the weak topology of L\Q, Rr). Thus, there exists a subsequence
{Y(-, -,«,/•, •))}T=i^{Y(:,-,u^,-))}^1 so that it converges to Y*(-,-) in the
weak topology of L\Q, RT). Obviously, {«j,}5L1

c{«j} î also converges weakly in
L\Q,Rr) to u*. Thus, the sequence

| IJ converges to
r*(-,->

weakly in L\Q, Rr+1). By the Banach-Saks Theorem [7, p. 80], we can extract a
subsequence

\[Y{-, •,«£(•.. -^Jifc-i U n - , -,«£(•> •))]].-!
so that

i - r £ ( > ) I t
- S converges to

" * 4 r ( # ) ) J
in the norm of L1(Q.^r+1)- This, in turn, implies that (1/V)SJ.=1M^(-, •) and
(l/")2SUi y('> '"*(•.")) converge, respectively, to u*(-, •) in the norm of L1(2,.Rr)
and y*(•,•) in the norm of L\Q,R}) as v^oo.
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Now, by hypothesis, Y(x, t,-)is convex in U for each {x, t)e Q, it follows that

- £ f \Y{x,t,uHx,t))dxdt= f fi-S Y(x,t,u*(x,t))dxdt

For ease in references, the second part of the condition (i) of the assumptions
is recalled below. There exists some constant a^ 1 so that

for almost all (x, t)eQ and for all veR*.
Let us first consider the case when a = 1 (the case when <r> 1 will be considered

later). In this case, we obtain immediately from inequality (16) that

J [\Y{x,t,u(x,t))\dxdt^[ (gl(x,t)dxdt + a>j \u(x,t)\dxdt. (17)

Since | Q \ < oo and U is compact, it is clear that Y is an operator mapping from
L\Q,BT) into L\Q,F}). Thus, it follows from an obvious generalization of
Theorem 2.1 of [4, p. 22] that Y is a continuous operator from L\Q,Rr) into
L\Q, R1). Since the sequence {(1/v) SjUi "£('» ' ))S£.i converges to u* in the norm of
L\Q, Rr) as v->oo, it follows that

lim f f y(x,f,-S t^x,oW</f= f f Y(x,t,u*(x,t))dxdt. (18)

Next, we recall that the sequence {OAOEJLi Y{-, -,u^{-, •))}%1 converges to
Y*(•,•) in the norm of LHG.-^1) as v->oo. Thus,

limi S f [Y{x,t,uHx,t))dxdt=[ f Y*(x,t)dxdt. (19)
K-woi'fc-iJoJ H J e J

Further, since the sequence {T(-, - . M ^ - , O)}^,! converges to Y*(•,•) weakly in
L\Q,R1) and | Q\ <oo, it is obvious that

lim f f y(x, r,u,(x, t))dxdt = f f y*(x, r)dr^. (20)
t-*oojQj ' JeJ

Thus, by combining (15), (19), (20) and (18), we obtain inequality (14) for the case
when a = 1.

To complete the proof, we shall show that the lemma remains valid when a> 1.
In fact, the proof is similar to that given for the case when a = 1 with only the
following three minor modifications.
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(i) replace [1, Corollary 11, p. 294] by [1, Corollary 4, p. 289];
(ii) replace L^Q,^) and L^Q,!^) by L'iQ,^) and La{Q,RT) respectively

everywhere; and
(iii) replace inequahty (17) by the following inequahty, which is obtained readily

from inequality (16),

J^ |*| Y(x,t,u(x,t))\dxdt^ j jgl{x,t)dxdt + a> j j\u(x,t)\*dxdt.

Thus, the proof is complete.

3. Existence theorems for optimal controls

In this section, we shall present two results on the existence of optimal controls
for the problem P in Theorems 3.1 and 3.2. The main tools for Theorem 3.1 are
Theorem 2.2 and Lemma 2.3. On the other hand, Theorem 3.2 is proved on a basis
of Theorem 2.3, while Theorem 2.3 was obtained by using Theorem 2.2 and Lemma
2.2. Note that, as in [9, Theorems 4.1 and 4.2], the coefficients and forcing terms of
system (1) considered in Theorem 3.1 are assumed linear in the control variables.
However, this result contains those reported in [9, Theorems 4.1 and 4.2] as special
cases. In Theorem 3.2, the coefficients and forcing terms of system (1) are allowed
to be non-linear in the control variables at the expense of dropping the control
variables in the cost integrand.

THEOREM 3.1. Consider the problem P. Suppose that the assumptions {A) and'S are
satisfied. Further, it is assumed that the coefficients and forcing terms of the system
(1) are linear in the control variables. Then the corresponding problem P has a
solution.

PROOF. By the assumptions @ and the fact that U is compact and convex, it is
easily deduced that InfueDJ(u)> -oo. Clearly, there exists a sequence {u^^D
so that

lim/(Mj) = Inf J(u).
i-»oo ueD

Since D is a w*-compact subset of If^Q, Rr), there exists a subsequence of{u^v

which is denoted by the original sequence, so that it converges to u*eD in the
weak * topology of L^iQ, Rr). By hypothesis, the coefficients and forcing terms of
the system (1) are linear in the control variables. Thus, it can be easily shown from
Theorem 2.2 that ^d and <f>Xl(uJ (i= 1, ...,n) converge uniformly on Q to <f>(u*)
and <f>Xi(u*) (i = 1,...,«) respectively.
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Now, let J1 denote the first component of J. Then, by virtue of the condition (i)
of ^ , it follows from Lemma 2.3 that we can extract a subsequence {«il} .̂i<={wi}£1

so that
4(1^. (21)

On the other hand, we can easily verify from the condition (ii) of 'S and in-
equality (4) of Theorem 2.1 that the set defined by

satisfied the sufficient conditions stated in Corollary 11 of [1, p. 294]. Thus, it is
compact in the weak topology of L\Q, R1). Next, by virtue of the condition (ii)
of the assumptions ^ , inequality (3) of Theorem 2.1 and the fact that | fi|<oo,
we can readily show that G2 is an operator mapping from L\Q, Rn+1) into L\Q, R1).
Thus, it follows from an obvious generalization of [4, Theorem 2.1, p. 22] that G2

is a continuous operator from L\Q, Rn+1) into L\Q, R1). Further, since <£(wj) and
<£x,(«;)0" = 1 n) converge uniformly on Q to <f>(u*) and <f>X{(u*) (i = l,...,n)
respectively and |g|<oo, it is clear that <£(«,t) and 4>x,(ui) (' = U •••>«) converge,
respectively, to <£(«*) a n d <f>X{(u*) (i = 1,...,«) in the norm of L\Q) as t^-oo, where
«+2<A<oo. Thus,

,{x, t, <£(M(I) (X, t), (frjMf) (x, t)) dxdt

converges to

J2(u*) = f f GJx, t, Hu*) (x, t), 4>x(u*) (x, 0) ^xrf/
.»oJ

as t->oo.
Combining the above relation with inequality (21), we have

J(u*) ̂ ]im J(uk).
l-»0O

However,
\im J(ut) = Inf J(u)
i»oo UEX>

Thus,
J(u*)= Inf7(«)

and the proof is complete.

REMARK 3.1. Note that Theorem 3.1 contains Theorems 4.1 and 4.2 of Reference
9 as special cases.

In the following theorem, we shall show that the problem P admits a solution
without requiring the coefficients and forcing terms of the system dynamic to be
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linear in the control variables if the first term of the cost integrand is the zero-valued
function.

THEOREM 3.2. Consider the problem P with Gxs0.Let FK, FK and F be as defined in
equations (6), (7) and (8) respectively. Suppose that the assumptions {A) and the
condition (//) of & are satisfied and that F(x, t) is convex for each (x, t) e Q. Then, if
F is a measurable set valued function, the corresponding problem P has a solution.

PROOF. Let {KJ^C: D be a sequence so that

(M,) = Inf J{u).

From Theorem 2.3, there exists a subsequence {«/t}JLic{«j}£i and a control
u* e D such that

uniformly in Q

as i -> oo. However, the objective functional J of this theorem is identical to J2 of
Theorem 3.1. Thus, it follows from precisely the same argument as that given for
the corresponding part of the proof of Theorem 3.1 that J(u^)-*-J(u*) as »->oo.
Since ( H ^ C / ) is a minimizing sequence, we conclude immediately that
J(u*) = InfueDJ(u). This completes the proof.
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