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DUALITY WITH GENERALIZED CONVEXITY

R. R. EGUDO1 AND B. MOND2

(Received 15 August 1984; revised 25 March 1985)

Abstract

Recently, Hanson and Mond formulated a type of generalized convexity and used it to
establish duality between the nonlinear programming problem and the Wolfe dual.
Elsewhere, Mond and Weir gave an alternate dual, different from the Wolfe dual, that
allowed the weakening of the convexity requirements. Here we establish duality between
the nonlinear programming problem and the Mond-Weir dual using Hanson-Mond
generalized convexity conditions.

1. Introduction and preliminaries

In Hanson and Mond [2], generalized convexity was defined by use of subUnear
functional which satisfy certain convexity type conditions. Wolfe duality was
shown to hold under the assumption that a sublinear functional exists such that
the Lagrangian satisfies generalized convexity conditions. In [7] Mond and Weir
gave a dual for (P), different from the Wolfe dual, where the convexity require-
ments for duality are considerably weakened. Here we present and prove duality
of the Mond-Weir type under the Hanson and Mond [2] generalized convexity
conditions,. We also give a strict duality theorem which generalizes the strict
duality given in Gulati and Craven [1], Mond and Egudo [6], and Weir [8].
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[2J Duality with generalized convexity 11

DEFINITION 1. A functional F is sublinear over a space S if

(A) F(x + y) * F(x) + F(y) Vx,y<=S

(B) F(ax) = aF(x) for a e R, a > 0, x e S.

From (B) it follows that F(0) = 0.

DEFINITION 2. A differentiate function <j>(x) defined on some set X c R" is
said to be F-convex if

Vx1; x2 e Jf and for some arbitrary given sublinear functional F.

DEFINITION 3. A differentiable function <t>(x) defined on some set X c R" is
said to be F-quasiconvex if

*(*i) < *(*2) =* FXl,X2[vHx2)] < 0 (2)

Vxj, x2 e X and for some arbitrary given sublinear functional F.

DEFINITION 4. A differentiable function <j>(x) defined on a subset X of R" is
said to be F-pseudoconvex if

FXitXi[V<K*2)] > 0 =» *(*!> > * ( * 2 ) (3)
Vx1; JC2

 G -X" a n d for some arbitrary given sublinear functional F.

DEFINITION 5. A differentiable function <j>(x) defined o n J f c R " is said to be
strictly F-pseudo-convex if for Vxt, x2 e X, xr ¥= x2,

^,x2[v<>(x2)] > => 4>(Xl) < *(* 2 ) (4)
for some arbitrary given sublinear functional F.

As pointed out in Mond [5], F-convex functions can be regarded as a
generalization of convex functions. Similarly F-pseudoconvex functions and F-
quasi-convex functions can be regarded as generalizations of pseudoconvex and
quasiconvex functions respectively.

Now consider the following pair of nonlinear programming problems:

(P) Minimize/(x)
subject to g ( x ) < 0 ; (5)

(DW) Maximize f(u) + y'g(u)

subject to V / ( M ) + Vy'g(u) = 0, (6)

y > o; (7)
where / : R" -» R, g: R" -> Rm are differentiable functions.

Let S denote the feasible region of (P) i.e., S = {x: g(x) < 0}.
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12 R. R. Egudo and B. Mond [ 3 ]

Hanson and Mond [2] have established the following results.

THEOREM 1 (Weak duality). If for all feasible x in (?) and feasible (u, y) in
(DW) there exists a sublinear functional F such that the Lagrangian f + y'g is
F-pseudo-convex, then Min(P) > Max(DW).

THEOREM 2 (Strong duality). If x° is a local or global optimal for (P) and a
constraint qualification is satisfied at x°, then there exists a y° e Rm such that
(x°, y°) is feasible in (DW) and the corresponding values of (P) and (DW) are
equal. If, also, for all feasible x in (P) and feasible (u, y) in (DW), there exists a
sublinear functional F such that f + y'g is F-pseudoconvex, then x° and (x°, y°)
are global optima for (P) and (DW) respectively.

2. Mond-Weir type duality

We establish duality between (P) and the following Mond-Weir dual (DMW).

(DMW) Maximize/(M)

subject to V/(«) + Vy'g(u) = 0, (8)

y'g(u) > 0, (9)
y > 0. (10)

THEOREM 3 (Weakly duality). If for all feasible x in (P) and feasible (u, y) in
(DMW) there exists a sublinear functional F such that, for feasible (x,u,y) f is
F-pseudoconvex and y'g is F-quasiconvex, then Minimum (P) > Maximum
(DMW).

PROOF. Since x is feasible for (P) and (u, y) is feasible for (DMW), we have
from (5), (9) and (10) that

y'g(x) -y'g{u) < 0 (11)

and, since y'g is F-quasiconvex (11) implies

Fx<u[vy'g(u)]^0. (12)

From sublinearity of F we have

Fx,u[vf(u) + Vy'g(u)} < FxJvf(u)] + FxJvy'g(u)}. (13)

Also from (8) and sublinearity of F we obtain

fx,uWf(u) + Vy'g(u)] = 0.
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14] Duality with generalized convexity 13

Now this and (13) yield
FxJvf(u)] > -FxJvy'g(u)]

> 0, (14)
where (14) follows from (12). Now (14) and F-pseudoconvexity of / yields

/ ( * ) > / ( « ) •

THEOREM 4 (Strong duality). Let x° solve (P) and assume a constraint qualifica-
tion is satisfied at x°. Suppose also that a sublinear functional F exists such that f is
F-pseudoconvex and y'g is F-quasiconvex for all feasible x in (P) and (u, y) in
(DMW). Then there exists a y° such that (x°, y°) solves (DMW) and Minimum
(P) = Maximum (DMW).

PROOF. Since x° solves (P) and a constraint qualification is satisfied at x°,
from Kuhn-Tucker conditions there exists a y° e R™ such that (x°, y°) is
feasible for (DMW). Clearly the objective functions of (P) and (DMW) are equal,
so the value of (P) equals the value of (DMW) at x°. Optimality now follows
from weak duality.

We now give an example where Theorems 1 and 2 fail to apply while Theorems
3 and 4 hold.

EXAMPLE 1.

Minimize/(x) = xl — x\ + x\ + x3

subject to gx(x) = xl - 2x\ + x\ + 2x\ + 1
g2(x) = -xj + 1

0,

0.

An optimal solution is attained at x° = (0,-1,1). Now x° = (0,-1,1) is
feasible for (P) and (M°, y°) = (0,0,1,1,1,4) is feasible for the Wolfe dual, that is

Maximize u{ - u\ + u\ + M3 + yx{ul - 2u\ + u\ + 2u\ + l)

+J 2 (1-M|)+> ' 3 (1-M 3 )

2MX-6M

2M2 + 6;

0

Now/(0, -1,1) = 3, but / (M°) + y°'g(u°) = 4, where M° = (0,0,1), y° = (1,1,4).
Hence weak duality does not hold. Also by considering the third constraint, that
is >-3 = 3uj + 1, we find that the objective function tends to infinity as M3 tends
to minus infinity for any feasible ux, u2, yx and y2. Hence strong duality does
not hold.

subject to -

" 3M?

-3M!

_ 3«!+ 1

= -y\

2M

2M2

x-6uf '
+ 6ul
0

-y-i

0
-2«2

0
^ 3

0 "
0

- 1 .
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14 R. R. Egudo and B. Mond is)

Examining f(x) = x\ — x\ + x\ + x3, we find that f(x) is not pseudo-convex
over the feasible region. Hence Mond-Weir results [7] do not apply between
Example 1 and its Mond-Weir dual

Maximize

subject to

if — u\u\ + u\ +

-y\
3uj

2«! — 6u1

2u2 + du\
0

-yi
r o
-2«2

. 0 .

r oi
-y*\ o

L-i.
u\ + 2u\ 0,

y2{\ - u\) > 0,

0, y3 > 0.

However, if we define

where a' = (1, -1,1) and x is feasible in (P) and u is feasible in (DMW), then

)] = (6(Wl
2 + «2

2 + M?
2) + 2)(f(x) - / ( « ) + g l ( x ) + g 2(*))

since gY{x) and g2(x) are non-positive for feasible x in (P). Hence

So Fx u[V/(")] > 0 => f(x) > /(u).Therefore, / is F-pseudoconvex for all feasi-
ble x and M. Also, since x is feasible for (P) and (u, y) is feasible for (DMW), we
have

-y'g(u) ^ o

and

- 3 « 3
2 -

/ J
.2 _ i . , 2 _ -j. ,2= ( 3 H 2 + 3 « | + 3 « | + 1 - 3M2 - 3M| - 3«3

2 -

'(fix) -/(«) + *(*)+ *(*))•
= 0.
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Hence y'g is .F-quasiconvex for all feasible (x, u, y). So Theorem 3 is applicable
to this pair of nonlinear programs. Now x° = (0, -1 ,1) solves the primal program
and for (x°, y°) = ( 0 , - 1 , 1 , M , 4), (x°,y°) is feasible and hence optimal in
(DMW) with equality of objective functions.

We now give general results which subsume the different Mond-Weir type
duals for the primal problem (PE).

(P) Minimize f(x),

subject to g(x) < 0, (15)

h(x) = 0. (16)

The general Mond-Weir dual to (PE) is (DEG) [7].

(DEG) Maximize f(u) + y',og,a{u) + z'jhJa(u)

subject to Vy'g(u) + vz'h(u) + V/(w) = 0, (17)

o = l,2,.. . ,r, (18)
y>0, (19)

where / : R" -» R, g: R" -» Rm, h: R" -» R* are differentiable functions. /„, Ja,,
o = 0,1, 2 , . . . , r are partitions of the sets M = {1, 2, 3 , . . . , m), K =
{1,2 ,3 , . . . , k) respectively. Also r = max{r1, r2) where rx, r2 is the number of
partitions of M and K respectively and /„ = $ or /„ = $ for a > Min{r1;r2).
Here y, denotes the vector consisting of the components >>, of y such that / e Ia.
Similar meanings apply to g7, Zj and yj.

THEOREM 5 {Weak duality). If for all feasible x in (PE) and (u,y,z) in (DEG)
there is a sublinear functional Fx u such that f + y'laglo + z'jhJa is F-pseudoconvex
and y'i g, + z'jhj, a = 1,2,...,r is F-quasiconvex, then Minimum (PE) >
Maximum (DEG).

PROOF. Since x and («, y, z) are feasible

j ' / . g j x ) + zjrAjr(JC) -yimglm(u) - z'jhJm(u) < 0, a = 1,2,..., r, (20)

and since y\ g, + z'jhj is F-quasiconvex, a = 1,2,..., r, we have

F*.y[*(y'J*£u) + z'Mu))]*0' a = l , 2 , . . . , r , (21)
and since i^ B is subhnear we have

fj. t V(^gjii) + *i*,»)| < I ^[v(v/ag,» + zfojiu
La=l J a = l

< 0, (22)
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16 R. R. Egudo and B. Mond [?]

where (22) follows from (21). Also from the equality constraint of (DEG) i.e. (17)
and sublinearity of Fx u we have

(23)

But y'u\iogM\io + Z'K\J0 = Za-i(yi.8t. + */.*/> Therefore (22) and (23) yield

^ , U [ V ( / ( H ) + <*,„(«) + ztfjJLu))] > 0 (24)
and since / + y'/ogio + ZjohJo is F-pseudoconvex, then from (24) we have

/(*)+<*/„(*) + Z'MX) >f(«
and since y',og,o(x) + z'JohJo(x) < 0 we have

THEOREM 6 (Strong duality). Ifx° is a local or global minimum of (PE) at which
a constraint qualification is satisfied, then there exists a (y°, z°) such that
(x°, y°, z°) is feasible for (DEG) and the corresponding values of (PE) and (DEG)
are equal. If also there exists a sublinear functional Fxu such thatf + y\ gf + Zjhf

is F-pseudoconvex and y\ g/ + z'jhj, a = l,2,...,r is F-quasiconvex for all
feasible (x, u, y, z), then x° and (x°, y°, z°) are global optimal solutions of (PE)
and (DEG) respectively.

PROOF. Since x° solves (PE) either locally or globally and a constraint
qualification is satisfied; then by the Kuhn-Tucker conditions [3], [4] there exists a
z° G R* and ^° G R™ such that

V/(x°) + V>-°'g(x0) + Vz°'h(x°) = 0,

y°'g(x°) = 0, g(x°) < 0 and y° > 0.

From g(x°) < 0, y° > 0, and y°'g(x°) = 0 we conclude that yfg^x0) = 0
/ = 1,2,..., m and since h(x°) = 0 we must have

y?o'8,Sx°) + Z°MX°) = °. « = 0,1,2,..., r.
Hence (x°, y°, z°) is feasible in (DEG) and the values of (PE) and (DEG) are
equal. Now since there exists a sublinear functional Fx u such that / + y\ gr +
ZjohJ(> is F-pseudoconvex and y\agta + z'jhja is F-quasiconvex a = 1,2, ...,/• for
all feasible (x, u, y, z), optimality follows from weak duality.

3. Converse duality

Here we give a strict converse duality of Mangasarian type. The result given
here generalizes the results obtained by Weir [8], Gulati and Craven [1] and by
Mond and Egudo [6].
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(81 Duality with generalized convexity 17

First we consider strict converse duality between (P) and (DMW). Later we
shall give a strict converse duality between (PE) and (DEG) which is a general
converse dual corresponding to Theorem 6 above.

THEOREM 7 (Strict Converse Duality). Let (P) have an optimal solution at x° at
which a constraint qualification is satisfied. Assume that there exists a sublinear
functional Fx u such that f is F-pseudoconvex and y'g is F-quasiconvex for all feasible
x in (?) and (u, y) in (DMW). If (u, y) is an optimal solution of (DMW) and f is
strictly F-pseudoconvex at u for all feasible x in (P), then u = x° i.e. u solves (P).

PROOF. We assume x° ^ u and exhibit a contradiction.
Since x° is an optimal solution at which a constraint qualification is satisfied, it

follows from Theorem 4 that there exists a y such that (x°, y) is an optimal
solution for the dual (DMW). Since («, y) is also optimal for (DMW), it follows
that

fix0) =/(«), (25)
For all feasible x and (u, y), we have y'g(x) - y'g(u) < 0 and, by F-quasicon-
vexity of y'g, we have

)} < 0- (26)

By (8) and sublinearity of Fx u, we have

Fx.u[vf(u)]>-Fx<u[vy'g(u)]. (27)

Now (26) and (27) yield

Fx,u[vf(u)] > 0. (28)

From (28) and strict F-pseudoconvexity of Fxu at u we obtain

0 =>/(*) > / ( « ) for all feasible x in (P).

And since x° is feasible in (P), we now have f(x°) > f(u) contradicting (25).
Hence x° = u.

THEOREM 8 (Strict Converse Duality). Let x° be an optimal solution of (PE) at
which a constraint qualification is satisfied. Suppose there exists a sublinear
functional Fxu such that f + y',og,o + Zjohjo is F-pseudoconvex and yj g,a + z'jhj
(a = 1,2,. . . ,r) are F-quasiconvex for all feasible x in (P) and (u,y,z) in
(DEG). / / (w, y, I) is an optimal solution of (DEG) and if also f + y',og/o + z'jghJg

is strictly F-pseudoconvex at u, then u = x° i.e. u solves (PE) and
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18 R. R. Egudo and B. Mond [9 ]

PROOF. We assume x° & u and exhibit a contradiction. Since JC° is a solution
of (PE) at which a constraint qualification is satisfied, it follows from Theorem 6
that there exists (y°, z°) such that (JC°, y°, z°) solves (DEG). Hence

^ / 0 ( " ) + ^ ; 0 ( « ) - (29)
Now (w, y, z) feasible in (DEG) implies

yiMx°) + *JMX°) ~ y''JiS") ~ ~zJ.h J " ) < °> « = 1,2,.... r.
This with F-quasiconvexity of y\ gr +ZjhJt a — l,2,...,r for all feasible
(x,u,y,z) yields

Fx.*[v(yMU) + SJ.hjSu))]*°> « = l,2,. . . ,r, (30)
From sublinearity of FxB we have

]
a = l J a - l

< 0, (31)
where (31) follows from (30). From equality constraint of (DEG), that is (17), and
sublinearity of Fx B, we have

> 0, (32)
where (32) follows from (31). Now from (32) and strict F-pseudoconvexity of
/ + y~iogro + z'jhj0 at u we obtain

for all feasible x in (PE). From this we obtain

fix0) +y',ogi<<x0) + fJ.*/.(*°) > / (
But j/og/o(^°) + ZjohJo(x°) < 0, hence

contradicting (29). So x° = u.

4. Some special cases

We now consider some special cases of the dual (DEG) and Theorems 5, 6 and
8.

(i) If K=$, Io = M then (PE) becomes (P) and (DEG) becomes (DW) and
Theorems 5 and 6 reduce to Theorems 1 and 2 respectively.
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[101 Duality with generalized convexity 19

(ii) If K = $, /„ = $, /j = A/ then (PE) becomes (P) and (DEG) becomes
(DMW) and Theorems 5, 6 and 8 reduce to Theorems 3, 4 and 7
respectively.

(iii) If 70 = M and Jo = K then (DEG) becomes

Maximize f(u) + y'g(u) + z'h(u)

(DE) subject to vf(u) + Vy'g(u) + Vz'h(u) = 0,

y > 0.
Duality holds between (PE) and (DE) if there exists a sublinear functional Fxu

such that / + y'g + z'h is F-pseudoconvex.
(iv) If Io = $, /„ = $, Ix = M, Jx = K then (DEG) becomes

Maximize / (« )

(DEM)
y'g(u) + z'h(u) > 0,

y > o.
If there exists a sublinear functional Fx u such that / is F-pseudoconvex and
>>'g + z'h is F-quasiconvex for all feasible (x, u, y, z) then from Theorems 5, 6
and 8, (DEM) is dual to (PE).

(v) If 70 = $, Jo = K, Ix = M then (DEG) becomes

Maximize f(u) + z'h(u)

(DMT) S u b j e C t t 0 V / ( u ) + V ^ B ) +
 ^ ' A ( M ) = 0,

/ ( ) 0

If there exists a sublinear functional Fxu such that / + z'h is F-pseudoconvex
and y'g is F-quasiconvex, then from Theorems 5, 6 and 8 (DMT) is dual to (PE).

(vi) If Jo = <&, I0 = M,J1 = K then (DEG) becomes

Maximize f(u)+y'g(u)

(DME) S u b j e C t tO V / ( " ) + v-y's(") + ^ ' A ( " ) = °»
*'*(«) > 0,

^ > 0.
(DME) is dual to (PE) if there exists a sublinear functional Fxu such that f + y'g
is F-pseudoconvex and z'h is F-quasiconvex.

(vii) If K = O, Jo = $, Jo = {a}, a = 1,2,..., m then (PE) becomes (P) and
(DEG) becomes

Maximize / ( « )

(DG) subject to V/(«) + V/'g(«) = 0,
y,«M>0 (i = l ,2 , . . . ,» i ) ,

>»> 0.
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20 R. R. Egudo and B. Mond [ 11 ]

If there exists a sublinear functional Fxu such that / is F-pseudoconvex and g is
F-quasiconvex then from Theorems 5, 6 and 8 (DG) is dual to (P).

(viii) In (ii) y'g is required to be F-quasiconvex while in (vii) only g is required
to be F-quasiconvex. It may be possible to combine some but not all
components of g into a single F-quasiconvex function while the other
components are individually but not collectively F-quasiconvex. In this
case we can find a dual between (DMW) and (DG) as follows. Put
K = <&, Io = $ and Q c M then (DEG) becomes

Maximize f(u)
subject to V/ (M) + Vy'g(u) = 0,

(DM) £ MM > °'

y > 0.
If there exists a sublinear functional Fxu such that / is F-pseudoconvex and

E,^Qy,g, is F-quasiconvex and gp j <= M\Q are F-quasiconvex, then from
Theorems 5, 6 and 8, (DM) is dual to (P).

(ix) If only part of the Lagrangian is pseudoconvex, then it is possible to
obtain a dual between the Wolfe dual and (DG). For example if K = $,
and /0, Q c M, Io n Q = $, then (DEG) becomes

Maximize / ( « ) +y',og,0(u)

subject to V / ( M ) + Vy'g(u) = 0,

(DWG) E y,S, > 0.
ze

( j \ ( 0 U/„)),

^ > 0.
If there exists a sublinear functional Fx u such that / + y\ g, is F-pseudocon-

vex and E , 6 e ^ ,g , is F-quasiconvex and gp j e M\(Q U 70) is F-quasiconvex
for all feasible (x, u, y) then from Theorems 5, 6 and 8, (DWG) is dual to (P).
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