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ABSTRACT. The concentration of radiocarbon (14C) differs between ocean and atmosphere. Radiocarbon
determinations from samples which obtained their 14C in the marine environment therefore need a marine-specific
calibration curve and cannot be calibrated directly against the atmospheric-based IntCal20 curve. This paper
presents Marine20, an update to the internationally agreed marine radiocarbon age calibration curve that provides
a non-polar global-average marine record of radiocarbon from 0–55 cal kBP and serves as a baseline for regional
oceanic variation. Marine20 is intended for calibration of marine radiocarbon samples from non-polar regions; it is
not suitable for calibration in polar regions where variability in sea ice extent, ocean upwelling and air-sea gas
exchange may have caused larger changes to concentrations of marine radiocarbon. The Marine20 curve is based
upon 500 simulations with an ocean/atmosphere/biosphere box-model of the global carbon cycle that has been
forced by posterior realizations of our Northern Hemispheric atmospheric IntCal20 14C curve and reconstructed
changes in CO2 obtained from ice core data. These forcings enable us to incorporate carbon cycle dynamics and
temporal changes in the atmospheric 14C level. The box-model simulations of the global-average marine
radiocarbon reservoir age are similar to those of a more complex three-dimensional ocean general circulation
model. However, simplicity and speed of the box model allow us to use a Monte Carlo approach to rigorously
propagate the uncertainty in both the historic concentration of atmospheric 14C and other key parameters of the
carbon cycle through to our final Marine20 calibration curve. This robust propagation of uncertainty is
fundamental to providing reliable precision for the radiocarbon age calibration of marine based samples. We make
a first step towards deconvolving the contributions of different processes to the total uncertainty; discuss the main
differences of Marine20 from the previous age calibration curve Marine13; and identify the limitations of our
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approach together with key areas for further work. The updated values for ΔR, the regional marine radiocarbon
reservoir age corrections required to calibrate against Marine20, can be found at the data base http://calib.org/
marine/.

KEYWORDS: Bayesian modeling, calibration, carbon cycle, computer model, marine environment.

1. INTRODUCTION

Marine Specific Calibration

In order to convert the radiocarbon (14C) date of a sample into a calendar age we need to
perform calibration. This depends upon creating an accurate estimate of 14C concentration
over time for the specific local environment in which the sample was exchanging carbon.
From this, we can generate a calibration curve which provides estimates of the radiocarbon
date at any particular calendar age. Comparison of the radiocarbon date for a sample of
interest against this calibration curve then enables us to infer the potential calendar ages at
which it stopped exchanging with its local environment.

The reservoirs of 14C within surface-ocean environments are systematically depleted compared
to the atmosphere, and with higher frequency components in the variation predominantly
damped. As a consequence, one cannot use the atmospheric calibration curve for the
calibration of marine radiocarbon dates. The reasons for the depletion, and associated
damping, are primarily the time it takes for atmospheric 14C to exchange with the surface
ocean and that the ocean interior stores large amounts of old carbon which slowly
circulates up to the surface. To further complicate marine calibration, the level of depletion
varies according to both location and time due to spatio-temporal differences in ocean
mixing, various factors affecting the rates of air-sea exchange and wider changes to the
carbon cycle, notably the atmospheric CO2 mixing ratio (Bard 1988). To calibrate marine
radiocarbon samples accurately, this varying and localised depletion must be accounted for.

The level of surface-ocean 14C depletion, for a particular point in calendar time and a particular
location, is typically expressed in terms of the marine radiocarbon reservoir age (hereafter
Marine Reservoir Age or MRA)1. We denote the MRA, for a specified location and
calendar age θ cal kBP, by RLocation θ� �. The MRA defines the difference, at calendar age θ
cal kBP, between hMarineLocation θ� �, the radiocarbon age of dissolved inorganic carbon (DIC)
in the mixed ocean surface layer at that location, and hNHAtmosphere θ� �, the radiocarbon age
of CO2 in the Northern Hemispheric (NH) atmosphere, i.e.

hMarineLocation θ� � � RLocation θ� � � hNHAtmosphere θ� �:

Note that hNHAtmosphere θ� � is the function we estimate as the IntCal20 curve (Reimer et al. 2020
in this issue).

Present dayMRA values range from about 400 14C yr in subtropical oceans to over 1000 14C yr
near the poles (Bard 1988; Reimer and Reimer 2001; Key et al. 2004). To describe the variation
in MRA between regions, we generally consider how the MRA at a particular location varies
from RGlobalAv θ� �, the globally averaged mixed-layer reservoir age. These regional corrections of
the MRA are reported as ΔR θ� � values, i.e.
1Some authors (e.g. Skinner et al. 2019) refer to the MRA as an R-age.
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RLocation θ� � � RGlobalAv θ� � �ΔRLocation θ� �:

Pre-bomb estimates for ΔR θ� � covering a wide range of locations are provided by Reimer and
Reimer (2001) via the maintained online database http://calib.org/marine/.

How to Calibrate a Marine Radiocarbon Sample

In order to calibrate a radiocarbon age Xi from a marine sample, one needs to calibrate against
the suitable calibration curve for that particular location, i.e. hMarineLocation θ� �. While in principle
a location-specific marine calibration curve could be found by adding the MRA for that
location to the NH atmospheric calibration curve, without highly detailed time-varying
regional MRA estimates this does not account for the attenuation in the level of 14C in the
surface ocean. The more accepted approach is instead to use the globally averaged marine
calibration curve, which we call Marine20,

hMarineAv θ� � � RGlobalAv θ� � � hNHAtmosphere θ� �;
with an adjustment for the regional ΔR θ� �. This hMarineAv θ� � provides the globally averaged
radiocarbon age of DIC in the mixed surface layer.

While changes over time in RGlobalAv θ� �; the globally averaged MRA, are expected to be
significant, temporal changes in the regional corrections ΔR θ� � are generally believed to be
smaller. Consequently, we typically make a simplifying assumption that, for any individual
location, ΔR θ� � is constant over time, i.e. ΔRLocation θ� � ≡ ΔRLocation: Temporal changes in
MRA are restricted to the global-average RGlobalAv θ� � and automatically incorporated into
hMarineAv θ� �, the Marine20 curve.

Specifically, suppose one wishes to calibrate a marine 14C determination Xi with a laboratory-
reported radiocarbon age uncertainty of σi. Using the appropriate regional values found at
http://calib.org/marine/, it is first required to subtract the appropriate regional ΔRLocation

correction from Xi and adjust, in quadrature, the radiocarbon age uncertainty,

XAdj
i � Xi �ΔRLocation;

σ
Adj
i �

�������������������
σ2
i � τ2

ΔR

q
:

Here τΔR is the standard deviation, also provided by the calib.org database, corresponding to
the uncertainty in the regional ΔRLocation correction. The user then calibrates this region-
adjusted value XAdj

i , using the adjusted uncertainty σ
Adj
i , against the global-average

Marine20 curve hMarineAv θ� �. Note however that several calibration software packages
perform these adjustments, and subsequent calibration, automatically if given the
appropriate regional ΔRLocation and τΔR values. The specific formatting requirements of their
particular software should therefore be checked by any user before performing calibration
of marine samples.

The Marine20 Calibration Curve

In this paper, we provide an estimate for Δ14
MarineAvC θ� �, the “globally averaged”mixed-layer 14C

concentration from 0–55 cal kBP; and hence hMarineAv θ� �, the corresponding global-average
mixed-layer marine calibration curve Marine20. Simultaneously, we provide the
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corresponding estimate of RGlobalAv θ� �, the globally averaged mixed-layer MRA, which is of
scientific interest in its own right. For this work, we define the “global-average” as being
over the non-polar ocean, which lies between 40°S and either 50°N (Atlantic) or 40°N
(Pacific), since local sea ice might significantly affect MRAs in higher latitudes (Butzin
et al. 2017).

Our Marine20 curve is constructed using the BICYCLE global carbon cycle model, a Box-
model of the Isotopic Carbon cYCLE (Köhler and Fischer 2004, 2006; Köhler et al. 2005,
2006). This model incorporates a globally averaged atmospheric box and modules of the
terrestrial (7 boxes) and oceanic (10 boxes) components of the carbon cycle, including deep
ocean-sediment fluxes of DIC and alkalinity that mimic the process of carbonate
compensation. It is driven by temporal changes in the boundary conditions (changing
climate) and simulates changes in the carbon cycle, including 13C and 14C. Here, we revise
BICYCLE to allow the atmospheric CO2 and Δ

14C to be specified externally by an ice-
core based reconstruction and the IntCal20 curve respectively, rather than using the values
that BICYCLE calculates internally. In overriding BICYCLE’s internally calculated CO2

and Δ
14C with these two external, independently obtained, reconstructions arising from

observed data, we aim to correct for any potential model limitations and ensure our
simulated changes in the carbon cycle remain as close as possible to the observed ice core
and 14C data.

We take a Monte-Carlo approach whereby we generate an ensemble of 500 BICYCLE
simulations, each driven by a different potential reconstruction of atmospheric Δ

14C and
CO2 as well as other key carbon cycle parameters. Our CO2 reconstructions are based
upon a stack of multiple ice core records (Köhler et al. 2017), while our estimates of
atmospheric Δ

14C from 0–55 cal kBP are taken from individual posterior realizations of
the IntCal20 curve (Reimer et al. 2020 in this issue). By considering the variability in the
resultant ensemble of BICYCLE simulations, we are able to propagate uncertainty about
past carbon cycle dynamics through to our final Marine20 curve. Figure 1 illustrates the
various steps, data sets and methods necessary for the construction of both IntCal20 and
Marine20.

The proposed modeling approach offers a significant improvement over previous marine
calibration curves, e.g. Marine04 (Hughen et al. 2004), Marine09 (Reimer et al. 2009) and
Marine13 (Reimer et al. 2013). In these previous versions, the curves were generated in
distinct sections and spliced together. For Marine13, the curve from 0–10.5 cal kBP was
created using a time-invariant ocean-atmosphere box diffusion model (Oeschger et al. 1975)
driven by the corresponding atmospheric IntCal13 pointwise means and a range of piston
velocities and eddy diffusivities as described in Hughen et al. (2004). From 10.5–13.9 cal
kBP, it was constructed based upon marine observations from a range of locations. Finally,
beyond 13.9 cal kBP, Marine13 was identical to the atmospheric IntCal13 curve with a
constant MRA offset of 405 14C yr.

Conversely, for Marine20, the use of BICYCLE and of time-dependent forcings permit more
complex and realistic inclusion of key carbon cycle changes extending back to 55 cal kBP.
Additionally, improvements in the Bayesian modeling of IntCal20 (Heaton et al. 2020 in
this issue) allow us for the first time to rigorously incorporate the time-dependent
uncertainty of atmospheric Δ

14C into the marine age calibration curve through our Monte-
Carlo approach. Together, these features enable more accurate estimation of both the
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global marine calibration curve and the globally averaged MRA, especially beyond the
Holocene. We show that the results BICYCLE provides for individual runs are almost
indistinguishable from the three dimensional Large Scale Geostrophic Ocean General
Circulation Model (LSG OGCM) (Butzin et al. 2017, 2020 in this issue) and that
BICYCLE’s model output agrees well with pre-bomb data based on seawater (Bard 1988)
and marine shells (Reimer and Reimer 2001; Toggweiler et al. 2019).

While more complex ocean models such as the LSG OGCM exist, we deliberately retain the
simpler BICYCLE box model since it is more appropriate for our specific, global-average,
calibration needs. For practical radiocarbon calibration, we require not only a curve
consisting of a single point estimate for the global marine Δ

14C at any calendar age but also
a reliable measure of the uncertainty on that estimate. The use of the computationally fast
BICYCLE box model allows us to create a large ensemble of simulations and hence, via
Monte-Carlo, rigorously quantify the uncertainty in the modeled global-average marine Δ

14C
level which is a necessary consequence of the uncertainty in our various model/climate inputs.

The paper is set out as follows. In Section 2 we describe the requirements for a computer model
in order to be suitable for use in construction of a radiocarbon age calibration curve; how
uncertainty in the various driving inputs can be propagated through such a computer
model; and provide a short tutorial on how the resultant output uncertainty can be
quantified using Monte-Carlo techniques as well as why these Monte-Carlo techniques are
needed. In Section 3, we justify our recommended approach to marine calibration of using
local ΔR adjustments, based upon observations, to a global-average curve rather than

Atmospheric and Atmospheric-Adjusted Data Tree-ring Data

LSG OGCM prior for MRA
f (θ, x, y)

(excluding Cariaco)

Marine Data

Bayesian Spline

Hulu Data

13.9 cal kBP55 cal kBP

13.9 cal kBP55 cal kBP 0 cal kBP

Bayesian Spline

IntCal20
55 cal kBP 0 cal kBP

Carbon Cycle BICYCLE Model
Input: 500 realizations of atmospheric

IntCal20 Δ14C and ice-core CO2

Output: Ensemble of 500 simulated
non-polar global-average marine Δ14C

Mean and uncertainty
summarized by Monte-Carlo

Marine20
55 cal kBP 0 cal kBP

Modelled
Output

Bayesian Spline
Estimate

Observational
Data

Mix of Observed Data
and Model Output

Calibration CurvesData

Include: Speleothem (DCF adjusted)
Lake Suigetsu
Floating Tree-ring Sequences

Preliminary Hulu-based

Δ14C Estimate

Figure 1 Schematic diagram of IntCal20 and Marine20 age calibration curve construction. IntCal20 is based
solely upon tree-ring measurements from 0 to ca. 13.9 cal kBP. Beyond this a variety of data are used, including
marine records which require an initial transformation to an atmospheric equivalent. To achieve this, a
preliminary Δ

14C history is estimated based upon Hulu Cave speleothems (Southon et al. 2012; Cheng et al.
2018). This preliminary Δ

14C curve is used to drive the LSG OGCM and provide prior, first-order, estimates
of regional MRAs (Butzin et al. 2020 in this issue) for each IntCal20 marine dataset, with the exception of
the Cariaco Basin which is adjusted adaptively during curve construction (Hughen and Heaton 2020 in this
issue). The adjusted marine data are then combined with speleothems, macrofossils from Lake Suigetsu, and
floating tree-ring sequences to constitute a mixed, atmospheric and atmospheric-adjusted, dataset extending
from ca. 13.9–55 cal kBP. A Bayesian spline is jointly fitted to both the tree-ring samples (from 0–13.9 cal
kBP) and this mixed data (beyond 13.9 cal kBP) to create the IntCal20 curve (Heaton et al. 2020 in this
issue). To generate Marine20, 500 posterior atmospheric Δ

14C realizations are taken from the IntCal20
Bayesian spline and propagated through the BICYCLE carbon cycle model alongside reconstructions of
atmospheric CO2 obtained from ice core records. The ensemble of 500 simulated outputs are then
summarized to create the Marine20 curve.
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directly using regional output from more complex three-dimensional models. In Section 4 we
present a short summary of BICYCLE and describe in detail the key processes/forcings and
their uncertainties which we propagate through to our final calibration curve. We generate
our ensemble of 500 BICYCLE simulations across the plausible ranges of its key inputs
and present the resultant Marine20 curve in Section 5. Here we also discuss differences
with the previous Marine13 curve. In particular, we note that Marine20 estimates a
significant, and consistent, increase in the globally averaged MRA when compared to
Marine13. With a sensitivity analysis we also document how much the different processes
contribute to the overall uncertainty in Marine20. Section 6 provides a comparison against
simulations with the more complex LSG OGCM and against both current day (pre-bomb)
global marine data and older marine data from the IntCal20 database. Here we show that
the increase, when compared to Marine13, in the global-average MRA in Marine20 is in
agreement with average pre-bomb observations and the LSG OGCM. Finally, in Section 7
we discuss the limitations of our approach alongside areas needed for future work and
development. For those seeking further details on the model output, including the final
Marine20 radiocarbon age calibration curve, the spatially resolved regional open-ocean
MRA estimates from the LSG OGCM, as well as the 500 NH atmospheric Δ

14C
realizations used as inputs for our Monte-Carlo ensemble, see PANGAEA (https://doi.org/
10.1594/PANGAEA.914500).

For a calibration end-user, it is key to note that the update from Marine13 to Marine20 is
accompanied by updates to the regional ΔR corrections which can be found at http://calib.
org/marine/. This is particularly critical since Marine20 estimates a significantly increased
globally averaged MRA. Calibration of local reservoirs using values of ΔR based on
Marine13 will give incorrect calendar age estimates.

Calibration in Polar Regions

Our Marine20 curve is intended for calibration of marine 14C samples arising from non-polar
locations, nominally/approximately ranging from 40ºS–40/50ºN. In higher-latitude polar
regions, MRAs and critically their possible fluctuations over time are expected to be larger
due to significantly increased variability in ocean ventilation and air-sea gas exchange
mostly arising from changes in sea ice extent and differences in wind strength (Butzin et al.
2005). This is particularly likely to be the case during glacial periods. LSG OGCM
estimates for the MRA in a particular calendar year within polar regions can vary by over
1000 14C yr between a simulation assuming a climate scenario suitable for the present day
(its PD scenario which assumes little sea ice, Butzin et al. 2005, 2020 in this issue) and runs
in climate scenarios appropriate for more extreme glacial periods (e.g. its GS/CS scenarios
where the extent of sea ice is much greater in addition to significant changes to ocean
ventilation and wind stress). This difference indicates that uncertainty in past polar climate
conditions can have a significant effect on calibration in these regions. Consequently, for
those polar regions affected by such additional variability, an assumption of a constant ΔR
adjustment from our equatorial Marine20 global-average is not suitable. The current
Marine20 curve is not therefore suitable for calibration in these polar regions.

Current proxy records for such ocean ventilation, sea ice extent and wind strength are not
sufficient to reliably reconstruct these variables to permit accurate and precise modeling of
polar calibration curves. Construction of such polar curves would be a valuable area for
future study which we discuss in more detail within Section 7. For current users wishing to
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calibrate marine 14C samples from polar locations where variability in sea ice and ocean
circulation may have significantly affected MRAs, we direct them to the regional LSG
OGCM output as discussed in Section 3 and available on PANGAEA. Such users should
however be aware that each individual LSG OGCM simulation only considers a single
climate scenario. Due to the very considerable uncertainty on the appropriate historic polar
climatic conditions, and since the impact of different climate scenarios on MRA in these
regions is very large, resultant polar calibration based upon such fixed scenarios should be
treated with extreme caution. The calibrated age estimates obtained under any single fixed
scenario are likely to be considerably over-precise.

2. THE MONTE-CARLO PRINCIPLE OF MARINE20 CURVE CONSTRUCTION

A Computer Model

The use of models for the study and prediction of MRA extends back to Craig (1957), Arnold
(1957), Revelle and Suess (1957) and was updated later by Oeschger et al. (1975) with the
introduction of a diffusion coefficient to simulate mixing in the deep ocean box (eddy
diffusivity). This so-called box-diffusion model has been fundamental to the construction of
the marine radiocarbon age calibration curve since 1986 (Stuiver et al. 1986). Over that
time, the complexity of these models has increased as we have gained more knowledge of
both the Earth systems and past climate constraints. Recent approaches include more
advanced carbon cycle box models which allow transient forward simulations such as
BICYCLE (Köhler et al. 2006) through to full three-dimensional ocean general circulation
models such as the LSG OGCM (Butzin et al. 2005, 2012, 2017, 2020 in this issue). For all
of these models, the basic principle is the same: given a specific user-defined set of inputs/
parameters, they provide an estimate/prediction of the variable of interest, in our case the
non-polar global-average marine Δ

14C, where this average in the following is restricted to
the area between 40°S and either 50°N (Atlantic) or 40°N (Pacific) to avoid the potential
complications of including regions covered with sea ice (e.g. Butzin et al. 2017).

The most useful computer model for a particular situation will depend upon the specific
question one wishes to answer. For Marine20, we wish to not only obtain a reliable
estimate of the global-average marine 14C concentration over time incorporating known
changes in both the carbon cycle and atmospheric 14C production rate, but also to be able
to quantify our uncertainty on that estimate. Such quantification of uncertainty is
fundamental to radiocarbon calibration. When calibrating a radiocarbon date, we need not
only a best “point estimate” for its calendar age but also a plausible range, i.e. to
understand the uncertainty on our calibrated calendar age. These two competing aims of
reliability and uncertainty quantification typically require a trade-off in model selection.
We require a computer model that can incorporate desired physical processes and changes
to the carbon cycle that proxy data tell us occurred; and yet also allows us to understand
and propagate model uncertainty, specifically in the values of the input parameters,
through to the final marine Δ

14C estimate. In the case of our chosen BICYCLE computer
model, the various inputs are illustrated in Figure 2.

A Brief Introduction to Quantifying Model Uncertainty

The majority of computer models simulating changes in the carbon cycle are deterministic.
This means that they do not internally introduce randomness—if one drives the model with
the same inputs one will always get identical outputs. Let us assume that such a computer
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model takes as inputs a range/vector of parameters φ which we specify. In our context, these
model parameters are any input needed by the model—they could be a forcing, a user chosen
setting or a tuned variable. In the case of marine 14C reservoir age simulations, these input
parameters typically include the historic levels of atmospheric Δ

14C and CO2

concentration; ocean circulation; and air-sea gas exchange amongst others. Having
specified values for these inputs, the model prediction at any calendar age θ is then
represented by the deterministic function f θ;φ� �.
In the case of a deterministic computer model, output uncertainty arises from two sources (see
Section 2 of Kennedy and O’Hagan 2001). The first is model parameter uncertainty, i.e. that,
typically, we do not know the true value of the model’s input parameters. We specify our
uncertainty on our computer model inputs in terms of a distribution φ � π φ� � that
encapsulates our current understanding about their values. The second source of
uncertainty is model discrepancy, i.e. that any computer model is not an entirely accurate
representation of reality and will not capture the complete carbon cycle of the Earth. This
type of uncertainty is much harder to evaluate but one might expect a more complex and
detailed model to typically have a smaller model discrepancy. We do not attempt to
formally incorporate model discrepancy into Marine20 but we are able to incorporate
model parameter uncertainty.

For calibration purposes, we wish to estimate, for any calendar age θ; both the expectation
�Mar θ� � and the variance σ2

Mar θ� � in the global-average level of marine Δ14
MarineAvC θ� �. To

propagate our model parameter uncertainty, we therefore need to evaluate both:

Uncertainties Incorporated

AMOC
Piston Velocity

Parameterized Processes

Atmospheric Δ14C
Atmospheric CO2

Time Varying Other time-dependent forcings
(e.g. temperatures) and other
parameterized processes (e.g.
isotopic fractionation factors)

No Uncertainty Incorporated

BICYCLE

Marine Δ14C

Figure 2 Propagating uncertainty through the BICYCLE model. For each simulation, we
generate different inputs for BICYCLE by drawing from the variables on which we consider
uncertainty (shown in the yellow box). AMOC denotes the Atlantic meridional overturning
circulation and piston velocity the rate of air-sea gas exchange, see Section 4 for further
details. These random inputs are combined with the inputs for which no uncertainties are
incorporated (shown in green) and entered into the BICYCLE model. Each simulation of
BICYCLE therefore provides a different, deterministic historic global-average estimate of
marine surface Δ

14C from 0–55 cal kBP. From the resulting ensemble we generate a
Monte Carlo estimate of the mean and variance at any calendar age which is then used
for the Marine20 radiocarbon age calibration curve.
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�Mar θ� � � E Δ14
MarineAvC θ� �� � �

Z
f θ;φ� �π φ� �dφ;

and

σ2
Mar θ� � � Var Δ14

MarineAvC θ� �� � �
Z

f 2�θ;φ�π φ� �dφ
�
� �2

Mar θ� �;
�

Where π φ� � is the density of the model’s input parameters that specifies our prior beliefs/
uncertainties about their true values, and f θ;φ� � is the model output at calendar year θ cal
kBP when it has been run with specific inputs φ.

Monte-Carlo Estimation

Due the complexity of the computer model, it is not possible to calculate either of these
integrals explicitly, but we can estimate them via a Monte-Carlo approach. To do so, we
sample a range of N plausible inputs φ1; . . . ;φN from our density π φ� �. The model is then
run with each of these inputs giving us a large ensemble of N outputs f θ;φ1� �; . . . ; f θ;φN� �.
The sample mean and variance of this ensemble then provide estimates for �Mar θ� � and
σ2
Mar θ� � respectively, i.e. we estimate

�̂Mar θ� � � 1
N

XN
i�1

f θ;φi� � and

σ̂2
Mar θ� � � 1

N � 1

XN
i�1

f θ;φi� � � �̂Mar θ� �� �
2; where eachφi ~ π�φ�:

Importantly, as most computer models are highly non-linear, we stress that only running them
at extreme “end-member” inputs is not sufficient to reliably represent output uncertainty.
Equally, running a computer model with the value of an input parameter set at its mean is
not sufficient to estimate the mean of the output when input parameter uncertainty is
properly incorporated. Both these points are illustrated with a simple example in the next
subsection.

To perform accurate Monte-Carlo estimation, it is necessary to generate a sufficiently large
ensemble N of outputs in order that they provide reliable estimates. Here, we selected N=500
based on a smaller pilot study which indicated such a sample size would provide Monte-
Carlo estimates that were within ±1% of the true model mean, and ±5% of the true model
variance. This requires repeated model simulations and so it is necessary to have a model
that is sufficiently fast to permit this. BICYCLE provides an appropriate compromise
between reducing model discrepancy while still running with sufficient computational speed
to enable creation of a large ensemble of outputs and hence accurately propagate model
parameter uncertainty. As we show later in Figure 4 and Section 6, there are only small
differences between the global-average MRA obtained from individual BICYCLE
simulations and from the more complex 3D LSG OGCM alternative, yet each BICYCLE
simulation can be performed in seconds rather than the weeks required for the LSG OGCM.

Finally, we note that, as described in Heaton et al. (2020 in this issue) laying out the statistical
methodology for the atmospheric calibration curve, one could calibrate directly against the
ensemble of N model outputs if covariance information on the marine calibration curve is
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desired. However, since current calibration tools use pointwise calibration curve means and
variances, we do not discuss this further here.

A Toy Monte-Carlo Example

To illustrate the need for theMonte-Carlo approach, if we wish to accurately estimate the mean
output of a computer model and capture the model uncertainty, we consider a simple example.
While somewhat pathological it does illustrate the key points that running a computer model at
the extreme values of its inputs does not ensure we have captured the full uncertainty in the
model output; and also that setting the inputs at their mean values does not result in the
mean model output.

Specifically, let us suppose we have a computer model that takes a single input x and returns the
value g x� � � x2. Further, assume that we do not know x but can quantify our prior belief that it
lies uniformly between −1 and 1, i.e. X � Unif �1; 1� 	. With such a simple model we can work
out exactly what the distribution of the outputs should be. This is shown by the solid blue line in
Figure 3. All values in the range [0,1] are clearly possible outputs. Further, we can calculate the
true mean output E g X� �� � � 1

3 (dot-dashed blue line).

However, if we run the model at the extreme ends of its possible inputs (either x=1 or −1), in
both cases we observe the output g x� � � 1 (green dashed line). If we were to assume that these
end-member outputs, generated by the extreme inputs, informed us about the full range of
potential outputs then we would falsely assume that the output of the model had no
uncertainty. Similarly, to find the true mean of the model output we cannot simply run the
model with the input x set to its mean value, i.e. E X� 	 � 0. Doing so would provide the
output g 0� � � 0 (red dashed line) rather than the correct mean of 1

3.

On the other hand, if we create a Monte Carlo sample of 500 independent Xi � Unif �1; 1� 	
values and propagate each of these through the model we obtain the ensemble of outputs
shown by the histogram. Comparing this against the true output density in solid blue, we
can see that our random ensemble is able to capture the correct uncertainty in the model’s
output. Further, the mean of these 500 outputs (orange dashed line) shows that, by Monte-
Carlo, we are able to accurately estimate the true mean output.

Histogram of 500 Monte Carlo simulations for
g(X) = X2 where X ~ Unif[−1,1]
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Figure 3 Toy example to illustrate the need for the Monte Carlo approach to accurately estimate both the mean
and variability in the output of a computer model.
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3. WHY DO WE NEED A MONTE CARLO APPROACH AND WHY ARE WE NOT USING
REGIONAL 4D OGCM OUTPUT DIRECTLY?

Why Do We Need Monte-Carlo for Marine20?

To be of use for calibration, it is essential to accurately represent the full range of uncertainty in
the level of marine radiocarbon. When calibrating a radiocarbon determination, we need to
discover all calendar ages which are potentially consistent with that level of 14C. As such
we are required to understand the variability in the output of our, complex and non-linear,
carbon cycle computer model. This is somewhat different from much modeling which aims
to test specific scenarios. As described in Section 2, in order to capture the full variability
in the computer model output we must explore the full range of input scenarios.
Understanding this uncertainty in computer model output requires us to consider not just
the extremes but also those intermediate scenarios, i.e. a Monte Carlo approach.

Limitations of a Constant ΔR Approach

It is expected that the most significant temporal changes in MRA will be shared and hence
occur on a global scale rather than in individual regions, i.e. changes in values over time
will predominantly be seen in RGlobalAv θ� � as opposed to the regional ΔR θ� � adjustments
(Stuiver et al. 1986). These global-scale MRA changes are incorporated, by construction, in
our global-average Marine20 curve and hence automatically taken into account for all
calibration users wishing to use the Marine20 curve.

However, in assuming a constant ΔR we do not permit for potential smaller region-specific
temporal changes. This assumption of temporally invariant ΔR values should be adopted
with caution in the context of a changing climate and a changing marine carbon cycle. Any
global marine radiocarbon calibration product that makes use of modern ΔR values should
therefore be used with similar caution.

How Were Marine Data Incorporated into IntCal20?

For time periods where sufficient tree-ring 14C determinations exist, i.e. continuously from 0–
13,913 cal BP, no marine data were used in the creation of the IntCal20 curve. Further back in
time however, marine observations did contribute alongside speleothems, floating tree rings
and macrofossils from Lake Suigetsu (see Figure 1 and Reimer et al. 2020 in this issue). To
incorporate this marine data into the atmospheric IntCal20, estimates of the MRA for each
constituent datum were required. With the exception of Cariaco Basin (Hughen and
Heaton 2020 in this issue), for which a different approach was taken due to its unusual
topography, to obtain these MRA estimates the following approach was taken.

To begin, an interim atmospheric 14C curve based upon only the Hulu Cave speleothems
(Southon et al. 2012; Cheng et al. 2018) was constructed using the same Bayesian spline
with errors-in-variables methodology as the final IntCal20 curve (Heaton et al. 2020 in this
issue). This interim Hulu-based 14C history was then entered as a forcing to the LSG
OGCM to get the coarse regional MRA estimates under its GS scenario (Butzin et al. 2020
in this issue) shown in Figure 3 of Reimer et al. (2020 in this issue).

Since LSG OGCM estimates are intended for the open-ocean as opposed to the more coastal
locations of the marine IntCal20 data, a further constant coastal radiocarbon reservoir age
adjustment/shift was however required. For each marine dataset, an independent prior was
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placed on this required coastal shift based upon the observed offset between the 14C ages of the
more recent observations from that specific marine dataset and IntCal20’s atmospheric
dendrodated trees (which extend back to ca. 14,190 cal BP2).

Intuitively, this coastal shift approach used the relative changes (i.e. the shape) in the regional
LSG OGCM open-ocean MRA estimates but not their absolute values. The internally
estimated coastal shift is equivalent to estimating a temporally invariant pseudo-ΔR for the
specific coastal location relative to the nearby open-ocean. These coastal pseudo-ΔR shifts
from the GS scenario of LSG OGCM ranged from approximately 12 14C yr in Vanuatu up
to over 280 14C yr in Kiritimati indicating the difficulty in using open-ocean OGCM
estimates directly for coastal data.

These preliminary Hulu-Cave based MRA estimates are expected to be overly smooth (since
they are based upon the relatively smooth Hulu Cave record) however they should provide
robust first-order approximations that enable marine data to contribute to IntCal20. The
region-specific prior MRA estimates were then used as inputs for the Bayesian approach to
IntCal20’s curve construction allowing for some further fine-scale MRA variability not
captured by the coarse preliminary Hulu-based estimates. In this curve construction
process, the coastal shift priors were further updated to resolve differences between the
diverse pre-Holocene data sets, see Heaton et al. (2020 in this issue) for complete details.

Importantly, as shown in Figure 3 of Reimer et al. (2020 in this issue), for locations of the
marine data used for making IntCal20, the relative differences in the shapes of the Hulu-
based regional open-ocean MRA estimates provided by the LSG OGCM were small (in the
order of ±5% of the absolute value of MRA). Furthermore, these regional open-ocean
MRA estimates had similar shapes to the non-polar global-average MRA. Hence, in terms
of the final MRAs used for the marine data contributing to IntCal20, there would be little
difference in having applied individual temporally invariant coastal shifts to the non-polar
global-average MRA (i.e. the approach we recommend for Marine20 to restrict temporal
changes in MRA to the global-average) of the LSG OGCM rather than the region-specific
output. Our proposed global-average Marine20 approach to calibration is therefore
consistent with that taken to integrate the marine data into IntCal20.

Why Not Use OGCM Output Directly to Provide Regional Calibration Curves?

Much of the marine data which users wish to calibrate come from coastal regions. With our
current state of knowledge, most global OGCMs do not have the resolution to simulate these
coastal regions accurately and their results may be flawed at such sites. This includes the LSG
OGCM. We are therefore still recommending, for the current update, the use of a global-
average radiocarbon age calibration curve with the adjustment of a constant ΔR estimated
independently based upon the offset between local observations and the Marine20 curve.

In Figure 4, we plot the pre-Holocene LSG OGCM regional open-ocean MRA estimates
obtained when forced by the pointwise mean of the final IntCal20 curve (Reimer et al.
2020 in this issue) under the GS scenario. These estimates are the closest LSG OGCM

2Within the IntCal20 database, NH tree-ring 14C determinations extend back to ca. 14,190 cal BP. However, beyond
approximately 13,910 cal BP these tree-ring measurements alone are not of sufficient density to estimate the IntCal20
calibration curve precisely. Further back in time than 13,913 cal BP other types of 14C material including macrofossils,
speleothems and marine-based samples are therefore also used to construct the curve. See Heaton et al. (2020 in this
issue) for more details.
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analogue to our Marine20 approach but do not incorporate any uncertainty propagation as
Monte-Carlo is infeasible due to the LSG OGCM’s long run time. Shown are the LSG
OGCM’s MRA estimates for the open-ocean sites lying closest to each of the marine
locations used in IntCal20. Also shown are the LSG OGCM (50°S–50°N) globally
averaged estimate with the same IntCal20 pointwise mean forcing and GS scenario, and
also the Monte-Carlo mean of our BICYCLE/Marine20 globally averaged MRA discussed
in detail later.

A potential approach to adapt this open-ocean LSG OGCM output for calibration in wider
and/or coastal locations would be that taken for inclusion of marine data in IntCal20. One
would initially identify the regional open-ocean LSG OGCM site that lies closest to the
particular location of interest, before then applying a constant, baseline-specific, pseudo-
ΔR shift from this specific regional open-ocean LSG OGCM estimate. However, extending
this approach to Marine20 would be complex and reliant upon users identifying both the
correct LSG OGCM regional baseline and the matching pseudo-ΔR shift.

Furthermore, for the non-polar sites illustrated in Figure 4, the relative shapes of the regional
open-ocean MRAs estimated by the LSG OGCM are highly similar to both the LSG global-
average estimate and also the mean BICYCLE global-average estimate. Changing to two
alternative scenarios (CS or PD, Butzin et al. 2020 in this issue) within the LSG OGCM
also has little effect on the relative shapes of the resultant regional open-ocean MRA
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Figure 4 Regional open-ocean MRA estimates generated by the LSG OGCM when forced by the mean of the
IntCal20 (Reimer et al. 2020 in this issue) reconstruction of NH atmospheric Δ

14C. These estimates are obtained
under LSG’s GS scenario (Butzin et al. 2020 in this issue) and correspond to the open-ocean sites nearest to the
locations of the IntCal20 marine data. Also shown is the LSG (50°S–50°N) global-average MRA estimate in the
GS scenario; and also the mean of BICYCLE’s global-average MRA for comparison.
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estimates—the primary effect of such scenario changes are simply constant shifts, up and down
respectively, in each regional open-ocean MRA estimate albeit with the size of these shifts
potentially varying between regions.

Consequently, the difference in using constant pseudo-ΔR-type shifts from regional LSG
OGCM curves, as opposed to constant ΔR shifts from the global-average curves, would be
small for these sites. As a result, the proposed approach to radiocarbon age calibration
described here, of using a global-average Marine20 radiocarbon age calibration curve based
on BICYCLE with application of constant ΔR shifts, is consistent with an approach using
regional LSG OGCM curves while also being much simpler and more efficient.

As discussed in more detail in Section 6, the output from the LSG OGCM matches that from
BICYCLE at the global-average level suggesting that BICYCLE is a satisfactory model at this
broader scale. However, by running much more quickly than the full LSG OCGM, BICYCLE
provides greatly more flexibility which provides several key benefits for our calibration curve
needs. In particular, LSG (or any other current OGCM) is too computationally expensive to
carry out a rigorous exploration of the uncertainty in its output. The use of BICYCLE enables
us to explore a much wider range of potential carbon cycle scenarios. Further, the LSGOGCM
simulations were kept in a single scenario for the entire period from 0–55 cal kBP. The effect of
a transient switch from a glacial scenario to an interglacial, more suitable for the Holocene,
within a simulation was therefore unknown. With BICYCLE we can more easily
investigate the effect of such scenario changes.

Our BICYCLE approach attempts to minimise potential inaccuracies in marine radiocarbon
variability that stem from strictly unknown changes in the marine carbon cycle by exploring a
wide range of possible carbon cycle states, providing a trade-off between expected accuracy and
precision in resulting calibrated ages. As we describe later in Section 7, key future work lies in
developing 3D OGCM models which can provide region-specific output further and
understanding their inherent uncertainties. Work towards this goal would be invaluable in
improving both marine calibration and our insight into the global carbon cycle.

Users calibrating open-ocean samples who wish to use individual regional MRA estimates
provided by the LSG OGCM can find them on PANGAEA (https://doi.org/10.1594/
PANGAEA.914500). This may also be relevant for users wishing to calibrate data outside
Marine20’s intended range, i.e. where sea ice may have been present (north of 40/50°N or
south of 40°S), especially if the LSG OGCM estimates exhibit significantly different
relative changes. One approach to incorporate LSG OGCM MRA estimates, for example
into OxCal, can be found via Alves et al. (2019).

4. BICYCLE—THE BOX MODEL OF THE ISOTOPIC CARBON CYCLE

BICYCLE is a global carbon cycle box model that includes terrestrial, atmospheric and
oceanic modules (Köhler and Fischer 2004; Köhler et al. 2005). The terrestrial biosphere is
modeled with seven different compartments distinguishing C3 and C4 photosynthesis, and
soils with different turnover times; the atmosphere as a single globally averaged box; and
the ocean as a set of ten boxes covering different spatial regions (both equatorial and high
latitude) and ocean depths including deep ocean-sediment exchange fluxes. Prognostic
variables solved by the model are C (as DIC in the ocean, as CO2 in the atmosphere), 13C,
and 14C in all boxes, and additionally alkalinity, O2, and PO4 in the ocean. The marine
carbonate system is fully defined by the two variables DIC and alkalinity. The model
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design has been chosen to allow long-term (thousands of years) transient simulations, but still
capture the essential processes important for the global carbon cycle and carbon isotopes.
Temporal changes in the physical boundary conditions (temperature, ocean circulation, sea
ice extent, sea level, aeolian dust/iron input, 14C production rate) are prescribed, and thus
changes in the simulated subsystem of the global carbon cycle are externally forced. In past
studies covering Termination I, the last glacial cycle, or the past 740 kyr (Köhler et al.
2005, 2006, 2010, 2014; Köhler and Fischer 2006) BICYCLE has been used to reproduce
(simulate) reconstructed variables of the carbon cycle, such as atmospheric CO2, 13C, and 14C.

The version of BICYCLE used here is based on Köhler et al. (2006), in which a previous
attempt to simulate the changes in atmospheric Δ

14C over the last 50 cal kBP documented
in IntCal04 has been published. For our current Marine20 application, the following model
improvements with respect to that earlier application have been implemented:

• In Köhler et al. (2006) sediment-deep ocean fluxes of DIC and alkalinity were prescribed by
temporal change in the depth of the lysocline. The representation of sediment-deep ocean
fluxes was revised in Köhler and Fischer (2006) to a scheme that mimics the process of
carbonate compensation (Broecker and Peng 1987) in a time-delayed response function
to changes in deep ocean carbonate ion concentration. This response function approach
has been used in all later applications of BICYCLE and is also applied here.

• Atmospheric CO2 in the standard BICYCLE setup is a prognostic variable, i.e. is internally
calculated rather than externally forced/prescribed. BICYCLE’s simulated CO2 time series
has been in reasonable agreement with ice core data, but never matched them perfectly.
However, for our current application we have decided to override BICYCLE’s internal
CO2 estimates and instead prescribe CO2 from ice core data (Figure 5, based on
Köhler et al. 2017). This decision was made since the air-sea gas exchange, one of the
key processes determining the simulated surface ocean Δ

14C, is significantly dependent
on the atmospheric concentration of CO2. In making this change, the internally
calculated carbon cycle is partly corrected by an additional source/sink term in the
atmosphere to arrive at the prescribed ice core reconstructed CO2 value. This is a
common approach in carbon cycle model applications for future scenarios, in which
not CO2 emissions, but CO2 concentrations are prescribed, and has recently been
implemented in BICYCLE for its contribution to a carbon cycle model-
intercomparison (Keller et al. 2018).

• Atmospheric Δ
14C, which was also a prognostic variable in previous versions of

BICYCLE, is now also prescribed from data by individual realizations of NH
atmospheric Δ

14C taken from the Bayesian posterior of IntCal20 (Reimer et al. 2020 in
this issue). Here, 14C production rates are simply adapted to match prescribed Δ

14C
values. Thus, no additional source term (as was necessary for CO2) has to be introduced.

Our model improvements of forcing atmospheric CO2 from external ice core data and
atmospheric Δ

14C by realizations of the IntCal20 curve aim to correct for any potential
limitations in the BICYCLE model. These changes should bring the carbon cycle of the
surface ocean closer to its true state than previous BICYCLE simulations where CO2 and
atmospheric Δ

14C were fully prognostic variables.

These new approaches of externally prescribing atmospheric CO2 and Δ
14C manage to bring

these variables in the model very close to (<1 ppm for CO2 and <1‰ for Δ14C) but not in full
agreement with the prescribed time series. These minor differences remain because the
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prognostic variables in BICYCLE are determined through ordinary differential equations
which are numerically solved with a 4th order Runge-Kutta method (Press et al. 1992).
Such differences also prevent us from directly proposing how the 14C production rate
should vary over time to be in agreement with IntCal20. Nevertheless, with more efforts in
this direction it might, in the future, be possible to further constrain 14C production rate
with atmospheric Δ

14C by this approach.

Our simulations here are run over the last 75 cal kBP. Between 75 and 55 cal kBP, atmospheric
Δ

14C is kept fixed at its value for 55 cal kBP but CO2 and all other time-dependent forcings
vary according to the data. These 20 kyr prior to 55 cal kBP give the radiocarbon cycle in
BICYCLE reasonable time to adjust to the boundary conditions (for further details see
Köhler et al. 2006).

For Marine20, we consider the DIC-weighted mean of the simulated Δ
14C of the equatorial

surface ocean boxes as the non-polar global-average. These boxes are 100 m deep and range
from 40°S to 50°N (Atlantic) or 40°N (Pacific).

Propagating Model Parameter Uncertainty through BICYCLE

While BICYCLE is a box model, it still contains a large number of parameters. To keep our
approach practical, we focus our analysis of propagated model uncertainties on key processes
and do not consider the uncertainty in all parameters. From sensitivity tests we identified that
two processes are most important for simulated surface ocean Δ

14C: piston velocity; and
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Figure 5 Atmospheric CO2 concentration used to force the BICYCLE model. Underlying ice core data and
corresponding fitted spline are plotted for 0–75 cal kBP (modified from Köhler et al. 2017).
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Atlantic meridional overturning circulation (AMOC), which is directly connected to the
strength of North Atlantic Deep Water (NADW) formation.

Piston velocity is the rate of air-sea gas exchange and depends on near-surface wind speed.
Thus, this parameter is important for the oceanic uptake of 14C from the atmosphere. In all
previous applications, it was parametrized to 2.5× 10−5 and 7.5× 10−5 m s−1, for the
equatorial and high latitude surface boxes respectively (Heimann and Monfray 1989).
These values agree reasonably well with more recent estimates (Wanninkhof 2014). To
create Marine20, we maintain these values as the mean piston velocities but introduce
uncertainty by placing a prior on each informed by a meta-analysis as described below.

The strength of the AMOC in the model is important for the transport of tracers from the
surface to the deep ocean via the physical carbon pump. In our Marine20 setup, the
AMOC, represented by strength of the NADW formation, is considered to have two states
with some uncertainty on the value in each state. In interglacials, it is centred around 16 Sv
(1 Sverdrup= 106 m3 s−1, e.g. Talley et al. 2011) while during glacials it is centred at 10 Sv.
See below for more details.

In addition to uncertainties in piston velocity and AMOC, we aim to propagate uncertainty on
the past levels of atmospheric Δ

14C and CO2. Below, we present a summary of how these
various inputs were selected together with a description of their uncertainties. Those model
parameters for which we consider uncertainty, and specify distributions on their values, are
referred to as having uncertainty incorporated; while those for which we do not consider
uncertainty are denoted as having uncertainty not incorporated. An overview of how these
enter BICYCLE is given in Figure 2.

TIME DEPENDENT MODEL PARAMETERS FOR WHICH UNCERTAINTY IS INCORPORATED

Atmospheric Δ14C: for each BICYCLE simulation, we draw a distinct posterior realization of
NH atmospheric Δ14C from the Bayesian spline of IntCal20 (Reimer et al. 2020 in this issue).
Each of these realizations represent a different plausible past atmospheric history. To input into
BICYCLE, they are sampled on a 10-calendar-year input grid and interpolated in-between.
Using realizations in this way, as opposed to the pointwise IntCal20 curve summaries,
allows us to incorporate not only our inherent uncertainty on the level of atmospheric
Δ

14C at any calendar age but also its smooth dependence over time. See Heaton et al.
(2020 in this issue) for some illustrative atmospheric realizations over the Bølling-Allerød
and further explanation on how these individual posterior realizations form the summarized
IntCal20.

Atmospheric CO2: our record of past atmospheric CO2 (Figure 5) is taken from a spline through
ice core data as described in Köhler et al. (2017). The spline estimate combines raw data from
several different ice cores (Talos Dome, Siple Dome, WAIS Divide (WDC), EPICA Dome C
(EDC), EPICA Dronning Maud Land (EDML) and Law Dome) each on the most recent age
scale, e.g. AICC2012, GICC05, WD2014 (Ahn and Brook 2014; Ahn et al. 2012; Bauska et al.
2015; Bereiter et al. 2012; Lüthi et al. 2010; MacFarling-Meure et al. 2006; Marcott et al. 2014;
Monnin et al. 2001, 2004; Rubino et al. 2013). This fitted spline is accompanied by
uncertainties that consider data resolution errors, Monte Carlo errors, and error due to a
chosen cutoff period during smoothing leading to combined uncertainties in the spline,
σCO2

θ� �. For each of the 500 realizations used as model inputs, we draw a Gaussian
random variable xi � N 0; 12

� �
that defines the specific CO2 time series used as a forcing on
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simulation i,

COi
2 θ� � � �CO2

θ� � � xiσCO2
θ� �;

where �CO2
θ� � is the mean of the ice core spline at calendar age θ. This ensures that each

individual CO2 forcing varies smoothly over time.

OTHER KEY PROCESS MODEL PARAMETERS FOR WHICH UNCERTAINTY IS
INCORPORATED

As mentioned above, the two most influential processes for surface ocean Δ
14C are piston

velocity and AMOC (the strength of the NADW formation). Standard values have been
taken for their means as in previous studies (e.g. Köhler et al. 2005, 2006) in which they
have been justified. We specify uncertainties around these means, providing our reasoning below.

Piston Velocity:

Piston velocity is a key factor regulating the uptake of 14C by the ocean and hence largely
determines simulated MRAs. Piston velocity depends on near-surface wind speed for which
our knowledge is limited, in particular regarding values of the past. Therefore, piston
velocities are perhaps the least well-constrained parameters in our model.

As stated above, BICYCLE operates with two piston velocities–dependent upon whether the
surface ocean box falls in low or high-latitudes, which typically have either low or high wind
speeds, respectively. Since BICYCLE has been tuned previously, and there is no common
agreement on their absolute values, we do not change the mean values of these parameters
as to do so would lead to a different carbon cycle baseline, potentially requiring further
adjustments/analysis. We do however incorporate uncertainties around these means.

In specifying piston velocities and their uncertainties, we are not concerned with short-term,
annual-scale, fluctuations. Short-term changes do not have a significant effect on the
marine 14C reservoir since the slow air/ocean mixing process occurs over much longer time
scales and so smooths such fine variations out. Instead, our interest is in quantifying the
uncertainty in the long-term mean values. We model the piston velocities as constant over
time and specify a ±15% (1σ) uncertainty on both the high-latitude and equatorial values:

Equatorial Boxes kEq � N 2:5 × 10�5; 0:375 × 10�5� �2� �
ms�1;

High � Latitude Boxes kHl � N 7:5 × 10�5; 1:125 × 10�5� �2� �
ms�1:

Justification for Selection of Piston Velocity Uncertainties
To quantify historic piston velocity uncertainty, we first consider present day mean piston
velocity with present day winds/climate. Naegler (2009) provides five current day piston
velocity estimates (with individual uncertainties) on comparable scales. We combine these
values using a statistically rigorous meta-analysis (Figure 6) to give an estimate for the
average present day piston velocity of k � N 17; 1:42

� �
cm hr–1 (or equivalently N(4.7, 0.392)

10–5 m s–1), i.e. the 1σ uncertainty on the level of piston velocity with present day climate is
approximately ±10%.

Further uncertainty arises as a result of changing past climate, in particular different wind
speeds. From the LSG OGCM (Butzin et al. 2017, 2020 in this issue) we obtain (Table 1)
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gas exchange rates based on 10-year averaged monthly model results for three different climate
scenarios (PD, GS and CS, Butzin et al. 2005).

We use these values to indicate the potential additional variability introduced by different past
climate scenarios. These estimates suggest that, due to changes in climate, the mean piston
velocity might change, within any particular basin, from its present day value by
approximately another ±10% (at 1σ based upon the difference in the LSG OGCM
estimates between the interglacial PD scenario and the glacial scenario CS). Finally, we
combine the uncertainty on the present day value (±10%) with the LSG-based intra-basin
climate variation (±10%) to get an approximate combined uncertainty of�����������������������
0:12 � 0:12

p ’ 0:15; i.e. σ= 15%. This uncertainty is comparable with the ±20% proposed
by Wanninkhof (2014) for the mean value of the present ocean.

Ocean Circulation

The strength of the AMOC, expressed by NADW formation, presumably varied between a
weak glacial and a strong interglacial mode. In our model, the switch between both is a
function of North Atlantic sea surface temperature and has been chosen such that the
interglacial mode is reached at the onset of the Holocene. In each mode, we assume a
constant, but unknown NADW value drawn from a suitable prior representing the two
different strengths. Millennial-scale variations in the Atlantic meridional overturning
circulation connected with the bipolar seesaw (e.g. Barker et al. 2009) have been neglected
for this update although are a topic identified for future work (see Section 7):

NADW θ� � � αGlacial if t 2 Glacial mode;
αInter if t 2 Interglacial mode;

�

where:

αGlacial � N 10; 22
� �

;
αInter � N 16; 12

� �
:

Study

Fixed effect model
Random effects model
Heterogeneity: I2 = 0%, τ2 = 0, p = 0.97

Wanninkhof (1992)
Naegler et al. (2006)
Krakauer et al. (2006)
Sweeney et al. (2007)
Müller et al. (2008)

10 15 20 25

Mean (cm/h)

16.99
16.99

17.50
16.90
18.20
15.10
16.10

95%−CI

[14.26; 19.73]
[14.26; 19.73]

[11.03; 23.97]
[11.22; 22.58]
[12.91; 23.49]
[ 6.67; 23.53]
[10.22; 21.98]

Figure 6 Meta-analysis of present-day estimates of piston velocity from Naegler (2009). Shown
are, post-Naegler’s adjustments, the piston velocities (cm hr–1) from 5 different studies together
with their 95% confidence intervals (95%-CI). The grey diamonds represent the combined
estimate, again with 95% intervals. Heterogeneity, as quantified by the measures I2; τ2 and p
(Cochran’s Q-statistic), assesses the extent to which the reported velocities differ between the
different studies, see e.g. Borenstein et al. (2011) for more details. Here, the five reported
velocities are seen to be consistent with a single shared underlying velocity.
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DEEP OCEAN MODEL VALIDATION

We provide, in addition to the comparison of BICYCLE’s non-polar global-average (i.e.
equatorial box) surface ocean output against observational data and the LSG OGCM
estimates of MRA provided in Section 6, a further model validation from deep ocean 14C
data. Specifically, we consider the level of 14C depletion, in terms of radiocarbon years,
between the atmosphere and BICYCLE’s three deep-ocean boxes which cover the global
ocean deeper than 1000 m. The weighted average from all 500 BICYCLE simulations of
these deep ocean boxes indicate that their 14C depletion decreases from the LGM (23–18
cal kBP) to pre-bomb values (0 cal kBP) by 605 ± 103 14C yr. This is slightly less, but
agrees within the uncertainties, with the 689 ± 53 14C yr age difference of the volume-
weighted global mean ocean between those two time windows obtained from a model-
based interpolation of 256 deep ocean 14C samples (Skinner et al. 2017) and illustrates that
the changes in ocean circulation assumed in BICYCLE are within reasonable bounds.

5. THE MARINE20 CURVE

In Figure 7A we present, in the Δ
14C domain, the resultant ensemble of 500 BICYCLE

estimates of non-polar global-average surface ocean Δ
14C which constitute the Marine20

curve. Shown are the estimated pointwise means and 95% probability intervals. For
comparison, we also include the IntCal20 atmospheric Δ

14C curve (Reimer et al. 2020 in
this issue), which was used as input for our estimate of Marine20, and the previous
Marine13 marine radiocarbon calibration curve based on IntCal13 (Reimer et al. 2013).
Figure 7B shows the ensemble of corresponding estimates of non-polar global-average
MRA, i.e. the depletion, in terms of radiocarbon years, between the atmosphere and the
non-polar global-average marine surface ocean over time. Note that each MRA estimate in
the ensemble of BICYCLE outputs is coupled to a specific realization of atmospheric 14C.

Table 1 Piston velocities for 14CO2 employed by the LSG OGCM according to various
climate forcing scenarios, results are annual-mean values averaged over ocean areas
considering the same latitude range as used by BICYCLE. The scenarios considered are
PD (a present-day climate scenario which may also be considered as a surrogate for
interstadials), and two glacial scenarios—CS based on the CLIMAP reconstruction
(McIntyre et al. 1981) and GS based on the GLAMAP climate reconstruction (Sarnthein
et al. 2003). The glacial climate scenarios involve some adjustment of atmospheric forcing
fields in the tropics (CS) and in the Southern Ocean (both CS and GS; see Butzin et al.
2005 for further details).

Ocean
LSG OGCM gas exchange rate estimate (cm hr–1)

Climate scenario Global Atlantic Indo-Pacific Southern Ocean

PD 13.3 13.7 12.8 15.5
GS 13.5 14.2 12.5 15.8
CS 12.0 12.7 11.1 14.4
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We also plot, in Figure 10, the complete Marine20 curve in the radiocarbon age domain against
unadjusted 14C observations from corals and forams obtained from the marine environment
(some of which were used to create IntCal20 and hence also influence Marine20). Here, we
also show the atmospheric IntCal20 curve. This is discussed further in Section 6.
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Figure 7 Panel A: The Marine20 curve (obtained via Monte-Carlo statistics of the ensemble of 500
BICYCLE simulations) in Δ

14C compared to Marine13 and the atmospheric IntCal20 curve. We
show the mean and 95% probability intervals for the curves; IntCal20 is shown here with its
published 95% predictive interval incorporating the over-dispersion seen in NH atmospheric 14C tree-
ring measurements. Additionally, two sensitivity simulations based only on mean values are shown,
the first in which in BICYCLE climate; and the second in which both climate and CO2 have been
kept constant. Panel B: The non-polar global-average MRA corresponding to Marine20 (estimated
by BICYCLE) compared to three scenarios of LSG OGCM and the global-average MRA previously
assumed in Marine13.
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Marine20 (Figure 7A) shows a similar shape to Marine13 but with a significantly lower Δ14C
between ~15 and ~32 cal kBP, and beyond 42 cal KBP, indicating a larger global-average
MRA in Marine20 than in Marine13. During the Holocene, i.e. from 0–11.6 cal kBP,
Marine20 shows an approximate constant Δ

14C deficit to the atmosphere with a global-
average MRA of around 500 14C yr although, as expected, sharp changes in atmospheric
Δ

14C are smoothed in the marine environment. Here, the carbon cycle model elements
within BICYCLE, as indicated by the atmospheric CO2 concentrations (Figure 5), remain
fairly constant. For most of this 0–11.6 cal kBP time period, Marine13 is based on a time-
constant box diffusion model (Hughen et al. 2004), albeit with a different parameter choice,
and so similar longitudinal changes in MRA might be expected.

Beyond 11.6 cal kBP, we see the effect of the carbon cycle changes within Marine20. The
marine 14C deficit decreases as the atmospheric CO2 concentration and temperature rose
from their lower glacial into their higher Holocene values and atmospheric Δ

14C decreased.
From 20–30 cal kBP, the global-average MRA was 750–1000 14C yr (Figure 7B). These
higher global-average MRA values are accompanied by larger temporal variations, likely a
consequence of the increased variation in atmospheric Δ

14C. Further back in time than
this, the global-average MRA shows two local minima of 600 14C yr around 33 and 38 cal
kBP, into which global-average MRA decreased from its maximum value of 1400 14C yr
connected with the Laschamp geomagnetic excursion (approximately 41–42 cal kBP, Lascu
et al. 2016). These high MRA values are likely predominantly driven by the corresponding
large increase in atmospheric Δ

14C seen in IntCal20. Note however, that this peak in MRA
around the Laschamp geomagnetic excursion coincides with the inflection point in
atmospheric Δ

14C, predating the actual Δ
14C peak by about 3000 years. This feature is

also discussed in more detail in Butzin et al. (2020 in this issue).

It is in this older period, beyond 13.9 cal kBP, where the improvement in methodology leading
to different results between Marine20 and Marine13 is most evident. Beyond 13.9 cal kBP,
Marine13 assumed a constant reservoir age of 405 14C yr since, for the creation of that
curve, the ability to incorporate carbon cycle changes was limited. The use of BICYCLE
for the construction of Marine20 addresses this and permits us more realistic MRA
estimation extending into the glacial time period.

A more detailed understanding on the importance of the different processes contained in
Marine20 can be gained from sensitivity simulations where we select a subset of the inputs
to BICYCLE to vary, while holding others fixed. Initially, we consider two simulations
which give an indication as to the effect that past changes to climate and CO2

concentration have on our global-average ocean mixed-layer 14C estimates. In both these
simulations, for simplicity, we only drive BICYCLE by the pointwise-mean atmospheric
Δ

14C values as opposed to ranging over individual realizations. In the first such simulation,
all time-dependent boundary conditions constraining climate (temperature, sea level, ocean
circulation) are held constant at their level used for 0 cal BP; in the second simulation, in
addition to climate, the CO2 concentration is also kept constant (Figure 7A). When
keeping both constant, BICYCLE’s results between 20 and 30 cal kBP agree more closely
with Marine13. This is to be expected since, for the Marine13 curve, these two aspects were
not considered to have varied. Roughly speaking, both the changing climate and the
changing CO2 concentration appear to contribute about the same to Marine20, while the
dominant contribution of changes in MRA are caused by variable atmospheric Δ

14C.
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In a further set of sensitivity studies, we provide an insight into how each individual process
(with its specified prior) contributes to the overall uncertainty in Marine20 by comparing the
varying level of uncertainty in BICYCLE’s model output when we only propagate uncertainty
in selected model inputs. This aims to identify, should we wish to reduce the uncertainty in
model output for future work, which are the key processes and parameters on which we
must increase our knowledge, and equally which are less critical. Here, we do not consider
potential interactions between input variables (Oakley and O’Hagan 2004) in contributing
to overall model uncertainty but only the main effects. We performed four additional sets
of 500 simulations. In our base scenario (simulation S0) only the uncertainty in
atmospheric Δ

14C was propagated through BICYCLE, achieved by ranging over the 500
posterior Δ

14C realizations taken from IntCal20, with all other model inputs, i.e.
atmospheric CO2, piston velocity and AMOC, held fixed at their mean, but still time-
dependent, values. The other three scenarios build on this base case and consider the
further effect on model output when the additional, previously described, uncertainties in
each of the further BICYCLE inputs: atmospheric CO2 (S1), piston velocity (S2) and
AMOC (S3) have also been propagated alongside the uncertainty in atmospheric Δ

14C. By
subtracting the uncertainty in BICYCLE’s global-average marine Δ

14C output in S0 from
those obtained in S1-S3 we obtained an estimate of the additional contributions of these
processes to the overall uncertainty in Marine20.

From these sensitivity tests (Figure 8A) we learn that, for the last 31 cal kBP, the uncertainty in
Marine20 is largely dominated by the uncertainty in piston velocity, with initially only a small
contribution from the uncertainty in atmospheric Δ

14C. Beyond 31 cal kBP however, the
uncertainty in atmospheric Δ

14C becomes the dominant contributor to Marine20’s
uncertainty. The effect of uncertainty in atmospheric CO2 is negligible and that of AMOC
also very minor (<1.5‰ in terms of Δ

14C) although, as explained earlier, we do not
incorporate the potential full range of millennial-scale AMOC variability such as its
possible shutdown during Heinrich events. For details on the effect of completely shutting
down or switching off the various components of the time-dependent climate forcing in
BICYCLE, see Figure 5 in Köhler et al. (2006). Large changes in the precision of our
atmospheric Δ

14C IntCal20 estimate, ranging from the Holocene where it is known very
precisely through to the older glacial period where it is much more uncertain, do not
penetrate through to Marine20, but are smoothed out by the carbon cycle. The individual
contributions nearly add up to the entire uncertainty in Marine20, but between 13–47 cal
kBP there is a small positive difference between the combined uncertainty seen in Marine20
and the sum of individual contributions, especially around the Laschamp geomagnetic
excursion. Interestingly, the mean of Marine20 is seen to some degree to depend on the
considered uncertainties: it differs from the mean in S0 by up to 4‰ in Δ

14C (Figure 8B),
illustrating nicely the non-linear nature of the error propagation (cf. Section 2).

6. COMPARISONS WITH A MORE COMPLEX MODEL, RECENT PRE-BOMB
OBSERVATIONS AND OLDER CORALS AND FORAMS

To provide further support for Marine20’s robustness and suitability we compare it to the
output of a set of simulations provided by the LSG OGCM (Butzin et al. 2017, 2020 in
this issue) and against a collection of pre-bomb marine observations which are primarily
from surface water, coastal samples (Reimer and Reimer 2001), as well as the marine
observations from corals and forams within the IntCal20 database (http://intcal.org)
extending back to 55 cal kBP.

Marine20 Calibration Curve 801

https://doi.org/10.1017/RDC.2020.68 Published online by Cambridge University Press

http://intcal.org
https://doi.org/10.1017/RDC.2020.68


Comparison with the LSG OGCM

The LSG model is a three-dimensional ocean general circulation model incorporating more
processes (ocean physics) than a box model. Furthermore, it has the ability to provide
location-specific MRAs. Consequently, one might expect the LSG OGCM to provide more
detailed and accurate modeling of the global-average marine 14C reservoir than BICYCLE,
albeit without the current ability to propagate model parameter uncertainty via Monte-Carlo.

As discussed in Section 3, the LSGOGCMwas applied in three different climate scenarios: PD,
CS and GS. Details are found in Table 1 and elsewhere (Butzin et al. 2005, 2012, 2017, 2020 in
this issue). Similarly to BICYCLE, the model was forced with the temporal changes in the
atmospheric carbon records of CO2 (Köhler et al. 2017) and IntCal20’s reconstruction of
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Figure 8 A closer look at the processes contributing to the uncertainties in Marine20. Panel A presents (black line)
the pointwise 1σ uncertainty in Marine20’s estimate for global-average marine Δ

14C, i.e. the variability in
BICYCLE’s model output taking into account the selected prior uncertainties in all our model inputs
(atmospheric Δ

14C and CO2, piston velocity, AMOC). Also shown (short dotted lines) are the uncertainties
observed in BICYCLE’s Δ

14C output when only propagating uncertainty in individual/selected inputs through
the model, leaving other inputs fixed. The sum of the output uncertainties resulting from the individual input
components (long dashed line) are also plotted, together with the pointwise 1σ uncertainty on the 500
atmospheric Δ

14C IntCal20 realizations used as inputs to BICYCLE (grey solid line) for reference. Panel B
illustrates the difference between the mean global-average marine Δ

14C estimate obtained by BICYCLE when
propagating all chosen input uncertainties (i.e. Marine20), and when only considering uncertainty in atmospheric
Δ

14C and holding all other inputs fixed (S0).
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Δ
14C (Reimer et al. 2020 in this issue), although using the pointwise means rather than

individual realizations.

For each scenario, the LSG OGCM provided estimates of surface MRAs averaged over 50ºN–

50ºS for the ocean surface above 50 m depth. These are shown in Figure 7B alongside the
BICYCLE estimates with their 95% probability intervals. As can be seen, despite
BICYCLE being a much simpler model, the BICYCLE estimates retain almost all of the
temporal details present within the spatially averaged results from the LSG OGCM.
BICYCLE’s probability interval also covers the range of LSG scenarios. Users should
however be aware that the LSG scenario which has the highest agreement with the mean
output from BICYCLE is that with present day climate (PD). This emphasises, that
although comparable, climate change over our time window of interest leads to different
implications in the two models when considered in detail. Nevertheless, the overall model
comparison suggests that, despite its simplicity, BICYCLE is able to provide a robust and
accurate global estimate.

Comparison with Present-Day Marine Observations

We also compare Marine20 against pre-bomb (0–200 cal BP) marine observations (Reimer and
Reimer 2001). In this comparison, it should be noted that these observations include regions of
coastal upwelling and further, due to sampling biases, much of this data arise from the Western
US coast, so may not be representative of the open ocean. Both data and model have not been
corrected for fossil fuel contamination (Suess effect), thus should be comparable. Note that
BICYCLE has previously been shown to track the Suess effect sufficiently accurately, even
when applied without forced atmospheric Δ

14C and CO2 (Köhler et al. 2014; Köhler 2016).
We restrict our comparison to marine data from 50ºN–50ºS, to remove potential effects
due to sea ice cover, and show the comparison in both Δ

14C and radiocarbon age space
(Figure 9, panels A and B). The previous Marine13 estimates are also shown. Figure 9C
shows a zoomed-in plot of the estimated global-average MRA over this period.

As we see, the modeled global-average MRA for Marine20 is significantly higher than in
Marine13 (Figure 9C). This leads us to a Marine20 curve which consistently lies above
Marine13 in terms of the radiocarbon age, or equivalently gives lower Δ

14C values, for a
particular calendar age θ.

In the Δ14C space, the weighted mean of the sampled marine observations covering 0–200 cal
BP is –61 ± 16‰, agreeing with a further subset of samples published recently (Toggweiler et al.
2019) for 1940–1954 CE (i.e. 10 cal BP to –4 cal BP).

Although an over-time decreasing trend in Δ
14C due to the Suess effect seems visible in the

observed marine data from ca. 1900 CE onward (i.e. 50–0 cal BP) it is statistically non-
significant (p-value 0.35). Results are nearly identical when restricted to 40ºN–40ºS in the
data selection, although this leads to a weighted Δ

14C mean of only –58‰. In the pre-
bomb time window, the global-average MRA in Marine20 drops from slightly above 550
14C yr at 200 cal BP to ~410 14C at 0 cal BP, mostly due to the Suess effect seen in the
atmospheric IntCal20 Δ

14C. This most-recent trend is also very closely reproduced in the
simulations with the LSG OGCM (Figure 9C).

The increase in theΔ14C deficit between the atmospheric and global-average surface ocean that
we see with BICYCLE andMarine20, compared to the simpler box model of Marine13, results
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in a calibration curve which provides better agreement with our observed present-day
observations. As seen in Figure 9A and 9B, the majority of these marine observations have
an older radiocarbon age (i.e. their Δ

14C is lower) than Marine13 and lie closer to
Marine20. A further analysis suggested that the optimal offset to Marine20, in terms of
maximising the statistical likelihood of the observed present-day data shown in Figure 9,
was only 30 14C yr. This offset was of sufficiently small size to lie within sampling
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Figure 9 Zoom-in on the pre-bomb time window (0–200 cal BP). IntCal20, Marine20, Marine13 and
14C determinations of observed marine samples (restricted to 50ºN–50ºS) in (A) Δ

14C space, (B)
Radiocarbon age space, and (C) illustrating the estimated global-average MRA. In (A, B) 14C
determinations from observed marine samples are taken from the data base (http://calib.org/marine/),
in (A) a subset of additional Δ14C data is also shown (Toggweiler et al. 2019). In (C) the global-
average MRA from the LSG OGCM output (restricted to 50ºN–50ºS) for the scenario PD is also
given for comparison. IntCal20 is shown with its 95% predictive intervals, while Marine13 and
Marine20 their 95% probability intervals.
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uncertainty and so no adjustments of the BICYCLE simulations have been applied which
might have led to a complete vanishing of the model/data offset.

Comparison with Corals and Foraminifera in IntCal20 Database

Figure 10 plots the complete Marine20 curve, in radiocarbon age space and from 0–55 cal kBP,
against all the raw coral and foraminifera data available in the IntCal20 database, http://intcal.
org. As described in the IntCal20 paper (Reimer et al. 2020 in this issue), corals which are older
than 25 cal kBP have been excluded in view of potential diagenesis. Further, we do not include
observations from the Cariaco Basin for comparison here since this basin appears to be a
unique marine environment (Hughen and Heaton 2020 in this issue) which no model is
currently able to resolve, see Section 7 describing the limitations of our model.

We plot here the raw 14C ages of the observations, with no MRA or ΔR correction, along with
their 95% probability intervals in both radiocarbon and calendar age. Since we have made no
marine radiocarbon age correction for the observations in the plot, we would not expect the
Marine20 curve to necessarily fit the raw data themselves. Rather our interest is in whether the
offset from the curve (i.e. ΔR) is consistent for each dataset or location. Since marine data from
older than 13.91 cal kBP does influence the construction of IntCal20, and hence alsoMarine20,
the Marine20 curve is not entirely independent of the plotted data for this time period—
although the large volume of other data informing IntCal20 still mean it is significantly so.
From 0–13.91 cal kBP, the Marine20 curve is almost entirely independent of the plotted
data since no marine data informed IntCal20 in this more recent period.

As with the present-day observations discussed in the previous section, most of this marine data
is coastal and hence may not be representative of open-ocean. Most of the corals are seen to lie
below the Marine20 curve suggesting that the locations of these data (Tahiti, Barbados,
Vanuatu, Papua and Kiritimati) have a rather smaller region-specific MRA than the
Marine20 global-average estimates, i.e. have a negative ΔR. For the period between 7 and
12 cal kBP (i.e. the early Holocene) we also see that the MRA for Tahiti is consistently
smaller than for Papua New Guinea and Vanuatu, which is compatible with previous work
(e.g. Table 1 in Reimer et al. 2009). Beyond 12 cal kBP systematic differences are more
difficult to detect because the analytical precision is lower.

Interestingly, between 15 and 17 cal kBP, the Iberian Margin data seem several centuries too
old in 14C yr compared with the Marine20 curve. This age range corresponds to the Heinrich 1
stadial and is potentially compatible with the near collapse of AMOC during Heinrich events
which are not incorporated into BICYCLE and therefore missing in Marine20. It is harder to
detect if this effect is also present in older Heinrich events since the precision of 14C ages
decreases through time, and some of these older events may have also had reduced intensity.

7. LIMITATIONS AND FUTURE WORK

While the Marine20 radiocarbon calibration curve already offers many improvements over
previous marine calibration curves there are still a number of areas for future refinements.

Perhaps the clearest limitation in our current work is our inability to accurately reproduce the
apparent MRA within the Cariaco Basin. This lack of reproduction is however not only an
issue for BICYCLE and the LSG OGCM but also, to our knowledge, any current carbon
cycle model. Based upon comparison with other IntCal20 data, the Cariaco Basin (Hughen
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and IntCal20 curves 0–55 cal kBP. The datasets shown consist of: foraminifera (forams) from the
Iberian and Pakistan Margins (Bard et al. 2013); corals from Tahiti and Barbados (Bard et al.
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the calendar age and radiocarbon age of each observation; together with the 95% probability/
predictive intervals for Marine20 and IntCal20, respectively.
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and Heaton 2020 in this issue) appears to show reductions in MRA to values close to 0 14C yr
during four distinct periods (ca. 12.8, 17, 23, and 31 cal kBP).

The most recent of these drops in MRA within the Cariaco Basin, at approximately 12.8 cal
kBP, is evidenced by a reduction in the observed offset between 14C samples of varved basin
foraminifera and NH atmospheric 14C tree-ring determinations. This drop occurs over a
relatively short period of 200–300 calendar years. The older three drops (ca. 17, 23, and 31
cal kBP) potentially appear on longer, multi-millennia, scales. Due to the inability of our
current carbon-cycle models to reproduce Cariaco’s MRA, in order to include the Cariaco
data within IntCal20, the basin’s MRA beyond ca. 13.91 cal kBP was modeled as an
additional flexible Bayesian spline simultaneously to the construction of the IntCal20
calibration curve (Heaton et al. 2020 in this issue; Hughen and Heaton 2020 in this issue).
Intuitively with this approach, deviations in 14C levels within Cariaco that were also seen in
other atmosphere-adjusted IntCal20 records would likely be considered genuine
atmospheric signal. Conversely, deviations seen in Cariaco 14C levels alone would likely be
modeled as changes in the basin’s MRA. The consequent Cariaco MRA estimate from
13.91–55 cal kBP is therefore predominantly influenced by the offset between the observed
Cariaco 14C data and the Hulu Cave speleothems, for which we assumed that the dead
carbon fraction (DCF) remains approximately constant.

The mechanism responsible for such MRA reductions is unknown and not seen in any of our
model reproductions. Work to understand, and resolve, the differences between the estimate
one obtains for the Cariaco Basin’s MRA based upon observed data and that provided by
carbon-cycle models would therefore be very valuable.

Regarding future potential areas of development, most directly, new records at key locations in
the oceans would help to improve the resolution and accuracy of existing marine records. This
might be further refined by integrating marine records for the sea surface, intermediate and
deep-water masses through parallel studies of planktonic and benthic foraminifera, warm
and cold water corals, studying and correcting the influence of signal perturbations (e.g.
deep-sea sediment mixing, diagenesis of corals). Future work will benefit from recent
analytical improvements such as the capacity to measure 14C in individual shells of
foraminifera (Lougheed et al. 2018; Fagault et al. 2019). Prescribing time varying piston
velocity and AMOC values estimated from paleoceanographic and paleoclimatic records, in
particular over the glacial-interglacial/stadial-interstadial climate system fluctuations,
instead of using the present two-level representation may provide further insights.

Additionally, surface water 14C reconstructions typically originate from continental margins,
marginal seas, or tropical lagoons and are highly disperse dependent upon location. This is a
consequence of regional variations in ocean circulation and atmospheric exchange. Ultimately,
one would wish to develop location-specific (regional) marine age calibration curves. In
particular we would wish to construct high-latitude marine calibration curves to cover the
polar regions for which the current Marine20 is not suited. There are two potential
approaches one could take to achieve regional calibration curves:

Firstly, one could aim to obtain sufficient data from individual locations in order to construct
regional empirical curves. This would require considerable data, and it may be difficult to
achieve sufficiently global coverage, but such work has begun in the Atlantic (Muschitiello
et al. 2019; Brendryen et al. 2019; Skinner et al. 2019; Waelbroeck et al. 2019; Burke et al.
submitted) and globally (e.g. Sarnthein et al. 2015).
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Alternatively, the next generation of 14C-equipped OGCMs might be used to provide location-
specific reservoir ages, either through nesting approaches or by means of global multi-
resolution models with unstructured meshes. First unpublished MRA simulations utilizing
the OGCM FESOM2 with enhanced resolution down to ~20 km in marginal seas (Danilov
et al. 2017) show promising improvements for the Cariaco region. However, for the time
being, long-term simulations, which would be necessary for a potential application of
FESOM2 within the radiocarbon age calibration context presented here, are not yet available.

To use such OGCMs appropriately, more detailed investigations of their properties and
inherent uncertainties would be equally valuable, perhaps through the creation of statistical
emulators (Sacks et al. 1989). This is complicated by the high-dimensional functional
output of these complex OGCMs. Two potential approaches in such situations are the use
of basis functions (Higdon et al. 2008) to emulate the complete OGCM output; or perhaps
more practically to emulate the deviations of the complex OGCM from a simpler,
approximate, but fast model such as BICYCLE (Kennedy and O’Hagan 2000).

Such emulators would enable us to identify the key parameters which influence model output,
and equally which are less critical. Work could then be directed at narrowing down our
uncertainties on these specific key values. While we performed a first step towards
identifying these processes, we did not consider the contribution of potential interactions
between inputs. In the case of scalar model output, Oakley and O’Hagan (2004) provide a
method to do so although this would need modification to account for our functional and
high-dimensional output. Further, such emulators may aid in tuning (also known as
calibration within the statistical community) our OGCMs to synthesize their predictions
with our observations (Kennedy and O’Hagan 2001).

In the case of the production of high-latitude marine calibration curves, one may consider
production of separate curves for each of the Southern Ocean, North-Atlantic and North
Pacific. By combining paleoceanographic proxy information from deep sea core records
located within these ocean basins with suitable computer modeling, one could potentially
not only obtain such curves but also tune and improve our carbon cycle models. Such
work is however likely to require improvements in our understanding of such proxies and
their links with winds, sea-ice and high-latitude upwelling.

If the next generation of marine radiocarbon age calibration curve still relies on the application
of the BICYCLE carbon cycle box model some emphasis might be necessary on the inclusion
of uncertainties in all time-dependent forcing, including a revision of the forcing itself. In
particular, further constraints on air-sea gas exchange (piston velocity), which has a large
effect on the marine 14C reservoir age, will be essential. In a similar vein, the current
models neglect millennial-scale changes in the Atlantic meridional circulation. While this
could in principle be incorporated to address more accurately reconstructed changes in the
ocean circulation, sensitivity tests have shown that the simulated carbon cycle response to
such rather abrupt changes is very model dependent (Köhler et al. 2006).

8. CONCLUSIONS

In this paper we have presented an overview of the construction of the Marine20 global-
average marine radiocarbon age calibration curve from 0–55 cal kBP. In this respect
“global” is restricted to non-polar latitudes ranging approximately from 40/50°N to 40°S,
i.e. excluding areas with sea ice. The curve is constructed using the BICYCLE carbon cycle
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box model driven by estimates of atmospheric Δ
14C provided by IntCal20, by atmospheric

CO2 from ice cores, and by various other records changing the climatic boundary
conditions. Together, these forcing time series enable us to incorporate past changes in
both the carbon cycle and 14C production rates into our model-based reconstruction of
Marine20. Uncertainties in model parameters are propagated through the BICYCLE model
by creating an ensemble of 500 simulations which are summarized by Monte-Carlo
statistics. The new curve is seen to fit well with observed data for the pre-bomb period and
agrees with individual simulations of a more complex model (LSG OGCM). For a
calibration user, it is key to use the accompanying updated local-reservoir ΔR adjustments,
found at http://calib.org/marine/, before using the new Marine20 curve.
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