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POSITIVE POLYNOMIALS AND TIME DEPENDENT 
INTEGER-VALUED RANDOM VARIABLES 

B. M. BAKER AND D. E. HANDELMAN 

Let { Pj} be a sequence of real (Laurent) polynomials each of which has no negative 
coefficients, and suppose that/ is a real polynomial. Consider the problem of deciding 
whether 

for all integers &, there exists N such that the product of polynomials 
(*) 

Pk+i - Pk+2 P/C+N • / has no negative coefficients. 
This corresponds to a random walk problem for time dependent integer-valued random 
variables; as we shall see, it leads to questions involving strong local flatness on the sums 
of the random variables. Very special cases of this problem were studied by Poincaré [Po] 
in 1883, Meissner [Me] in 1911, Pôlya [PI] in 1928, and Hardy, Littlewood and Polya 
[HLP] in 1934. Poincaré [Po] was interested in minimizing the number of sign changes— 
given/ with k real negative roots, find a polynomial P with no negative coefficients such 
that the product P • / has exactly k sign changes among its coefficients, the minimum 
number possible. Meissner and Polya dealt with special cases of the problem in several 
variables, where Pi = I +x + y + xy (Meissner) or Pt = 1 + x + y (Pôlya) for all /. Our 
interest in this class of problems arose from the study of actions of rotation groups on a 
class of C*-algebras (e.g., [HR1, HR2, P]). In fact, this problem is equivalent to that of 
determining the positive cone of the equivariant Ko-group associated with this class of 
operator algebras. 

An obvious necessary condition o n / in order that (*) hold is that its restriction to 
the positive reals, /|(0,oo), be strictly positive. We say the sequence {Pi} is strongly 
positive if this condition is also sufficient for (*) to have an affirmative solution. There is 
an equivalent statement for the corresponding random walk. The correspondence be
tween P in the set of nonzero Laurent polynomials having no negative coefficients, 
R[x,x~l ]+\ { 0}, and the random variable X is as follows. Let (P,xJ) denote the coeffi
cient of y in P. Then 

(P^)/P(l) = Pr(X=j). 
The polynomial P or its corresponding random variable X is said to be e -convex (for 
0 < e < 2) if 

for all integers/ Pr(X = j + 1) + Pr(X = j - 1 ) > (2 - e) Pr(X - J). 
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4 B. M. BAKER AND D. E. HANDELMAN 

Let {Xi} be a sequence of (independent) integer-valued random variables of finite 
support with corresponding Laurent polynomials {Pi}. For integers N and /c, define 
SN£ = E£Li îk+r, and PN,k — nJLi P*+r- Then {Pi} is strongly positive if and only 
if 

for all e > 0 and all integers k, there exists N so that Su,k is £-convex. 

One direction is easy to see—just set/ = x~~l — (2 — e ) +x and work out the conditions on 
the coefficients of P which guarantee that the product Pf has no negative coefficients. The 
other implication follows from Corollary 1.13. This eventual e -convexity is a particularly 
strong form of local flatness in the distributions of the sums of the random variables. In 
any event, we say that {Xi} is strongly positive when it occurs. 

Our results concern necessary and sufficient conditions for strong positivity of se
quences {Pi}. As a consequence, we determine all pure (extremal) [0, oo]-valued har
monic functions on the random walk in the strongly positive case, as well some other 
representative instances. There is a natural one-parameter family of these harmonic func
tions arising as evaluations at points of [0, oo]; we investigate purity of such evaluations. 
We show (2.5) that evaluation at 1 (the most natural of the harmonic functions, and usu
ally the only bounded one) is pure if and only if the conclusion of Mineka's theorem f Mi] 
holds: 

(**) lim YJ \?*(sNk = j) ~ ?r(SNk = j + l ) | = 0 for all integers k. 

We say P (or X) is unimodal if there is only one sign change in the coefficients of the 
polynomial (1 — x)P\ in other words, the coefficients are non-decreasing starting from 
the left, then become non-increasing. The ratio of a unimodal P (or X) is defined via: 

(P,jt/o+1) (P,xf°-1)} 
(P,JC<O) ' (P,JC'O) J ' 

where i'o is a point at which the maximum occurs. We show that for unimodal {Pi}, if 
£ r(Pt) diverges, then {Pt} is strongly positive (1.9). The converse holds when each P, 
is strongly unimodal or if there is a bound on the total degree (2.3). 

In the non-unimodal situation, there is a more elaborate criterion. If P is a Laurent 
polynomial with no negative coefficients, let ?M(P) denote the set of local maxima, i.e., 
the integer /0 belongs to M(P) if 0 ^ (P^0) > (P,yo+1),(P,jc/o_1). (It is easy to con
struct unimodal P for which W[(P) contains non-contiguous points.) Set 

C(P)= mm max<—-—-—, -——-— >. 

Then {Pt} is strongly positive if £ C(Pi) — oo (1.11). This immediately yields the 
following analogue of Mineka's criterion. Suppose {Xt} is a sequence of independent, 
finitely supported integer-valued random variables, and Xi is erconvex. Then {Xt} is 
strongly positive if 

£ ( 2 - e « ) diverges (1.13). 

r(P) — max 
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POSITIVE POLYNOMIALS 5 

The converse is true if telescoping (blocking) is permitted (precisely as in Mineka's The
orem). 

There are classes of strongly positive sequences to which these numerical criteria 
cannot be applied directly. To construct examples illustrating this phenomenon, let (3 be 
a positive real number, and define the sequence {Pi} (depending on /?) via 

[ i?+l if j - 0 
(Pi9x!)=\ 1 if 1 < Ul <tf] 

[0 if\j\>Vfi]-

The bulk of the mass is at 0, and the rest is distributed uniformly over a very wide range. 
The ratio of the i-th polynomial is 1/ i^+l, and their sum converges. As a result of this, 
the aforementioned strong positivity criteria do not apply. Since each P; is symmetric 
and unimodal, it will follow (Section 3) that to check for strong positivity, it is sufficient 
to decide if for all integers k, 

—— — —> 1 as/v—»oo. 
MSN,k = 0) 

For a large class of similar distributions (symmetric and unimodal), we perform the nec
essary calculations. An unexpected transition phenomenon is observed. For example, if 
(5 < 2, the sequence given above is strongly positive, while if/3 > 2, it is not (3.9(c)). 
If instead, the support grows exponentially, similar results are obtained (3.9(e)). For ex
ample, if K is a real number exceeding 1, define { Pi} via 

Kl ifj = 0 
(Pi^)= < 1 ifl <\j\ <[Kl] 

o if Ui > u?]. 

Then {Pi} is strongly positive if K < 3 and is not strongly positive if K > 3. The 
status of the sequence is unknown if K — 3. Two formulas (3.4 and 3.7) give sufficient 
conditions for strong positivity of large classes of sequences of symmetric unimodal 
polynomials. 

Turning now to harmonic functions, for each point r in R++ = R+\ { 0}, we can 
define a harmonic function hr\ Z x N —-»• R+ by the formula hr{m, i) = r™/ P\ • P2 • 
- • • • Pi(r). We call this a point evaluation at r. We remark that this is unbounded unless 
r — 1. On restriction to appropriate subsets of Z x N (depending on the supports of the 
Xi), we may consider limit points of these "point evaluations"; these are [0, oo]-valued 
harmonic functions, and yield evaluation at 0 or 00. If {Pt} is strongly positive, then 
all pure (extremal) [0, oo]-valued harmonic functions are indeed point evaluations (if we 
include 0 and 00), and all such point evaluations are pure. Theorem 2.1 indicates why 
the converse fails. 

This yields two types of obstructions to strong positivity: either a point evaluation 
is not pure, or there exists a pure harmonic function that is not a point evaluation. We 
investigate purity of individual point evaluations. For example (2.5), evaluation at r = 1 
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is pure if and only if mass cancellation occurs (as in the conclusion of Mineka's theo
rem (**)). Purity of evaluations at other points can be decided by reparameterizing the 
polynomials. When a point evaluation is not pure, it decomposes into other harmonic 
functions which are not point evaluations. If the polynomials are all unimodal, then a 
converse to Mineka's theorem that does not require blocking is valid for all reparame-
terizations of the polynomials (2.6). The outcome is that there is a simple necessary and 
sufficient test of purity for every point evaluation. If the polynomials are additionally 
symmetric (that is, (P,x7) = (P,x~7) for ally), then except for evaluation at 1, either 
the point evaluation is pure or a convergence phenomenon (described below) leads to a 
discrete decomposition. 

An extreme case of impurity occurs when the infinite product of suitably normalized 
Laurent polynomials n Pt(z)/ P/( 1) converges on an annulus in the plane. If r is a positive 
real number within the region of convergence, not only is hr impure, but it can be decom
posed into a (discrete) family of harmonic functions that arise from the Laurent series 
expansion of the infinite product. Other point evaluations may decompose if the normal
ization is altered. Unusual examples are constructed; the set { r G R++ | hr is pure} can 
be the set of all positive reals, the empty set, a finite set, all but a single point, or even 
a union of open or half-open intervals, among others. On the other hand, if the distribu
tions are symmetric and unimodal, then this set can only be the complement of an open 
or closed interval (symmetric with respect to r »—>• r_1) (2.7). 

ACKNOWLEDGEMENT. We would like to thank David R. McDonald for help with the 
probabilistic aspects of this work, and for numerous useful conversations. Alan Kelm was 
very helpful in proofreading the manuscript, as well as correcting errors, both mathemat
ical and typographical. 

1. Strong positivity. In this section, we prove results on strong positivity of the 
following type. For an appropriate numerical invariant, z(JP\ of polynomials P, diver
gence of J2z(Pi) entails that the sequence { Pi} be strongly positive (1.8,1.9,1.11,1.13). 
If each polynomial in the sequence {Pi} is unimodal and £ r{Pi) diverges, then {Pt} 
is strongly positive. The converse holds if either all the Pt are strongly unimodal (log-
concave) or if there is a bound on the degrees of the polynomials. For polynomials which 
are not necessarily unimodal, divergence of £ C(Pt) is sufficient for strong positivity. 
There is a precise analogue to Mineka's theorem (1.13). If each P, is ^-convex (see the 
Introduction for the definitions), then £(2 — £t) = oo is sufficient for strong positivity. 

Initially, we wish to show that if each Pi is unimodal and the sum of the ratios (def
inition given in the Introduction), £ r(P,), diverges, then {Pt} is strongly positive. We 
begin with linear polynomials, that is, P, = at + biX (equivalently, the random variables 
Xi have two-point contiguous support). If the Pt are all equal (the "stationary" case), the 
result can be found in [Me]. If inf, min{ at/ Z?„ bt/ at} > 0, a careful convergence argu
ment permits reduction to the stationary case. An argument involving both superposition 
and blocking (telescoping) allows us to prove the complete result in the linear situation, 
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and another application of superposition yields the most general result of this section 

(1.11). 
The real algebra of Laurent polynomials is defined as 

R[x, x~l ] = 1^2 aixl I ' £ Z, at G R, and at = 0 for almost all / 

The set of Laurent polynomials with no negative coefficients will be denoted R[JC, x~x ]+ . 
For/ in R[JC, x~~l ], we let (f, xj) denote the coefficient of y appearing in/ , and set 

Logf={jeZ\(f,*/)?0}. 

Recall that a sequence of Laurent polynomials (having no negative coefficients) {Pt} is 
strongly positive if 

for any real Laurent polynomial,/, such that the restriction satisfies f\ (0, oo) > 0, 
then for any integer &, there exists an integer N so that the product 

Pk m Pk+l Pk+N / 

has no negative coefficients. 

We remark that the condition on / (as a function on (0, oo)) is obviously necessary. 

For P a (nonzero) Laurent polynomial with no negative coefficients, we define its 
contiguity coefficient, c(P), as follows. First, for a linear polynomial, L — a + bx (with 
both coefficients strictly greater than 0), define d(L) — abj (a + b)2. Then define 

c(P) = sup|inf{rf(L/) | P = ][>,•£,•, ht G R[X,JC_1]+} }, 

where the Lt are linear with positive coefficients and the supremum is over all such de
compositions, P = £/ hiU. Clearly, c(P2 + Pi) > min { c(P\), c(P2)} if both Pt have no 
negative coefficients. For example, if L is linear, then d(L) — c(L). If P = x2 + \x + /J, 
(where A and /x are strictly positive real numbers), then P = x(x + A / 2) + (Xx/ 2 + /i), 
so that 

. f A/2 A^ /2 1 
c ( P ) > m m ) i + A + A 2 / 4 > 2 + A ^ A 2 / 4 ) . 

In general, c(P) is awkward to compute. It is a useful tool, but will be replaced later by 
a much more convenient invariant, namely C(P) (defined in the Introduction.) 

If P (or its corresponding random variable X) is a unimodal Laurent polynomial (with 
no negative coefficients), we define r(P) (r(X)) to be the ratio of the second largest coef
ficient (mass at a point) to the largest. In particular, if there is a tie for largest coefficient, 
then r(P) = 1. Note that the second largest coefficient must occur at one of the two 
points adjacent to the maximum. 
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LEMMA 1.1. IfP is unimodal, then 

c(P) > ^r(P). 

PROOF. We may assume that the peak coefficient occurs at 0 and the second largest 
coefficient occurs at 1 (rather than — 1). Write P = £-/</<m Xtx

l, with m>2 and assume 
for now that / > 1. Consider the following polynomials: 

Xm (\ + \x + X2 +X3 + • • • + xm) , A_/ ( | + \x~x + • • • + x~l) 

(Am_i - Am) ( i + ix + x2 + • • • +xm~x) , (A_/+i - A_z) (I + ix-1 + • • • +x~/+1) 

( A i - A 2 ) ( i + ix) ( A _ 1 - A _ 2 ) ( l + i x - 1 ) . 

Note that 0 < A_/ < A_/+i < • • • < A0 > Ai > A2 > • • • > Am > 0. Form the 
sum of these polynomials, and subtract this from P. Almost everything telescopes, and 
the remainder is Q = ^X\x + Ao — \(X\ + A_i) + ^A_ix_1. The c-values for each of 
the polynomials in the list is at least that of ( | + JC), i.e., 4/25. It is readily verified that 
c(Q) > (4/25)(A,/ Ao) = (4/25)r(P). 

As P is the sum of the listed polynomials together with g, it follows that c(P) is at 
least as large as that of the minimum of the c-values of these polynomials, hence the 
desired result is obtained in this case. If / = 0, the same argument will work. • 

Alan Kelm has shown that 4/25 can be replaced by 2 /9 in Lemma 1.1, and this 
is sharp. The following is a consequence of [H3; Appendix C], but we provide a short 
and easy proof for this special case. A Laurent polynomial P is gapless if for integers 
i<j< k, (P,jt)(P,J) ^ 0 implies that (P,xj) ^ 0. 

LEMMA 1.2. Suppose {Pi} is a sequence of gapless Laurent polynomials with no 
negative coefficients such that 

(o) \LogPi\ > 1; 
(i) Log Pf = Log P\ for all i; 

(ii) sup{ (Pi, xj) | ieNJ G Log Pi} < oo; 
(Hi) inf{ (Ph x>) \ i<ENJ e LogP{} > 0. 

Iff is an element ofR[x,x~l ] such thatf\ (0, oo) > 0, there exists an integer M so that 
P\P2 • • • PM 'f has no negative coefficients. 

PROOF. We may assume that P/(l) = 1 for all /, without altering the rest of the hy
potheses. Regard elements of R[JC,X_1] as elements of ll(Z); that is, assign the norm 
£ I A/I to the polynomial g = £ XjXj. If g has no negative coefficients, then \\g\\ = g(\). 
Clearly { Pt} contains a subsequence converging to a Laurent polynomial P in this norm. 
By (i) and the boundedness below hypotheses, P is gapless and Log P — Log Pi. 

By [HI; V.l(b)], there exists an integer m so that Pmf has no negative coefficients. 
An easy consequence is the existence of an integer N > m so that PNf is additionally 
gapless (as P itself is gapless). It follows (by considering the endpoints), that Log PNf = 
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TV Log P + Log/ (adopting the convention that the sum of two sets of integers is the set 
of sums). Define 

e=inf{(PNf,x!)\jeLog(PNf)}. 

There exists a finite subset S (havingN elements) of N such that for ally in 5, || Pj• — P\\ < 
e/(tf||/| |).Then 

K/-(n^yi< II/II •K-n^i 
s s 

<\\f\\Ne/(N\\f\\) = e. 
Clearly NLog P + Log/ contains Log(ris Pj) •/, and as (PNf,xk) > e for k in the former 
set, it follows that {(Us Pj) • / ,**)>() for all such k. Now M = max{ / G S} will do. • 

The following Superposition Lemma is elementary but extremely useful. 

LEMMA 1.3 (SUPERPOSITION LEMMA). Let {Pi} be a sequence of Laurent polyno
mials each having no negative coefficients, and letf be in Rfx, x~x ]. Suppose that for all 
i, there exist positive integers M(i), and Ajj and Tjj in R[x,x~l ]+for 0 < j < M(i), such 
that 

Pi= E A/,-?},-. 
0</<M(z") 

Suppose in addition that for all sequences k = (£(1), £(2),...) (with 0 < £(/) < M(i)), 
there exists i (depending on the sequence k) so that 

Tk(\),i • Tk(2),2 ^k(i)j ' / has no negative coefficients. 

Then there exists N so that P\ P2 PN • / has no negative coefficients. 

PROOF. For each /, define the set Kt = { 0,1,2, . . . , M(i)}, and let K denote the 
cartesian product of the AT/'s, with the product topology. Given k in K and / = ik (/ 
depending on k) as hypothesized, form the clopen set 

Uk = {k!eK\ k'(j) = k(j) for ally < ik} . 

As k varies over K, we obtain an open covering; by the compactness of K, there exists a 
finite set { k{l\ k{2\..., k{m)) of elements of K, so that 

m 

U tf*/> = * • 

Note that there are integers {i(1), / (2 ),..., i(m)} so that if ^ belongs to Um (1 < r < m), 
then 

( f j 7V(;WJ •/ 
has no negative coefficients. Upon setting TV = max{ /w}/<m, we find that for all choices 
{ fc(0), fc(l),..., k(N)} (with k(i) <E Kt), the product Tk(m • 7\(2),2 Tk(N)yN • / has no 
negative coefficients. However, P\Pi PN •/ is an R[JC, x"1 ]+-combination of such 
terms, so has no negative coefficients. • 
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PROPOSITION 1.4. Let {Pi} be a sequence of Laurent polynomials with no nega
tive coefficients, such that { c(P()} is bounded below away from zero. Then given f in 
R[JC,X-1 ] satisfying f\ (0, oo) > 0, there exists an integer N so that P\ Pi PN ' f 
has no negative coefficients. 

PROOF. Decompose each Pi as in 1.3 (using the definition of c(P)) in order to apply 
1.2 along each path. • 

The polynomial P or its corresponding Z-valued random variable X is strongly uni-
modal (also known as log concave—the former term is used in probability, the latter in 
combinatorics) if it is gapless and for ally, (P,xJ)2 > (P,xJ+l) • (P, JC7'-1). By Ibragimov's 
theorem ([lb]) applied to discrete random variables, strong unimodality is equivalent to: 

For all unimodal polynomials Q, the product PQ is unimodal. 

It follows that if P and P/ are strongly unimodal, then so is their product PP/. 
Let A be a positive real number. We can reparameterize a polynomial P or its random 

variable X by À on setting 

( ~J) ~ £*A*Pr(X=*) ' 

so P is replaced by P(X •), i.e., P(Xx). The next result includes a proof of Ibragimov's 
theorem in this special case of discrete distributions (this is very well known; see the 
recent survey article by Stanley [S]); by refining the mesh, one can obtain Ibragimov's 
theorem in general. 

PROPOSITION 1.5. Let P be any Laurent polynomial with no negative coefficients. 
The following are equivalent: 

(i) P is strongly unimodal; 
(ii) P(r-) is unimodal for all strictly positive real r; 

(Hi) PQ is unimodal for all unimodal Q in R[x,x~~l ]+. 

PROOF THAT (i) IMPLIES (ii). We observe that for a strongly unimodal polynomial, the 
set of quotients of consecutive coefficients {(P,y) / (P ,x J - 1 )} , is monotone 
decreasing—in fact this characterizes strong unimodality. Hence P(r-) is strongly uni
modal and a fortiori unimodal. 

PROOF THAT (ii) IMPLIES f/j. Suppose that (P,xj)2 < (P,xj+] ) • (P,xj~l ) for some j . 
This entails that both (F, xj+l) and (P,x7-1 ) be strictly greater than zero. Select r so that 

(P,xj) 1 (P,xj+l) 
< _ < (P,*/-1) r (P,xJ) 

Then we quickly see that the coefficients^' — l,y', andy' +1 of P(r-) decrease then increase, 
violating unimodality of P(r-). 
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PROOF THAT (i) IMPLIES (Hi). To prove (iii), we show that (1 — x)PQ has exactly one 

sign change among its coefficients. Write (as we may, by shifting) 

d 

P — X] fl/JcI» ai — ®i a^ad > 0. 

Then of > a,+i tf/_i. As (1 — x)Q has just one sign change, we may write (after multiplying 

Q by a suitable monomial) (1 - x)Q = A0 + A\x + • • • + A„jt" - Bix"*1 Bmj?+m, 

where A;, #/ > 0; A0 > 0; B\ > 0; and 5 m > 0. Clearly, if t < n, the coefficient of x* in 

(1 — x)PQ is nonnegative, and if t > n + d + 1, its coefficient is not positive. Hence to 

show exactly one sign change occurs in (1 — x)PQ, it suffices to prove: 

If for n < t < n + d, the coefficient of x1 in ( 1 — x)PQ is strictly negative, then so 

is that of*""1. 

Say t = n + k (with 1 < k < d), and the coefficient of xf is negative. It is given by the 

formula: 

a<iAn-d+k + ad-iAn-d+k+i + • • • + ajcAn — dk-\B\ — dk-iBj — a$Bk. 

Delete the adAn-d+k term, multiply the rest by a^\ / a^ and subtract the outcome from 

the coefficient of y + 1 . This yields 

An-d+k+\[<*d - {cid-\ak+xIak)\ + An-d+k+2[ad-i - (fl</-2fl*+i/<**)] 

+ • • • +An^[ak+2 - (a2
k+l/ak)] +An • 0 

- B\[ak - (ak-iak+i/ak)] - B2[ak~i - (ak-2ak+i/ak)] 

Bk[a\ - (aoak+i/ak)] - Bk+]a0 

Strong unimodality yields 

a\j ao > a2/ a\ >a3/a2>-'-. 

For k < d, this gives adak < ad-\ak+\, and also ak-iak > ak-i-\ak+\. Hence every single 

term in (1) is not positive. Thus if c; is the coefficient of y in (1 — x)PQ, we have 

Q+i - (ak+i/ak)(ct - adAn-d+k) < 0. 

As ct < 0, we deduce ct+\ < 0 as desired. Thus (1 — x)PQ has exactly one sign change 

among its coefficients, so that PQ is unimodal. 

PROOF THAT (iii) IMPLIES (i). Let P = £f=0 atf (with at > 0; a0, ad > 0) be a 

polynomial with no negative coefficients that is not strongly unimodal. If P has a gap in 

its coefficients, then it is not unimodal itself; otherwise there exists k so that ak+\ / ak > 

akj ak-1. If ak+\ / ak> 1, choose a real number R > 1 such that ak+\ / ak > R/ (R— 1 ) > 

akj ak-\. Select n> d, and define the unimodal polynomial 

Q= I + J C + J^ + ' - ' + J C " - 1 +/&". 
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Then (1 - x)Q = 1 + (R - 1)JC* - ftt"+1. Computing the coefficients of xk+n~l, ^+n and 
^+n+i m ^ j _ x )gp 5 w e find that there are at least two sign changes among the coefficients. 
Hence QP is not unimodal. 

If 1 > cik+\ J a/c, replace P by xdP(x~l ), find Q\ as in the preceding paragraph, and set 
Q{x) = Qx{x~x). m 

One (of several) obstructions to extending our results to several variables is that as 
far as we know, there is no notion of strongly unimodal (and a corresponding defini
tion of unimodal) for which Proposition 1.5 would hold, even assuming that the same 
monomials appear in P and Q. 

Let P be a normalized Laurent polynomial with positive coefficients, with correspond
ing random variable, X. We define the fluctuation of P or X, via 

T(P) = ZlXl~Xl+l1 

P(i) 

where P = £ A/x7. This is also just the ^-norm of (1 — x)P/ P(l), and in the unimodal 
case, it is simply 2maxA;/P(l). 

Recall from the introduction that PN,t = n^r+i Pf, XN,t is similarly defined. The fol
lowing is a translation of Mineka's Theorem to our notation. 

THEOREM 1.6 (MINEKA'S THEOREM [MI]). Let { Pt} be a sequence of Laurent poly
nomials with no negative coefficients. If 

J2(2 - KPi)) = oo, 

then for all integers t, J:(PN,t) tends to zero as N tends to infinity. 

LEMMA 1.7. (a) IfP is a strongly unimodal Laurent polynomial with P{\) — 1 and 
maximum coefficient a, then 

a>(l-r(P))/(l + r(P)). 

(b) Suppose that {Pi} is a sequence of strongly unimodal polynomials such that 
E r{Pt) = oo. Then for all t > 0, 

r(Pt • P,+i Pt+N) ^lasN-^oo. 

PROOF, (a) Without loss of generality, we may assume (P,x°) = a. From strong 
unimodality, 

(P,^) > OP,y+1) 

Thus the total mass to the right of 0 is bounded above by the geometric series 

r(P) 
a • { r(P) + r(Pf + r(Pf + • • • } 

( l - r ( P ) ) ' 
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Combining this with the left side of the distribution, we obtain 

(b) As £?>, APi) — oo for any f, we may assume that t is 1. By part (a), it suffices to 
show max{ (PN,0,xi) \ i G Z} tends to zero as N becomes arbitrarily large. By Mineka's 
theorem, 1.6, it suffices to show £/(2 — J-(Pi)) = oo. Suppose P is strongly unimodal, 
P(l) = 1, and a = max{ (P,**')} (so J(P) = 2a). By the preceding, 

l-a>r(P)/(l + r(P)). 

Now since 0 < r(P) < 1, 

- E(2 ~ !F(P,-)) > £ r ( f i ) > - £ r(P,-). 
2 ZA ^ v 'V - z - ( 1 + r(p.)) - 2 ^ v ^ 

This yields the result. • 

Now consider the case that P; = at + fc,ot (au bt > 0). Then PN>° = Px P2 PN 

is a product of strongly unimodal Laurent polynomials, and by 1.5, is itself strongly 
unimodal. We may assume at + bi — 1; then c(Pi) — ai(l — ai). Moreover, r(Pi) = 
min{ at/ (1 — at), (1 — aï)/ #/}. Thus if £ c(P;) diverges, so does £ r(Pt). On the other 
hand, if £ r(Pt) diverges, we may assume at < 1 — at for all / (by taking a suitable di
vergent subsequence and interchanging x and x° throughout if necessary). Then c(Pi) > 
j$r(Pi), so that £ r(Pt) diverges if and only if £ c(P,) does. Suppose that £ c(Pi) di
verges. By 1.7, given t, there exists n(t) such that r(Pt+\ • Pt+2 Pt+n(t)) > \- Thus 
we may telescope (block) the P/'s, via 

Q\ — P\ 'Pi Pn(\), 

Ql — Pn(l)+1 Pn(2), 

Qt — Pfi(t-l)+l Pn(t), 

to satisfy the following conditions: 

(i) r ( f t ) > 5 for all f; 
(ii) each Qt is strongly unimodal. 
By 1.1, c(Qt) > 2/ 25 for all t. Hence { Qt} satisfies the hypotheses of 1.4, and thus is 

strongly positive. This obviously implies that the original sequence { Pt} is also strongly 
positive. We thereby have deduced: 

If Pi = ai + biX, with a-u bi > 0 and 

(t) E t o T ^ = 00' 
then { Pi} is strongly positive. 
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Now we apply the Superposition Lemma (1.3). Let {Pt} satisfy £ c(P,) = oo. De
compose P( according to the definition of c. On choosing any path k (in K, see the proof 
of 1.3), the sum of the c(T^(j)j)ys along that path—that is, £i</<oo c(T(k(j)j))—diverges. 
Here we have taken the Ts as the linear terms arising in decompositions of P, (from the 
definition of c(P/)) for example so that 

min{ c ( r f J ) | 0 < y < M ( i ) } >\*Pi\ 

Then (f) yields via 1.3: 

THEOREM 1.8. Let {Pi} be a sequence of Laurent polynomials with no negative 
coefficients. / f £ c(P/) — oo, then {Pt} is strongly positive. 

The converse is not quite true: Set P^i = x3 + x + 1 and P2/+1 = x3 + x2 + 1 for all 
/. Then c(Pi) — 0; however, the sequence is strongly positive, because Qt — P2/P2/+1 is 
gapless and £ c(Qd = 00. 

It is routine to show that if {P;} is strongly positive, then there is a blocking (tele
scoping) of the P/'s, { Qt}, so that £ c(<2?) = 00, and the c(Qt) are arbitrarily close to 
1/4 (in any case, c(P) < 1/4). However, this is not particularly useful, as it is usually 
quite difficult to find the right blocking. 

COROLLARY 1.9. Suppose {Pi} is a sequence of unimodal Laurent polynomials 
such that £ r(Pi) — 00. Then {Pi} is strongly positive. 

PROOF. By 1.1, c(Pi) > (4/ 25)r(P/) so £ c(P/) = 00; now 1.8 applies. • 
The converse of 1.9 does not hold in general, but will hold if the Pt are either all 

strongly unimodal or of bounded total degrees, as we shall see in Section 2. Here is an 
easy example, previewing (rather coarsely) some of the subtle phenomena associated 
with symmetric unimodal polynomials which will be studied in Section 3. 

EXAMPLE 1.10. Let d: N —• N be a function, and define a sequence of polynomials, 

Pt = i2+ £ &+x-J). 

Then r(Pi) = 1/ /2, so that £ r(Pt) converges (as does £ c(Pi)). First consider the case 
that d(i) = i3. Set Qt = P2/ • P2/+1; we see that each Qt is still unimodal (the product 
of symmetric unimodal polynomials is also unimodal), and r(Qt) is approximately 1/ 2/. 
By Corollary 1.9, { Qt} is strongly positive, and therefore so is {Pi}. In Section 3, we 
shall see that d(i) = i3 can be replaced by d(i) = i, and the sequence of P/'s will still 
be strongly positive, but this will fail if d(i) is asymptotic to // 3. In the case of d(i) — i, 
there is no obvious telescoping (as there is with d(i) = /3) that will yield a sequence 
which is easily seen to be strongly positive. • 

Corollary 1.9 extends via the Superposition Lemma to sequences of random variables 
which need not be unimodal. Let fAf(P) denote the set of local maxima; that is, the integer 
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k belongs to M(P) if (P,xk) is greater than or equal both (P,y°+1) and (P ,y o _ 1 ) . Set 

rrm • I (P>*°+1) (fi**»"1)] C ( ") = nun max < :—, : — >. 

For example, if 

P = 1 + 3x + Ix2 + 5x3 + JC4 +x 5 + -jc6, 
2 

then C(P) = min{ max{ 1/ 3 ,2 / 3 } , max{ 2 / 5 ,1 / 5 } , max{ 1,1/ 2} } = 2 / 5. 

If we apply the definition of C(P) and use the decomposition method occurring in the 

proof of 1.1, together with 1.3 (the Superposition Lemma), we see that 1.9 yields that 

£ C(Pt) — oo is sufficient for strong positivity. We record this more general criterion. 

THEOREM 1.11. Let {Pi} be a sequence of positive Laurent polynomials such that 

£ C(Pi) diverges. Then {Pi} is strongly positive. 

In general, it is quite difficult to calculate c(P) (although rough estimates are usually 

sufficient), but C(P) is readily determined. Moreover, £ c(Pt) = oo implies £ C(Pt) = 

oo. To see this, regard the polynomial as a chain of increasing and decreasing sequences 

of its coefficients; use Lemma 1.1 for the local monotone sequences and show there 

is a K for which KC(P) > c(P) for all P. The converse, that £ C(Pf) = oo implies 

£ c(Pi) — oo, is also true, having been proved by Alan Kelm, one of our students (DH). 

If each Pi is unimodal, then £ C(Pd, £ c(Pt), and £ r(Pt) simultaneously diverge or 

converge. In 1.10, we saw some examples of sequences {Pt} of unimodal polynomials 

which are strongly positive, but for which £ C(Pd converges. However, those sequences 

for which the sum diverges possess a peculiar stability property under a wide range of 

perturbations. Let A denote an infinite sequence (indexed by Z), A = (A(/)) such that 

A(/) > 0 for ally, and A(/) = 1 for all but a finite number of j . We define the transforma

tion induced by A, to be the transformation that sends a Laurent polynomial P — £ ccjjj 

to P = £ A(j)ccjXj. Define the index of A to be p(A) = inf{ A(/)/ A(fc) \j,keZ}. 

COROLLARY 1.12. Suppose that { Pi} is a sequence of positive Laurent polynomials 

with £ C(Pi) = oo, and that { A/} is a collection of sequences, each as described above, 

with p(A/) = pi. IfY,piC{Pi) — oo, and if {/*'} is obtained from the transformation 

induced by A/ on Piy then {P'i} is also strongly positive (and satisfies £ C(Pj)) = oo). 

In particular, this holds if{pi} is bounded below. 

PROOF. It is an immediate consequence of the definitions that C(P/
i) > piC(Pi). • 

Not all strongly positive sequences are insensitive to this type of perturbation. We 
shall see in Section 3 that if P/ = i2 + T,\<j<i(xJ +x~J), then {Pt} is strongly positive but 

the sequence {/^} defined via 

\<j<i 

(obtained from the sequence A/ = A, where A(0) = 3, and A(/) = 1 for all other values 

of j) is not (3.9(c)). Thus sequences which are strongly positive because £ C(Pi) = oo 
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can be perturbed in quite drastic ways without losing strong positivity; sequences which 
are strongly positive may in general lose this property even under mild perturbations. 

In the Introduction, we defined a polynomial P or its corresponding X to be e -convex 
(for a positive real number e < 2) if 

for all integers;, Pr(X = j + 1) + Pr(X =j-l)>(2-e) Pr(X = j). 

If {X(} is the sequence of random variables corresponding to {Pi}, then we defined 
{ Xt} to be strongly positive if for all integers k and positive real numbers s, there exists TV 
so that the sum of N consecutive random variables beginning with X^+x (denoted £#,*),ls 

£-convex. This is a particularly strong form of local flatness. Now we prove the analogue 
of Mineka's criterion in the context of strong positivity. A consequence of the following 
is that { Xt} is strongly positive if and only if the corresponding sequence of polynomials 
is strongly positive. 

COROLLARY 1.13. Let { Pi} be a sequence of Laurent polynomials with no negative 
coefficients and { £/}, such that each Pi is erconvex. Then { Pi} is strongly positive if 

J^(2 — Si) diverges. 

PROOF. We show that CiPd > \{2 — £;), so that Lll will apply. Let j be an ele
ment offM(Pi) (the set of local maxima), and write Pi = J2 fl/,***. Then CLQ-X + atj+\ > 
(2 — £i)ciij, so at least one of the ratios fl/j-i / CIQ, CHJ+I / ciij must be at least as large as 
\{2 ~ et). 

2. Harmonic functions, states, and dimension groups. In this section, we dis
cuss harmonic functions and their relatives, primarily as obstructions to strong positiv
ity. There is a natural one-parameter family of harmonic functions on the random walk 
{Xt}, consisting of "point evaluations", corresponding to points in R+U { oo}. For strong 
positivity to occur, it is necessary (but not sufficient) that all of the point evaluations be 
pure (extreme), and that all pure harmonic functions arise as point evaluations. (We ac
tually work with a slight generalization, called [0, oo]-valued harmonic functions.) The 
most natural point evaluation is that at 1, and this is pure if and only if the conclusion 
of Mineka's theorem holds (2.5). By means of reparameterization, Mineka's theorem 
gives rise to a method to decide whether an individual point evaluation is pure (as in the 
Examples following 2.5). In general, the criterion only determines sufficient conditions. 
However, if X, are all unimodal, Mineka's criterion also gives necessary conditions, even 
though the reparameterized random variables need not be unimodal themselves. 

When a point evaluation is not pure, by definition, it can be decomposed into a com
bination of other harmonic functions (which are not point evaluations). One extreme 
situation arises when there exists a sequence of positive real numbers { at} so that the 
infinite product n ^ i ^"(z)/ a* converges (in the usual sense of infinite products) on an 
annulus or disk in C> Let F denote the limit function. Each coefficient of its Laurent 
series expansion (about the origin), gives rise to a harmonic function, yielding a family 

https://doi.org/10.4153/CJM-1992-001-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-001-6


POSITIVE POLYNOMIALS 17 

of harmonic functions indexed by Z or N (the latter for convergence on a disk). If F(r) 
exists for a fixed positive real number r, the point evaluation at r decomposes into a con
vex linear combination of members of this discrete family. In some cases (e.g., if the Pt 

are strongly unimodal or unimodal of bounded total degree, and £ r(P/) < oo)), this 
single discrete family constitutes all of the pure harmonic functions (4.4). In other cases, 
the pure harmonic functions include numerous discrete families in addition to all of the 
point evaluations. Of particular interest is the fairly sharp dichotomy in the symmetric 
unimodal case (2.7). 

For our purposes, a (space-time) harmonic function on the random walk arising from 
{Xt} is a nonzero function h:Z xN —• R+ satisfying the compatibility conditions: 

(t ) h(j, n) = £ > ( / + M + 1) Pr(X„+1 = *) 
kez 

(formally, h(j,n) = Jzh(j + k,n + l)dXn+](k)). We usually insist that h(j, 1) > 0 for 
some j in the support of X\, and then normalize (dividing by a scalar) so that 1 = 
£/z(&, l)Pr(Xi = k). For each positive real number r, there is a naturally occurring 
harmonic function, given via the formula 

hr(j, n) = 
P\ Pi Pn(r) 

This arises from evaluating the rational function.*7'/ Pi • Pj Pn at r, hence the name 
"point evaluation". These are often known as "space-time" harmonic functions; since we 
are not assuming the process is stationary (X/ equal to each other), there is little likelihood 
of confusion with spatial harmonic functions. This interpretation will be more concrete 
when we define the dimension groups associated to the random walk. Point evaluations 
are automatically normalized, and we may let r tend to 0 or to oo. In this case, the limit 
functions are not everywhere defined, and this motivates the following definition. 

We say h: Z x N —•» R+ U { oo} is a [0, oo]-valued harmonic function if (i) it satisfies 
(\ ), (ii) for ally in the support of Sn$, we have h(j, n) < oo, and (iii) for at least one such 
y, we have h(j, n) > 0. These can be thought of as harmonic functions finite on a suitable 
cone in Z x N. We usually normalize as for harmonic functions. Typical examples (and 
in the strongly positive case, the only pure examples) which are not harmonic functions 
are "evaluation at 0", and "evaluation at oo", given respectively by 

and 
r4 

r* 

• Pn(r) 

noo\J, n) — urn 
r-^oo P] • P2 • • • • 

• Pn(r) 

(These pick out the coefficients of the terms of lowest and highest degrees in 
P\Pi Pn and are finite on the cone { (/, n) \ j G Log Pi Pn}.) Finally, 
there is the notion of an extended [0, oo]-valued harmonic function: h satisfies {\ ), and 
there exists j in the support of Sn$ such that 0 < h(j, n) < oo. This is used only in one 
result, a formal characterization of strongly positive sequences (2.1). 
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All of these concepts translate to the theory of dimension groups and Choquet theory. 
Regard the algebra of Laurent polynomials, R[x,x-1 ], as a partially ordered (real) vector 
space with positive cone 

R[JC, x~x ]+ = {PG R[JC,X_1 ] | P has no negative coefficients}. 

Then multiplication by any P in R[x, x~x ]+ is a homomorphism between partially ordered 
vector spaces. If { P/} is a sequence of elements from R[x,x_1 ]+ , we may take the direct 
limit, as ordered vector spaces, 

5({P /}) = l i m R [ x , x - M - ^ R [ ^ ^ 1 ] i ^ R [ ^ ^ 1 ] ^ - - -

= {f/Pi-P2 Pn\f£R[x,x-1]}, 

and with the latter realization (as a vector space of certain rational functions), the positive 
cone is given by 

S({Pl})+={f/Pi-P2 Pn\f-Pn+i Pk E R[x,x-1]+ for some k> n.} 

Of critical importance is a certain ordered subspace of S({P;}), called P({P;}). This 
consists of the rational functions that are bounded by a multiple of the constant function, 
with respect to the relative ordering: 

*({ f«}) = {f/Pi-Pi Pn\ Log/ Ç LogP! • P2 Pn} 

R({Pi}f = R({Pl})nS({Pi})+. 

It is routine to verify that the constant function u—\ satisfies: 

For all elements g of R({ Pi} ), there exists an integer M so that — Mu < g < Mu. 

An element of a partially ordered vector space (or abelian group) with this property is 
called an order unit. A state on a partially ordered vector space is a nonzero real-valued 
group homomorphism sending the positive cone into R+. If the ordered vector space ad
mits an order unit u, we may normalize the state 7 by replacing 7 by 7 / 7 (u). A state is 
pure (or extremal) if it cannot be expressed as a non-trivial positive linear combination 
of distinct states; if the state is normalized, "convex linear" replaces "positive linear". 
Similar definitions apply to harmonic functions, as well as [0, oo]-valued harmonic func
tions. 

As S({Pi}) is a limit of lattice ordered abelian groups, and R({ Pi}) is an order ideal 
therein, they are dimension groups [El], [EHS]. We shall use a characterization of purity 
for states of dimension groups later (Theorem 2.5). For details, see any of the standard 
reference works, e.g. [G], [Ef]. 

It is completely routine (using the Riesz interpolation property) to verify that there 
is a natural correspondence between the states of 5({P,}) and the harmonic functions 
associated to {X;} ; they are related via 

/iO',n) = 7 ( V / P 1 - P 2 Pn). 
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The same correspondence holds between (normalized) [0, oo]-valued harmonic functions 
and states on P({P;}), normalized at u — 1. In both cases, purity is preserved by this 
identification of functions with states. 

A convex directed subgroup of a partially ordered abelian group or vector space is 
called an order ideal of the larger object. Then the extended [0, oo]-valued harmonic 
functions correspond with states on order ideals of R({Pi}). 

As there is a great deal known about states on vector spaces (see for example, [A], 
[AE], etc.), we shall deal almost entirely with states rather than harmonic functions and 
their generalizations. However, the correspondence above is complete, so the reader may 
freely translate between the two notions. 

The states corresponding to point evaluations are given simply by evaluation of the 
rational function at the indicated point, i.e., 

Irif/Pl Pi Pn) = (f/P\-P2 Pn)(r), 

and the states, 7o and 7oo on R({Pt}), are precisely the two limiting states. We note 
that these two states are always pure (for arbitrary {X/}). However, point evaluations 
need not be pure, and we shall give necessary and sufficient conditions for their purity. 
Theorem 2.1 below is a straightforward consequence of [EHS, 1.4]. 

A Laurent polynomial P isprojectively faithfuliï the set of differences Log P — Log P 
generates the standard copy of Z in R as an abelian group. A sequence { P,} is projec
tively faithful if for all /c, 

U (Log/>"'*-Log P"'*) = Z. 
n 

As was pointed out by Alan Kelm, this is strictly stronger than requiring only a telescop
ing so that every term is projectively faithful (which was our original definition). 

THEOREM 2.1. Let { Pt} be a sequence of Laurent polynomials with no negative co
efficients. If {Pi} is strongly positive, then every pure extended [0, oo\-v alued harmonic 
function is a point evaluation or a limit (restricted to the appropriate domain) of such, 
and all of these are pure. Conversely, if the sequence is projectively faithful and every 
pure extended [0, oo]-valued harmonic function is a point evaluation or a limit of such, 
then {Pi} is strongly positive. 

In particular, if { P/} is strongly positive, then all point evaluations are pure, and all 
pure states (pure [0, oo]-valued harmonic functions) are point evaluations. These condi
tions are not sufficient for strong positivity: consider the case that Pz = P — 1 + x + x3 

for all /; then all pure states on R({Pi} ) are point evaluations and all point evaluations 
are pure, but the sequence is not strongly positive, because ( 1 + x + x3)m • ( 1 — x + x2) has 
a negative coefficient for all m. 

On the other hand, if the Pt are unimodal, then sufficient for strong positivity is that 
all pure harmonic functions be point evaluations (no "[0, oo]" is necessary). 
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In any event, the presence of pure states (of R({ Pi} )) that are not point evaluations is 
an obstruction to strong positivity. One particularly interesting source of these obstruc
tions arises from a possible convergence of ratios phenomenon, which we now inves
tigate. We can obviously replace each Pt by a scalar multiple of itself, Pi/ at (typically 
at — P/(l)), or multiply each Pt by a monomial inx, say xk{l\ Any sequence of such mod
ifications of {Pt} is called a regularizing process. Abbreviate Pn,° — P\ - Pi Pn 

to P(n\ Suppose that for ally, after a possible regularization, 

. i m ^ exists and equals a, 

Define a formal (Laurent) power series 

For each y such that a7 is not zero, we may define a state or states on R({Pi} ) by tele
scoping the Ps and then setting 

yj {-rrl = lim 

\Plri) m-+o 
(P(m+n\x°) 

Without a suitable telescoping, the limit need not exist. Now suppose that the Laurent 
series F converges on the annulus ro < \z\ < RQ, where either inequality may be weak
ened to less than or equal and 0 < r0 < RQ < oo. Then 7J has the simpler and explicit 
form (not requiring telescoping) 

y < * > = 7 7 ^ for h eR({Pi}) 

(The inner product notation is extended to power series.) By the standard Laurent series 

representation, for positive real r within the annulus of convergence, h¥{r) — 

£(F, xj)ri/yj(h)J and so if the state given by point evaluation at r is denoted 7r» we deduce 

This expresses lr as a a -convex combination of the states 77. It is routine to verify that if 
F actually converges, then none of the 7J can be point evaluations (except when y = 0). 
Thus we have deduced: 

LEMMA 2.2. If the formal Laurent series F converges on an annulus containing r, 
then the state corresponding to point evaluation at r is a a -convex combination of the 
states 77 arising from F. In particular, point evaluation at r is not a pure state. 

There may be several or even arbitrarily many Laurent series associated to a single se
quence { Pi} (different regularizations may be used), with disjoint annuli of convergence. 
If each Pi is strongly unimodal, the convergence phenomenon is very well behaved; this 
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remark is also valid if the sequence of total degrees of the P/'s is bounded; we define the 
total degree of a Laurent polynomial P or its corresponding random variable X as 

max{y G Z | Pr(X - j) ^ 0} - min{y G Z | Pr(X - j) ^ 0} . 

LEMMA 2.3 A. Let { Pi} be a sequence of Laurent polynomials for which there is a 
bound on the total degrees. Suppose that after some regularization, Y[Pt(z) converges 
(absolutely) in a disk (in the complex plane) containing a positive real number. Then 
convergence occurs on all ofC\ { 0}. In particular, no point evaluations are pure. 

PROOF. Suppose that convergence occurs in a disk of radius è containing the pos
itive real number ro. By reparameterizing, we may assume that ro = 1 (with S dilated 
accordingly). Let dt denote the minimal exponent occurring in P,-, and A the maximal 
one. So sup {A — di} is bounded. If convergence occurs, we claim that both {di} and 
{A-} must be bounded. To see this, we may first suppose that P,(l) — 1, so for real 
z > 1, Pi(z) > zdi (if di > 0). Hence |P,-(z) - 1| > zd'- 1 > 0. We conclude {dt} must 
be bounded above. 

Hence D = sup { A } and d = inf {di} exist. Set e — D — d, and observe that 
the norm || \\$ on Re given by (n , r 2 , . . . ,re) H-> sup{ | EO-i+^l | |^ — 11 < ^ / 2 } 
is equivalent to the Z1 norm (because all norms are equivalent). Hence there exists a 
positive number K such that E | ^ | < 1̂1 (rj)\\è • It follows immediately from the uniform 
convergence of £ | Pt(z) — 11 (on a small disk) that the sums of the individual coefficients 
converge as well—but this forces convergence of £ | Pj(z) — 11 on all of C\ { 0}. • 

For P a Laurent polynomial with no negative coefficients and À a positive real number, 
recall the definition of the reparameterization ofP at X, P(X •), obtained by replacing xj 

by (Xxy. We say that P is unimodal at X if P(X •) is unimodal. This is equivalent to 

A & I J < a G R ;— > — > r—r ) • 

By 1.5, P is unimodal at all À if and only if P is strongly unimodal. If { Pi} is a se
quence of Laurent polynomials with no negative coefficients, we say that it has a common 
interval of unimodality if there exist positive real numbers a < b such that for all A in 
the interval [a, b], each Pt is unimodal at A. For each such A, r (P/(A •)) is defined. 

LEMMA 2.3B. Let { Pi} be a sequence of Laurent polynomials admitting a common 
interval of unimodality [a, b]. Suppose that E r(P/(A •)) < oo for one value ofX in the 
open interval (a, b). Then there exists a sequence of integers { n(i)} so that if Qi — jf^Pi, 

TT ^ \ —7T converges uniformly on the disk a < \z\ < b. 

Y(G/(A-),*°) 5 " 

PROOF. By reparameterizing, we may assume that A = 1, so that a < 1 < b. On 
multiplying each P; by a power of x depending on/, we may assume that (P,,*0) > (P/,^) 
for all k—this defines n(i). Since £ r(Pi) < oo, it follows that for all but finitely many 
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< (K + K')r(Pi) 

values of /, r(P/) < min { 1 / b, a}. Discard those P7 for which r(Pj) > min { 1 / b, a}. 
We note that (P/,JC -1)/Z? < (P/,JC°) > b(Pi,xx), so that a local maximum occurs at 0 
for Pi(b-). Since the latter is unimodal, the maximum occurs at 0. Hence for k > 0, 
{Pi^)bk < (P / ,**- 1 )^ 1 < • • • < (Phx

l)b. Thus (P/,JC*) < fc1"*^,,*1). Similarly for 
& < 0, (P,-,**) < Û T * - 1 ^ , - , * - 1 ) . 

For z a complex number, 

\P,{z)~(Pi,x")\<bY:{\z\lb)k{Pi,x
x)+a^YJ{\z\la)k{Pi,x-'). 

k>0 k<0 

Now divide by (P/,JC°); note that (P^^^/CP/,^0) < r(Pt). If \z\/b < 1 a n d | z | / a > 1 
(that is, a < \z\ < b), we deduce 

1 Piiz) 
|(P„*°)' 

where K and K' are constants (and |z| is fixed). As £ r(Pi) < oo, the infinite product 
converges. • 

COROLLARY 2.3C. Let { Pi} be a sequence of Laurent polynomials admitting a com
mon interval of unimodality [a, b]. Then { Pi} is strongly positive if and only if for one 
(hence any) value ofX in the open interval (a, b), J2 r(P/(A •)) = oo. 

If there is only a single point À at which all the P, are unimodal, then we may assume 
that all the P; are already unimodal, by the obvious reparameterization. Proposition 2.6 
gives a result about the pure states in this case. 

Now we give some examples. After the purity criterion is established (2.5), we shall 
discuss more fully the purity of point evaluation harmonic functions. 

EXAMPLES 2.4. 

(a) Set Pi = i1 + x + • • • + xl. Then n Pi/ i2 converges on the open unit disk; nowhere 
else is there even a regularization under which the infinite product will converge. 
It follows that for 0 < r < 1, point evaluation at r is not pure. Purity of the other 
point evaluations will be discussed prior to 2.6. 

(b) Set Pi = i3 +x + - - + xl. This time, IIP// i3 converges on the closed unit disk, 
and so the point evaluations in the interval (0,11 are not pure. 

(c) Let Pi — 1 + jx + x2 + x3; then ot\ = lim(P(rt),x1)/ (P(n),jc°) exists (and equals 
7T2/ 6), but #2, a3 , . . . do not exist. Consequently, there is no Laurent series ex
pansion. Nevertheless, ct\ does yield a state; it is pure and not a point evaluation. 
In this example, all the point evaluations are pure, as we shall show later. 

(d) Suppose that Pt = i + \(x + x2 + • • • + x'2) + x2'(I + i2x). We note that for 
\z\ < 1, IIPi(z)/i converges absolutely, whereas for \z\ > 1, the same holds 
for n.(z~2'~])Pi(z)/ i2. Hence all point evaluations except that at 1 are not pure 
(we are excluding the evaluations at 0 and oo from this discussion). 

(e) Set Pj = 1 +JC/ i2+ilxl(\+ix). The formal Laurent (power) series F(z) = E/>o &j^ 
exists but does not converge anywhere. We see that for j a fixed positive integer, 

(p(n),y')/(p(n),jc°) 
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converges (as n increases), because only finitely many of the large coefficients 
contribute to the numerator. Thus we can define 7y as we did earlier (formally), 
and it is routine to verify that none of them can be a point evaluation (except 
7°, which is point evaluation at 0). It is easy to check directly that F converges 
nowhere; this will also follow once we prove all point evaluations are pure, 

(f) Set Pj = 1 +JC2' , so that P(rt) = 1 + x + • • • + Jt2"~1. As every monomial in P(n) is 
attained by a unique product of terms, it is straightforward to see that the pure har
monic functions are in natural bijection with the Boolean space { 0,1} N. There 
is no convergence of infinite products here and none of the point evaluations can 
be pure. 

We now obtain the relevant purity criterion for point evaluations. We shall show that 
point evaluation at 1 is pure if and only if the flatness condition from the conclusion of 
Mineka's theorem holds. A necessary and sufficient criterion for purity of the other point 
evaluations then follows from reparameterization. As for evaluation at 0 or oo, it is easy 
to verify that they are always pure. 

Recall the definition of !F(P) from Section 1. It is immediate that J-(P) = 
|| (1 — JC)P|| /P(\) (using the ll norm), and that !f(P) can also be computed as twice the 
sum of the local maxima (among the coefficients of P) less twice the sum of the local min
ima. Let P = £ \jjé and suppose that P(l) = 1 ; then define I\ (P) — £ min { A/, Xj+\}. 
Clearly, 21 \ (P) + 7(P) = 2. Similarly, define Ik(P) = £ min { A/, Xj+k } , and observe that 
2h(P) > 2 - knn 

THEOREM 2.5. Let {Pi} be a sequence of Laurent polynomials with no negative 
coefficients. Suppose that 

(2) lim Jr(PNk) = 0 for all positive integers k. 
N—>oo 

Then point evaluation at 1 is apure state ofR({ Pi} ) andofS({ Pi} ), and the correspond
ing harmonic function is pure, even when viewed as a [0, oo]-valued harmonic function. 
Conversely, if the sequence {Pi} is projectively faithful, then purity of point evaluation 
at 1 entails that (2) hold. 

PROOF. Since R({ Pi} ) is a dimension group admitting an order unit (the constant 
function 1), by [GH, 3.1(b)], a normalized state is pure if and only if 

For all a and b in /?({/>,-} )+ and for all e > 0, there exists z in R({ Pt} )+ 

* suchthatz<a, z < b, and7(z) > min{l(a), 1(b)} - e. 

We proceed to verify the criterion when 7 is point evaluation at 1. Obviously, we may 
assume that P/(l) = 1 for all /. Given a and b as indicated, we may also assume that 
1(a) = 1(b): if A = 1(b)/1(a) > 1, find the z corresponding to the pair a and bj X ; 
the same z works for a and b. 

Now we may assume a( 1 ) = b(\) = 1 andf^O) = 1 for all k. There exists an integer 
k so that a = f / P(k) and b = gj P{k\ where/ and g belong to Rfx,x~x ]+, and each of 
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Log/ and Log g is contained in Log P(/c). S inceP(k\l) = 1, we have that/( 1 ) = g(\) = 1. 
Write 

f ~Y1 V*7' 8 — X] M/-̂ ' where A/ > 0 and \i} > 0. 

Since £ Ay = EMy applying Riesz decomposition over the real numbers, we may find 
non-negative real numbers A;m (withy and m in LogP^) such that 

for ally, Ay = ^ A7-m and for all m, /im = ^ A/m. 
m y 

Select e > 0. For a pair (/,m), define elements of/?({P/})+, a/ = xj/ P(k) and am = 
xm/P(k). Their values at 1 are 1. We shall find zjm infl({P;})+ so that 0 < zjm < ah am 

and7(z/m)> 1 - e . 
Suppose that j < m. Choose M (depending on j and m) so large that for all N > M, 

(m — j)!F(PN,k) < 2s. Define a polynomial Cjm 

cjm = J2mm{(xJpN>k,xtl(xmPN\xt)} *xl 

tez 

for some N exceeding M. Then Cjm has no negative coefficients. Obviously, within the 
ordered vector space S({Pi}), cjm < xjPN>k and cjm < xmPN*. Let zjm = cjm/P{N). Since 
j and m belong to LogP(k\ Zjm belongs to R({Pt} )+, and obviously 0 < Zjm < 0/, #m- It 
remains to show that Z/m(l) > 1 — £, or equivalently, c/m(l) > 1 — e. 

Thus we must show 

YJmm{(xJPNÀ,xtl(xmPN^k,xt)} > 1 - e . 
/ez 

The sum is simply Im^j(PN,k)\ by the earlier comments, 

> l-e. 

Thus z/m(l) > 1 — e. Now define 

£ / j Zjm^jm 
{(j,m)<ELogPM xLogP^lrfm} 

Z — / j Zjm^jm 
j,m 

m j 

Then we have: 

m ^ j ' 

— 2-~i am*m 
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Similarly z < b. Obviously, z belongs to R({Pi} )+, so it remains to show that z(l) > 
1 — e. We observe: 

m j 

m j 

= (\-e)J2\j = \-e. 
j 

The criterion having been satisfied, evaluation at 1 is a pure state of P({P/}). Since 
R({ Pi} ) is an order ideal in S({ Pi} ) and point evaluation extends to a state on the latter, 
it routinely follows that the point evaluation state is also pure on S({ Pi} ). 

Now we prove the converse. Assume that evaluation at 1 is a pure state of R({Pi} ), 
and that the sequence {Pi} is projectively faithful; by telescoping and multiplying the 
Pi by monomials, we may assume that for all /, (Pt,x°) and (Pi,x] ) are greater than zero. 
Then for any fixed &, the rational functions ao = 1/ F*k) and a\ = x/ P^k) belong to 
R({ Pi} )+. From (J ), for some N > k, there exists Z=f/P(m in R({ Pt} )+ such that 

0 < z< ao,a\ and z(l) > \—e. 

As usual, we may assume that/ has no negative coefficients and Log/ C LogP^ . 
From//P (A° < 1//**>, we deduce that for some M > NJ • Pm / P{N) < jM / pto 
as computed with respect to R^jr1]""- Similarly, / • p M / p W < x • p(^/p(*). As 
R[x,x_1] is a lattice with respect to the usual ordering, the infimum of the two Laurent 
polynomials P (M)/ P^k) and x • P ( M ) /P W exists and is given by 

doi = Emin{(P ( M ) /P w , yX(xP ( M ) /P w , y )}y . 

By the lattice property,/ • Pm j P(A° < P (M)/ P(/:),xP(M)/ P(k) computed with respect to 
the ordering in R[JC,X -1]. On dividing by P ^ , we obtain (with respect to the ordering 
on 5({P/})), z < d0\/P

m < a0, ax. In particular, it follows that d0i/P
{M) belongs to 

R({ Pi} )+. Evaluating this inequality at x = 1, we deduce 

1 -e < Emin{(P (A#)/P (* ),A(xP (AI)/P (* ),^)} < 1. 
t<EZ 

The middle term is h (P{M)/P(k)), so that ^(P ( M ) / P(/c)) < 2e. • 
This criterion for purity of evaluation at 1 can be modified to obtain a criterion for 

purity of any point evaluation. To test for purity of evaluation at r on the sequence {Pi}, 
define the reparameterized polynomials Pi(r- ) by Pi(r-x) — Pi(rx). Then point evaluation 
at 1 is pure for {Pi(r- )} if and only if point evaluation at r is pure for the original 
sequence. Mineka's criterion is the standard test for sufficiency. While in general it is not 
necessary that £ 2 — iF(Pi) diverge, this is the case when all the P/ are unimodal (as we 
shall see after completing our discussion of the examples). 
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EXAMPLES (REVISITED). (See 2.4) 

(a) It remains to consider point evaluations at r > 1. The normalized reparameterized 
polynomials are (i2 + £/</xV) / (i2 + £7</ ^'). With r fixed, for almost all /, the 
maximal coefficients occur at j — 0, / and the only minimal coefficient occurs 
at y = 1. A simple computation reveals that at r — 1, we have that 2 — J-{Pi) 
behaves as 1 / /, so the sum diverges, while for r > 1, we find that 2 — ^F(P/(r-)) 
behaves as 1/r and again divergence occurs. By Mineka's criterion, the point 
evaluation states are pure for r > 1. We have already seen that they are impure 
fo r0< r< 1. 

(b) Essentially the same computations as in (a) yield that for r > 1, the point eval
uations are pure. We already knew that the point evaluations were not pure for 
0 < r < 1. In both cases (a) and (b), it turned out that if £ 2 - ^F(P/(r- )) < oo, 
then point evaluation at r is not pure; that is, the converse to Mineka's criterion 
holds. This is no coincidence—in both cases, the Pt are all unimodal (although 
of course, their reparameterizations are not). 

(c) Here 7(Pi(r- )) behaves as 2/ (3r), so that all point evaluations are pure. 
(d) We saw earlier that all point evaluations except possibly that at 1 are not pure. 

To test the remaining point evaluation, we compute 7(Pi) = 2 — 2/ (i + 1), so 
Mineka's criterion yields purity. 

(e) For all sufficiently large /, ^(P/(r- )) behaves as 2 — 2/ (n), so that for all r, the 
point evaluation at r is pure. 

As promised, the strongest possible converse to Mineka's theorem holds when { Pi} 
consists of unimodal polynomials; however, the converse does not hold in general— 
consider the sequence defined by means of P-u — 1 + x2 and P2/+1 = 1 + x3). 

PROPOSITION 2.6. (A converse to Mineka's Theorem, without blocking.) Let {Pi} 
consist of unimodal polynomials. For r a positive real number, the state given by point 
evaluation at r is pure if and only if 

either ]P 2 — !f(Pi(r-)) diverges or ^2 r(Pi) diverges. 

PROOF. If the sum of the ratios diverges, then {Pi} is strongly positive, and so all 
point evaluations are pure. If the other sum diverges, purity of the point evaluation at r 
follows from Mineka's theorem and 2.5. So assume that both sums converge for some 
r. We shall show that evaluation at r is not pure. In particular, r(P/) tends to zero, and 
we may assume that the maximum coefficient occurs at 0, that is, (P/,JC°) is the largest 
coefficient. It follows that for almost all /, the constant coefficient is a local maximum 
among the coefficients of Pi(r- ). We now argue in the case that r > 1 (if r < 1, repeat 
the argument below with Pi(x~]) replacing Pi(x)). 

Let P = T,-e<j<d PjXJ be unimodal with the constant term being its maximal coef
ficient. The local maxima among the coefficients of P(r- ) occur at those j such that 
(3j/ (5j-\ > 1/ r > fij+\ / (3j, and local minima occur when the inequalities are reversed. 
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> 

Denote by !M — Mr(P) the set of local maxima, and by m — mr(P), the set of local 
minima. If y belongs to 9vlr(P), it contributes 2/3/y'/P(r) to J-{P(r- )); if it belongs to 
rnr(P), its contribution is - 2 / 3 / ' / P(r). For; > 0, /3j-\ > /3J9 so that ft-V-1 > £/?/ . 
When y < 0, replace y — 1 by j + 1. In any event, 

2 - J(P(r- )) = * * 7
p ( r ) — 

r P(r) 

r P(r) 

Thus convergence of £ 2 — ^T(P/(r- )) entails that E ^r/Tffiv* ^ converges. This permits 

us to conclude that the infinite product, n ^ é p converges—meaning that it converges 

to a nonzero number. However, the coefficient of x° in 

P i ( r - ) P 2 ( r ) PN(r.) 

Pi(r)-P2(r) PN(r) 

is always greater than this number. This obviously contradicts ^F(Pi(r- ) • P2(r- ) 
/Mr-)) — 0 . 

If we specialize further, we can obtain sharper results. Let us additionally assume that 
each Pt is increasing at r; say each P, is increasing on the interval / = (ri,r). (Note 
that P( is unimodal and its maximum coefficient is the constant term, so this condition 
is not automatically satisfied.) For example, if P is symmetric about the origin (that is, 
(P,xy) = (P,x~j) for ally), then P is monotone increasing to the right of 1. Suppose 
that E 2 — y-(Pi{r- )) converges. From the proof, this forces £ P|(r)^(

(^ to converge. 

Then for any r1 in /, we have that £ Pi<" p~ff,rX } also converges. If the complex number z 
belongs to the open annulus centred at the origin with radii r\ and r, it easily follows that 

Pi{z)-{Pj^) 
^ Pi(r) 

converges. From this, we deduce that the infinite product T[Pi(z)/ Pi(r) converges on a 
disk containing /. In particular, the point evaluations in / are all impure. If P; are all 
decreasing, then the corresponding interval of convergence is to the right of r. 

When each Pt is symmetric unimodal, the polynomials are monotone decreasing going 
to the left from 1 and monotone increasing to the right. Thus if r ^ 1 and evaluation at 
r is not pure, then (i) all the point evaluations in the open interval with endpoints 1 / r 
and r are not pure, and (ii) for every point in the interior, the infinite product converges. 
So there is an annulus of convergence for the infinite product, F; the annulus is centred 
at the origin and has 1 / r and r as its inner and outer radii (from the invariance of the 
polynomials under the involutionx \—* x~l). We summarize this discussion: 
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PROPOSITION 2.7. Let {Pi} be a sequence of symmetric unimodal polynomials. If 
the set 

D{{ Pt} ) = { r <E R+ | lr is not a pure state ofR{{ Pt} )} 

is neither empty nor all o/R+, then it must be of the form (1 / r, r) or [1/ r, r] for some 
real number r > 1. Moreover, the infinite product fl Pi(z)/ Pi( 1 ) converges on the centred 
annulus containing this interval, and on no bigger annulus. 

All of the possibilities discussed in 2.7 can be obtained. For this purpose (and also for 
Section 3), we define a T-function to be a symmetric unimodal polynomial of the form P 
where 

f h if/ = 0 
(P,jj)={ 1 i f l < l / | <d 

[ 0 if |y| > d 

for some integer d and positive real number h. The distribution of the coefficients has the 
shape of an inverted letter T. The number d is called the semi-width of P, and/* = 1/ r(P) 
is called the height. Any positive scalar multiple will also be called a T-function. 

Let {Pi} be a sequence of T-functions, with corresponding semi-widths {d(i)} and 
heights { h(i)}. We observe that 

J ] 2 — iT(/,i) converges iff J^ —— converges 
n\i ) 
/id) 

V 2 — ^{Piir- )) converges iff V -— converges (for r > 1). 

(In the latter case, note there are generically just two local maxima in the coefficients 
of Pi(r- )—at 0 and the right endpoint of the support, d(i).) By 2.7, the formulas above 
permit us to decide whether a given point evaluation is pure. 

EXAMPLE 2.8. We fix h(i) = i2 and choose d(i) so that the corresponding sequence 
of T-functions { Pi} will have the indicated intervals of impure point evaluation states. 
Brackets ([ ]) will denote the greatest integer function. 

(a) D({Pi}) = R. Select d(i) to satisfy d(i) = o(logi) (e.g., d(i) = 1). Then both 
sums converge, the latter for all r > 1, so the infinite product converges on the 
whole punctured plane. 

(b) D({ Pi} ) = [ 1 / r, r] for some r > 1. Set d(i) = [log,. / — 2 logr logr /]; one easily 

computes that £ ^- converges at r1 > 1 if and only if r1 < r. 
(c) D({Pi}) — ( l / r , r) for some r > 1. Set d(i) = [logr/]; the computation is 

straightforward. 
(d) D({Pt}) = {1} . Define d(i) so that for some e > 0, (ln/)1+e < d(i) < 

i/ (\ni)l+£. Then the second sum diverges for all r > 1, and all point evalua
tions at r ^ 1 are pure. However, the first sum is bounded by £ 1/ i(\ni)l+£ and 
so converges. 

(e) D({Pi} ) is empty. One might conjecture that in the (very special) case of sym
metric unimodal polynomials, if all point evaluations are pure, then the sequence 
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is strongly positive. If we consider two closely related choices for d(i\ namely 
d(i) = i and d(i) = [//In/], we see immediately that all point evaluations are 
pure. However, in the first case, the sequence is strongly positive (3.9(c)), while 
in the second, it is not (3.9(b))! These results come from the strong positivity cri
teria (applicable more generally to symmetric unimodal polynomials) developed 
in the next section. In fact, there is an extra family of pure states in the latter 
example, arising from limiting ratios not equal to 1. 

3. Strong positivity criteria for symmetric unimodal polynomials. In this sec
tion, we give sufficient (as well as some necessary) criteria for a sequence of symmetric 
unimodal Laurent polynomials, {Pi}, to be strongly positive. In the first section, we 
saw that for general unimodal polynomials, divergence of £ r(Pi) is sufficient, but not 
necessary. Here we assume that E r(P/) converges, and derive some numerical criteria 
which will guarantee strong positivity. In the case of T-functions (defined at the end of 
Section 2), some sharp criteria can be given. 

We present a reasonably effective criterion (3.4) for strong positivity of sequences of 
symmetric unimodal polynomials. This criterion is considerably improved in 3.6. In 3.8, 
we obtain necessary conditions for a sequence of T-functions to be strongly positive— 
these involve functions of the heights and semi-widths. In this case, we modify the dis
tribution (beyond the origin), and show that after multiplying the modified polynomials, 
the resulting ratio of the product is dominated by the ratio of the original product. 

Let P be a symmetric unimodal polynomial (with no negative coefficients). For a 
(small) positive real number 6, define S (P) to be the polynomial obtained from P by 
multiplying everything but the constant coefficient by 1 — 6, and leaving the constant 
term untouched; in other words, 

(HP)^) 
(\-8)(P,J) if i 7^0 

l(P,*°) i f /=0 . 

Define the following property for a sequence {Pi} (of symmetric unimodal polyno
mials): 

( I ) llttl ' — 7 : = 0. 

It is true in special cases that if {Pi} satisfies (J), then it is strongly positive, and 
we believe it is true in general. Although we cannot prove this, the "£" version of it is 
true (see Proposition 3.2), and in view of our subsequent computations, this is enough to 
obtain large classes of strongly positive sequences. 

For a symmetric unimodal polynomial P (not necessarily a T-function), let d(P) denote 
the semi-width of P, that is, max{ / G N | (P,x*) ^ 0},and h(P) will be the height, that 
i s , l / r (P) . 
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LEMMA 3.1. Suppose that the sequence of symmetric unimodal polynomials { Pi} i= j 
satisfies the following two conditions, where d(i) = d(Pi): 

(a) Viewed as a map on a finite set of integers, d is strictly monotone. 
(b) There exists a > 0 such that for all i and for 1 <j < d(i), (Pi,x^+] ) > a(P/,x;). 

jfUL^l < £ then ( /*"V) > - 1 ^ -

PROOF. Form the finite measure space K(i) = { — d(i),..., — 1,0,1,. . . , d(i)}, with 
measure obtained from the polynomial Pj—that is, the measure of {j} is (Pi,xj). Let 
K be the cartesian product of the first TV of the AT(/)'s. The product measure on AT is 
determined by p({k}) = n(/>/,**(/)), for k = (fc(l),*(2),..., *(#))• Let S: K —• Z 
denote the addition map, S(k) = Efc(/). Then 

(p (AV)= £ M({*}) = M(sh"10})-

Set ko = (0,0, . . . ,0), and let S' = S'] {0} \ {&0}, and for an integer t, let St = 
S~l ({t}). Define a map c/>_i with domain in S_i and range in S'. Chooser in S-\ such that 
if/ is the smallest integer for which k(i) = max{ k(j) | 1 <j<N}, then 0 < £(/) < d(i). 
Define </>-i (&) in Sf by replacing £(/) by k(i) + 1. Since the Pi are unimodal with maximal 
coefficient at the origin, /x({</>_i(k)}) < p({k})\ it follows that the measure of the 
domain of (/>_i is at least as large as the measure of its range. 

The elements of Sf not in the range of </>_i are precisely those k in S' for which the 
cardinality of {/ | k(i) — maxj<N k(j)} exceeds one. Define (f>\ on a subset of S\ as 
follows. Select k in S\ such that {/ | k(i) — max k(j)} contains just one element, and in 
addition the maximal value of k(j) exceeds one. If / is the unique integer for which k(i) 
is maximal, replace it by k(i) — 1. This yields (f>\(k) in Sf, and by (b), ap({(j)\(k)} ) < 
p({k}). Hence p,(rangeai) < a~l/i(dom</>i). 

We claim that S' = range (j>\ U range</>_i. If k is an element of S' and k(i\) = kfo) — 
maxk(j), then k(i\) > 0 and by (a), either k(i\) < d(i\) or kfa) < dfo). Select / such 
that k(i) = k(i\) and k(i) < d(i) and replace k(i) by k(i) + 1. This yields &i in Si and in 
the domain of (j>\ such that (j)\(k\) = k. 

Thus p(Sf) < p(range0i)+a-1/x(range<^-i) ^ (1+<*_ 1)M(SI) . Since (1—£)/X(5O) < 
/x(S') by hypothesis, we deduce ( P ^ , * 1 ) / (P(A°,JC°) > (1 - e) / (1 + 1/ a ) , as desired. • 

That the following was likely to be true with 6 = 0 was suggested by an anonymous 
probabilist. We do not know if this is the case, although it obviously follows when the 
hypotheses of 3.1 hold on setting TV = oo. Even when it is true, we cannot eliminate the 
e term that appears in 3.6 and 3.7. 

PROPOSITION 3.2. Suppose that {Pi} is a sequence of symmetric unimodal poly
nomials such that for some è > 0, {6 (Pi)} satisfies (J) (see page 29). Then {Pi} is 
strongly positive. 

PROOF. TO begin with, we show that (J ) persists when finitely many terms are 
deleted from the sequence. We define for integers no < n, 

un „> nU(f'-*°) 
\Pn0+\ ' Pno+2 Pn,*®) 
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We claim that if/(0, n) —• 0 as n —> 00, then for all no,f(no, n) —> 0 as n —> oo. 
To see this, we observe that 

__1 (/*">, *°) 

For symmetric unimodal polynomials P and g, it is immediate that (P(2,JC°) < 
Q(l)(P,x°). Setting P = /*")//*"<>) a n d g = j * * ^ w e h a v e that/(n0,w) < tf/(0,/i) 
where K depends only on no-

This permits us to delete any finite number of terms from the sequence. 
Now let P be any symmetric unimodal polynomial, and write P = 8(P) + 

5 E/>o(/>>*/')(*/' + x~J). We alter P to a symmetric unimodal polynomial P/ satisfying 
various properties; the idea is that the original sequence {P,} will be transformed into 
another one { P/

i} which satisfies the hypotheses of the previous lemma. The polynomial 
will satisfy: 

(i) Given an integer M > d(P), d(P/) e { M, M + 1} ; 
(ii) P satisfies condition (b) of the preceding lemma, with a =6/2; 

(iii) for all /, ( P V ) > (6(P\*)\ moreover, if d(P) < \i\ < d(P/l then (P/,x/) < 
6 • (P, xl ) / 2i+k-d(P) for some k < d(P). 

Set P° = è (P) and find the smallest integer i with 1 < / < d(P) for which (P°, JC1") < 
(P°,y-1) /2. Alter P° by adding min ( | ( P , ^ ) , ^(P0,^-1)} to the coefficients of V and 
x~l; then add exactly half this amount to the coefficients of x±('+1). Label the resulting 
polynomial P° and observe that it is still unimodal and the ratio of consecutive coef
ficients (P° , JCÔ/(P° ,^ / - 1 ) is at least 6/2 for 1 < j < i + 1. In the new P° find the 
smallest integer / exceeding the previous / such that (P0 ,JC /)/(P0 ,JC I _ 1) < 1/2. Add 
min | ^ 2 ( P , J C 1 ) , ^(P°,y -1)} to the coefficients of y and JC-' and add exactly half this 
amount to the coefficients of x±(l+l). Iterate this procedure until the resulting polynomial 
has degree M or M + 1, and call it P/. 

It is an easy verification that all of (i), (ii), and (iii) hold. What we have done is to 
redistribute some of the extra mass accruing from 6 • (P, xx ) of P over è (P). 

Now suppose that {6(Pi)} satisfies (J). Let Mi,M2 , . . . be a sequence of positive 
integers with the property that Mi > Mi+\,d(Pi) for all i. Using these as the integers 
"AT', construct P/

i with the process above. We note that the degrees of the Pf
i are strictly 

increasing, so in particular are distinct; moreover, each Pj satisfies condition (b) of the 
previous lemma. 

Now we show (in order): { P/
i} satisfies (J ); { Pf

i} is strongly positive; strong positiv-
ity of { P,

j} implies that of { P/}. 
We check that {P/

i} satisfies (J) as a consequence of {6(Pi)} satisfying it. We note 
that Pf

i = 6 (Pi)+Zi where Z, has no negative coefficients, is symmetric, and (Z/, x°) = 0. 
A simple computation yields that for all symmetric unimodal polynomials Q, we have 
(P;<2,jc°) > (^(P/)<2,JC0). It follows that (UP/i,x°) > (n^(P/),x°). Since (Pj,*0) = 
0 (P0, A ( t ) follows. 
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By the previous lemma, there exists an integer N SO that IT/L i P'i has ratio at least 8/4. 
By the first paragraph of this proof, we may delete the first TV terms from the sequence 
and repeat the process described above; hence there is a telescoping of {/^} such that 
each term has ratio 6 / 4. By Corollary 1.9, { /^} is strongly positive. 

Now we show strong positivity of { P^} entails that of {Pi}. Suppose that T and U 
are symmetric unimodal polynomials with no negative coefficients such that 

T= U-E(U,X])(X1 +x-x)-EXU,xk){xk+x-k) + s"(U,xl)(xl +x~l), 

where e" < e/2. (Note that Pf can be obtained from P by a sequence of such operations, 
with suitable choices of parameters.) We show that r(TQ) < r(UQ) if the latter is less 
than 1/4. We calculate 

(TQ,x°) = (UQ,x°) - 2e(U,xl)(Q,x1)- 2e'\U',xk)(Q,xk) + 2E"(U,X1)(Q,X1) 

(TQ,xl) = (UQ,xl)-e(U,xl)((Q,x°) + (Q,x2))-e\U,xk^^ 

+ E"(U^)((Q,X1+]) + (Q^-])) 

<(t/ô^1)-~(^x,)((Qy) + (a^))~e/(^yxa^"1). 

Thus r(TQ) < \^j)\_l and b < 4a. Thus the former is bounded above by the expression 

(UQ,xv)/(UQ,x°)=r(UQ). 
Iterating, we find that if Q is such that r(PQ) < 1/ 4, then r(P'Q) < r(PQ). If { P,} 

were not strongly positive, after removing finitely many terms from the sequence, we 
could assume that for all N, r{P\P2 •••PN)< 1/4. Thus 

\ > r(P\P2 •••PN)> r((PiP2 • ••PN-ÛP'N) 

> r((PlP2 • ••PN-2P'N)P'N_l) > • • • > rC"i • ••P'N). 

As {P'i} is strongly positive, there exists Af so that r(P/
l • • • P'N) exceeds 1/4; this is 

a contradiction. • 
We now show that the converse of 3.2 also holds. 

PROPOSITION 3.3. Suppose that {Pi} is a strongly positive sequence of symmetric 
unimodal polynomials. Then it satisfies (\). 

PROOF. We show that if 

n?=i (fi.*°) ^ n 
hm sup —T— ~- > 0 

n->oo (P(n\x°) 

then{P/} is not strongly positive. We first note that ( P ^ 0 , * 0 ) > (Pn+Ux°) • (P^n),jp); 
it follows that/(0, n) >/(0, n+1), where/is defined in Proposition 3.2. Thus the lim sup 
condition can be replaced by/(0, n) > è for all n. 
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If {P(} were a strongly positive sequence, there would be a telescoping 

Qi = P\m Pi ^W(D» 

Ql — Pm(l)+\ Pm(2), 

so that r(Qic) > 9 for all k, for some 0 > 0 (we can make 9 as close to 1 as we wish, 
but this is not important). To see this, note that any telescoping consists of symmetric 
unimodal polynomials. As remarked in the introduction, £-convexity is a consequence 
of theeventual nonnegativityof the product with a polynomial of the formjc+jt-1 — (2—e). 
This ensures that we can make the telescoped polynomials e -convex for arbitrarily small 
e. This translates to a ratio arbitarily close to 1 (look at the coefficients of x^1 and the 
constant term). We may thus write Qk = (ô*,*0) (l + 0 • (x + JC -1)) + Rk where Rk is a 
symmetric polynomial having no negative coefficients. It is immediate that 

(ne,./)sn(C...«°).(i^(f)). 

However, ( f[ Qk,x°) = (P(m(m,x°), and 

M M m(M) 

n (&,*0) - n (/*«<*»/J***-1»,*») > n (^*0)-
*=1 k=\ i=\ 

Therefore ( n ^ Qk,x°) < (lI*Li (Qk,x0)) / 8. We arrive at a contradiction if we 
choose M large enough that 1 /£ < 1 + 02 ( y ) . • 

For a sequence of symmetric unimodal polynomials { P,-}, let D(N) = T^L\ d(i) (re
call that d(J) = d(Pi) is the semi-width of Pt). We obtain a crude but useful criterion. 

PROPOSITION 3.4. Let { Pi} be a sequence of symmetric unimodal polynomials nor
malized so that Pi(\) = 1 for which there exists 6 > 0 such that 

(1) ^ >oo o s t f - o o . 

Then {Pi} is strongly positive. 

PROOF. We verify the criterion of Proposition 3.2. Note that (T16(PÏ),JP) > 
US(Pi)(l)/D(N) (the crudest possible estimate!), and ffiffffi = t ^ ^ ^ ^ ^ . Sub
stitute these into the reciprocal of the expression in (J ), and we are done. • 

In order to use the criterion of 3.4, it is sometimes necessary to truncate the polynomi
als, and this is permissible as a result of the superposition principal. This idea is refined 
in the proof of Theorem 3.6. If we restrict ourselves to sequences of T-functions (with 
semi-widths d(i) and heights h{i)) for the moment, the criterion amounts to deciding if 
for some e > 0, 

nf=1(i + (2-,)fn 
(f) - ï - ^ ^ - ^ o o a s # - > o o . 
K]J D(N) 
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Since point evaluation at 1 must be pure, a necessary condition for strong positivity 
is that £ d(i)/ h(i) diverge. If d(i)/ h(i) > O(l) (see Example 3.9(e), where d(i) grows 
at least exponentially), then the criterion in 3.4 is sharp. If d(i)/ h(i) = 0(1 / / ) (see 
Example 3.9(c) where d(i) grows polynomially), the criterion is useful but not sharp. 
In order to refine Proposition 3.4, we obtain estimates on the mass over certain large 
intervals. 

Let { Pf} be a sequence of polynomials with semi-widths d(i). For an integer k, define 
Dk:N->NbyDk(N) = £*-<* d(N- /) forN > L 

PROPOSITION 3.5. Let { Pi} be a sequence of symmetric unimodal polynomials with 
semi-widths d(i), arranged so that d:N —> N is monotone nondecreasing. Then 

"(É*l ^ w ) so ('-<•-«•'» • 35^i)) • 

PROOF. Fix q and renormalize all the Pt so that P,( 1 ) = 1. Let Q (depending on q, but 
this will be suppressed in the notation) be the polynomial defined by (Q,x?) = (F*q\x?) 
if |/| < Dk(q) and (Q9x*) = 0 otherwise. Thus Q{\) is the expression on the left. We 
estimate the total mass of QPq+\ in the interval [—Dk(q + \),Dk(q + 1)], by getting an 
upper bound for the mass outside this interval. 

Since all the polynomials are symmetric unimodal and since Dk(q) < Dk(q +1), the 
constant coefficient of Pq+ \ does not contribute to the mass beyond D& (q+1 ) in the product 
QPq+\. Similarly, since d(q + 1) < Dk(q+ 1), neither does the constant coefficient of Q. 
Hence the amount outside the interval is bounded above by 

2Q(1)((1 - (Pq+ux
0))/(2d(q+ l)2Dk(q)) 

times the mass obtained by convolving two indicator functions of intervals of length 
d(q + 1) — Dk(q + 1) + Dk{q) < d(q — k + 1) + 1. (The "2" in the numerator comes from 
having to also keep track of the negative exponents, and the rest of the terms are obtained 
by assuming the worst possible cases for the distributions of coefficients, absolutely flat, 
except for the constant term of P.) Let M{q) denote Pr(|Ej"i Xy| < Dk(q)). 

Then 

M(«+n > ( v n _ 2 8 ( D ( l - ( / V i , * 0 ) ) ( < % - * : + ! ) + I ) 2 

- ^ ' Ad{q+\)Dk{q) 2 

> ô ( l ) ( l - ( l - ( ^ + i y ) ) - ^ ) . 

Since M{q) = 2(1), we telescope this inequality, and obtain the desired lower bound. • 

THEOREM 3.6. Let { Pi} be a sequence of symmetric unimodal Laurent polynomials 
having semi-widths {d(i)}, and with P/(l) = 1 for all i. Suppose {d(i)} is monotone 
non-decreasing and \m\j-,OQ d(j) / d{j — 1) = 1. Then {Pi} is strongly positive if there 
exists a positive real number e such that 

n£.(i+a-o^?) 
00. 

d(N) 
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PROOF. We use Proposition 3.5 to apply Proposition 3.2. Let N be a large integer. 
For any 6 (to be chosen later), the mass in the interval [—Dk(N),Dk(N)] of the product 
polynomial UjL\ S (Pj)/S (Pj)(l) is at least as large as 

N l (Ppx°) d(j) 

This serves to define aj and bj. (The expression involving 8 arose from renormaliz-
ing S(Pj) so that its mass is 1.) Thus, the mass at the origin is at least as large as 
(n(l — aj - bj))/ Dk(N). To simplify computations, we note that if (1 + c)(l — a) = 1, 
then (1 + c)(\ — ab) — 1 + c(\ — b) (this defines q = aj/ (1 — aj)). Hence 

<n£i*».*°)- i £ i d - ^ ) 
Dk(N) 

njLid + q-a-*,-)) 

However, bj = d(j)/ 4Dk(j — 1). For all sufficiently large j , d(j) < 2d(j — k). Thus 
l-bj > 1 - \/(2k). Also, Cj works out to (1 - 6)(l - (Pj,x0)) / (Pj,x°). Choose k large 
enough and6 small enough so that (l —è)(l — 1/ (2k)) > 1 — e. Since Du(N) < kd(N), 
3.2 applies. m 

For T-functions, 3.6 immediately yields: 

PROPOSITION 3.7. Let {Pi} be a sequence of T-functions with semi-widths {d(i)} 
and heights { h(i) = 1 / r(P/)} such that lim/-^ d(j)/ d(j — I) = 1 and { d(i)} is mono
tone non-decreasing. Then { Pi} is strongly positive if there exists a positive real number 
E such that 

l £ i ( l + ( 2 - 0 $ ) 
dim 

00. 

Before giving examples, we establish necessary conditions for strong positivity of a 
sequence of T-functions. The formula in 3.8 is unwieldy in appearance but is not difficult 
to compute with. 

PROPOSITION 3.8. Let { Pi} be a sequence ofT-functions having semi-widths { d(i)} 
and heights { h(i)} .If{Pt} is strongly positive, then 

PROOF. We estimate the ratio, r(P^) in terms of its predecessors, and use an additive 
(rather than multiplicative) telescoping. Write f^n"1^ = ao + ̂ aj(xJ +x~j), where the sum 
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of the coefficients is 1. Writing Pn — h + Tff=l(jj +JC ; ) (so d(n) and h(n) are abbreviated 
d and h respectively), direct computation yields (with aj = 0 if |y'| > E^ - 1 d{i))\ 

rtpinu _ ( ^ U 1 ) _ a\h + 2Y![aj + (ad+i + a0 - ax - ad) 
(/*«). ,jfi) ao/i + 2Efa; 
ci\hi 

+ 2T,iaj 
(2--2%)T.iaj + (aM--0</) + a 0 — a i 

aoh + 2T,iaj a0/! + 2Ef« 3y 

a0 
< r(/>(«-< 

Thus 

(3) r(P(n)) - r(I*n-X)) < — . 
a0h 

This inequality telescopes. Moreover, ao is simply (/*n_1),jt°), and since f*rt-1) has al
ready been normalized, ao > n? _ 1 h(i)/ (h(i) + 2d(i)). Employing the telescoped version 
of (3), we obtain (after replacing nby N — k) 

„^)<-Ltg*iO + W), 
v '-h(k) £k h(j) 

If { Pi) is strongly positive, for all choices of k, there exists N such that r(PN-k) is at least 
A. It follows that 

S h(j) 
must diverge. 

EXAMPLES 3.9. In this set of examples, the polynomials P, will be T-functions, with 
semi-widths d(i) > 1 and heights h(i) > 1, so the sequences {Pt} are specified simply 
by the sequences of semi-widths and heights. The letters C and f3 will denote positive 
real numbers, which may be viewed as parameters of the sequences, and [ ] will be the 
greatest integer function. 

(a) If E 1 / h(i) diverges, the sequence is strongly positive, regardless of the choice 
of semi-widths. Obviously, r(P;) = 1/ h(i), and strong positivity follows from 
1.6. 

(b) (Very slow growth.) If d(i)/ h(i) = Cj (/log/), we note that 

n ( l + ( 2 - e ) C / ( / l o g f ) ) 

is asymptotic to (log A0(2~e)C. If we apply the criterion in 3.7, we see that strong 
positivity will result if h(i) — 0(/(log/)(2_e)C_1). Explicitly, if d(i) — [log/] and 
h(ï) < (2 — e)/(log/)2 for some e > 0, then strong positivity results. However, 
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if instead, h(i) — (2 + e)/(log/)2 and we apply the criterion of 3.8, we see that 
strong positivity fails. \id(i) — [Ci/ log/] and h(i) = i2, then strong positivity 
fails regardless of the choice of C, again by 3.8. Note that the test in 3.4 is useless 
in these examples. 

(c) (Slow growth.) Suppose that d(i) = [Cfi] and h(i) — fi+l. (These sequences are 
referred to in the Introduction.) Then d{i)j h(i) ~ Cj /, and 3.7 and 3.8 together 
yield that {Pi} is strongly positive if (3 < 2C and is not strongly positive if 
(3 > 2C. This provides an example of the phenomenon noted after 1.11. Note 
that the criterion of 3.4 only yields strong positivity if /3 < 2C — 1, so that test 
is useful but not optimal in this case. The status of the sequence for /3 = 2C is 
unknown. 

(d) (Subexponential growth.) If d(i)/ h(i) is asymptotic to 1/ y/i, then the numerator 
of the expression in 3.7 (the product) is approximately v^Vexp((2 — e)y/N). Thus 
the sequence will be strongly positive if the growth of d is at most exp((2 — 
s)y/N)—in particular, if the growth of d is at most polynomial. On the other 
hand, the sequence will fail to be strongly positive if the growth is exponential, 
by 3.8. 

(e) (Exponential growth.) Suppose d(i)/ h(i) tends to the constant C. Here the cri
terion of 3.4 can be used. The product expression is approximately (2C + l)N, 
so that if d(i) < (2C + 1 — e)1, the sequence will be strongly positive by 3.4. 
Notice that the exponential growth rate precludes the applicability of 3.7. On the 
other hand, if d(i) > (2C + 1 + e)\ strong positivity fails by 3.8. In particular, if 
d(i) — h(i) = [K1] for some constant K, strong positivity occurs if K < 3, it fails 
if K > 3, and its status is unknown if K — 3. 

(f) (Superexponential growth.) Set h(i) = i\ and d(i) = i\f. Then the numerator in 
the expression (f) is asymptotic to 2N(N\)C, so that when C > 1, the sequence 
is strongly positive. If C < 1, we apply the criterion of 3.8; it follows that the 
sequence is not strongly positive. 

Cases (c), (e), and (f) above exhibited a phenomenon analoguous to phase transition, 
in the parameter C In the super-exponential situation, even the status at the critical point 
could be determined (although if h(i) = i\ and d(i) — [CM], we do not know what 
happens at the critical point, C — 1/2). This is interesting, but what is more interesting 
is that our methods could detect these transitions. For example, the argument in 3.8 uses 
extremely crude estimates, and both 3.4 and 3.6 employ a lower bound for the mass at 
the origin obtained by taking the average mass over a very large interval. 

In the cases discussed above wherein strong positivity fails, what is the obstruction? 
All the point evaluation states are pure (this requires only that £ d(i)j h(i) diverge). One 
observation is that the ratios ofPN,k cannot go to 1 for all k. The states defined in Section 
2 from the ratios at cannot be point evaluations (because the at are not all one). We find 
that the mass at the origin (and every other point) goes to zero as TV increases but the 
ratios around the origin do not tend to 1. 
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4. Harmonic functions and eventual positivity for strongly unimodal sequences. 
In this section, we consider sequences of Laurent polynomials {Pi} where either each 
Pi is strongly unimodal or each is unimodal and there is a bound on the total degrees. 
We have seen (1.9) that £ r(Pi) = oo is sufficient for strong positivity, and otherwise 
no point evaluation is pure. We show that in this non-strongly positive case, the pure 
harmonic functions are precisely those obtained from the Laurent series expansion of 
the infinite product. This is achieved by means of a positivity theorem that decides when 
a polynomial/ is eventually positive with respect to the sequence {Pi}. The following 
is an immediate consequence of 2.3 A or 2.3C: 

THEOREM 4.1. Suppose that { Pi} is a sequence of Laurent polynomials and either 
every Pt is strongly unimodal, or the Pi are unimodal with a bound on the total degree. 
Then the following are equivalent: 

(a) {Pi} is not strongly positive; 
(b) E r ( P , ) < oo; 
(c) After a suitable regularization, n Pi(z) converges in C\ { 0} ; 
(d) For all positive real numbers r, evaluation at r is not a pure state; 
(e) There exists a positive real number r whose corresponding point evaluation is 

not pure; 
(f) Evaluation at 1 is not a pure state. 

LEMMA 4.2. Let { Pi} satisfy the hypotheses and the equivalent properties of The
orem 4.1. Suppose F denotes the infinite product, T[Pi(z), and j is a fixed integer. On 
forming the Laurent series expansion ofFJ P^\z) — Y. oc^, we have 

hm = 0 and lim = 0 
k—KX> OCfc fc—>oo Ot—k 

(adopting the convention that 0/ 0 = 0), and moreover, there are no gaps in the coeffi
cients of F (that is, (F,JC*), (F, JC*) > Ofor integers i < j < k implies (F,y) > 0). 

PROOF. This is routine once we observe that it suffices to prove the result for F 
itself. • 

If / is a closed bounded subset of R, then we define deI to be the two point set con
sisting of its infimum and supremum. 

PROPOSITION 4.3. Let { Pt} be a sequence of Laurent polynomials with no negative 
coefficients such that P,-(l) = 1 for all i, and n Pi(z) converges absolutely on C\ { 0} 
to F which has no gaps. Suppose additionally that for each j = 0,1,2, . . . , the Laurent 
expansion Fj P^\z) = £ oc^ satisfies 

v a*+l n ^ T a-k-\ A 

hm = 0 and lim = 0 
k—KX> OC]ç k—KX) CC—k 

Suppose thatf in R[JC,JC_1] satisfies 
(i) For some j , LogP^ 2 Log/ 2 dgLog/*^; 

(ii) l im^ot/y/^XO > 0, aMXwi^otifIP®)(t) > 0; 
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(Hi) There exists 6 > 0 so that for all k, ( ( F - / ) / / ^ , ^ ) ><S(F,JC*). 

Then there exists an integer N so that Pj+\ • P/+2 PJ+N •/ has no negative coefficients. 

PROOF. By fixing j and multiplying by an appropriate power of JC (once only), we 
may assume that f — Y^ nx* where ro and rj are nonzero. From (ii), both endpoint 
coefficients must be positive. Write F*n+j) / P(j) — T,Pn,tX*- From the uniform convergence 
(on compact subsets of C\ { 0} ) of the products, we have that {pn,t} —• (F, xl) uniformly 
in r, and the no gaps condition of 4.2 ensures that 

l i m - ^ - = 0 ifr < 0 
n Pn,t+i 

l i m ^ ^ l = 0 ifr > 0 
n Pn,t 

(0/ 0 is interpreted as 0). For k > d and pn,k-d > 0, 

f.(l***II*fitJ)=Yiripnji-i 
1=0 

, , Pn,k-d+\ , , Pi 

Pn,k-d \ rd + rd-\ + • • • + r 0 -
Pn,k-d Pi 

Pn,k \ 
]n,k-dJ 

Since rj > 0 and the fractions in the big parentheses all go to zero as n —• oo, there 
exists N0 such that n > N0 entails ( P ^ / P ^ -f^) > 0 for all k > d0 = max{ d, 
min{ / | p„j > 0} }. (If the latter set is empty, the inequality comes for free.) Similarly, 
there exists d' < 0 and N' such that n > N' entails ( P ^ / pO)./, JC*) > 0 for all fc < J7. 
By (iii), for each integer d' < s < do, there exists an integer Ns such that n > Ns 

implies ( P ^ ' ) / P® ./,x*) > I« ((F/ P^),x9) > 0. Set # = max { Af0, N\ Ns}. For all k, 
( ( P ^ / p W ) ./,**) > 0; in other words, (pW)/p0>) . / has no negative coefficients. • 

In the following, if at = 0 for / = —1,-2, . . . , then 7° is seen to be evaluation at 0. 

COROLLARY 4.4. If {Pi} are as hypothesized in Theorem 4.1, then the pure states 
ofR({ P(}) are precisely: 

{7* | i 6 Z, «/ ^ 0} U { evaluation at 0} U { evaluation at oo} 

w/iere 7'(/*) = ^ 3 Y f /* • F / z/+1 <fe/<?r /i m P({ P/} ) (ViVfe SecfiTw 2j. 

PROOF. Let X denote the set of states listed in the statement of this result. It is not 
hard to show that if at ^ 0 for infinitely many / < 0, then lim/_^007

/ is evaluation at 
0, and similarly, the limit in the opposite direction is evaluation at oo, and moreover, no 
other limit points exist. Thus X is compact. 

Now we observe that iff/P^k) = h where h in P({Pj}) satisfies J(h) > 5 for all 7 
in X, then h satisfies the hypotheses of 4.3; hence it is positive. It follows immediately 
from this and the compactness of X that the pure state space is included in X. 

To show that every point in X is pure is now straightforward (since a non-pure 7 l 

would have to be a a -linear combination of the others). • 
After this paper had been accepted, Professor S. V. Kerov of the University of 

Leningrad pointed out to us that he had obtained similar results in the case that Pn — 
1 + anx where £#« < oo [K]. He also discussed some of the states arising in the situa
tion that Pn = 1 + nx. 
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PROPOSITION 4.5. Let { Pt} satisfy the hypotheses of 4.2, and letf be an element of 
R[x,x_1 ]. Then there exists N so that P\ • P2 PN • / has no negative coefficients if 
and only if there exists 6 > 0, so that for all i, 

(f'F.x^^èiPo'F^x1) 

where Po = £/ d, the sum taken over cvx Log/ D Z. 

PROOF. Form R({ P^PX,P2,...})\ then// P0 satisfies (i),(ii),(m) of 4.3, as an ele
ment of that ordered group; by 4.3, it lies in the positive cone. However, this means that 
there exists TV so that P\ • P2 PN 'f has no negative coefficients (note that Po is 
strongly unimodal, so its presence will not affect the hypotheses of 4.3). The converse 
follows from// P being an order unit in /?({ P/} ). • 
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