Canad. Math. Bull. Vol. 61 (3), 2018 pp. 637–639 http://dx.doi.org/10.4153/CMB-2017-062-2 © Canadian Mathematical Society 2017

Uniformization and Steinness

Stefan Nemirovski and Rasul Gazimovich Shafikov

Abstract. It is shown that the unit ball in \mathbb{C}^n is the only complex manifold that can universally cover both Stein and non-Stein strictly pseudoconvex domains.

In this note we use methods from [5] to show that the unit ball in \mathbb{C}^n is the only simply connected complex manifold that can cover both Stein and non-Stein strictly pseudoconvex domains.

Here a strictly pseudoconvex domain is a relatively compact domain in a complex manifold such that its boundary admits a C^2 -smooth strictly plurisubharmonic defining function.

Theorem Let Y be the universal cover of a Stein strictly pseudoconvex domain. Suppose that Y is not biholomorphic to the ball. Then any manifold covered by Y does not contain compact complex analytic subsets of positive dimension. In particular, any other strictly pseudoconvex domain covered by Y is Stein.

Examples of strictly pseudoconvex domains covered by the ball in \mathbb{C}^2 that contain compact complex curves (and hence are not Stein) can be found in [2]. It is well known that the ball covers compact complex manifolds as well.

Recall also from [4,5] that a Stein strictly pseudoconvex domain is covered by the unit ball if and only if its boundary is everywhere locally CR-diffeomorphic to the unit sphere.

The theorem will follow immediately from the two lemmas below.

Lemma 1 Let π : $Y \to D$ be a covering of a complex manifold D admitting a strictly plurisubharmonic function $\varphi: D \to \mathbb{R}$. If $A \subset Y$ is an analytic subset of positive dimension, then its projection $\pi(A)$ cannot lie in a compact subset in D.

Remark 2 The assumptions of the lemma are satisfied if *D* is (an unramified domain over) a Stein manifold. However, there exist examples of complex manifolds with strictly plurisubharmonic functions but no non-constant holomorphic functions [3].

Received by the editors May 17, 2017; revised September 11, 2017.

Published electronically November 2, 2017.

Author S. N. was partly supported by SFB/TRR 191 of the DFG and RFBR grant №17-01-00592-a. The second author was supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

AMS subject classification: 32T15, 32Q30.

Keywords: Stein manifold, covering, spherical domain.

Proof Suppose that $\pi(A)$ is contained in a compact subset of *D*. Then there exists a sequence of points $x_n = \pi(y_n)$ such that $x_n \to x \in D$, $y_n \in A$, and

$$\sup_{\pi(A)}\varphi=\lim_{n\to\infty}\varphi(x_n)=\varphi(x).$$

Let $U \ni x$ be a small ball in local coordinates centered at x and let $U' \supset \overline{U}$ be a slightly larger ball. Let h be a non-negative smooth function on U' such that h(x) = 0, h is positive on $\partial U \cap \{\varphi \le \varphi(x)\}$, and the C^2 -norm of h is sufficiently small. Then $\widetilde{\varphi} := \varphi - h$ is a strictly plurisubharmonic function on U' such that

(1)
$$\widetilde{\varphi}(x) = \varphi(x)$$

and

(2)
$$\widetilde{\varphi} \leq \varphi(x) - \varepsilon \text{ on } \partial U \cap \{\varphi \leq \varphi(x)\} \text{ for some } \varepsilon > 0.$$

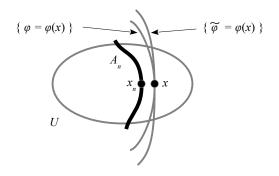


Figure 1: Impossible analytic sets *A_n*.

Since U' is simply connected, $\pi^{-1}(U') = \bigsqcup V_j$, where V_j are disjoint open sets and $\pi|_{V_j}$ is invertible. We then have $y_n \in V_{\alpha(n)}$ for every $n \gg 1$ and a suitable index $\alpha(n)$. Set $A_n := \pi(A \cap V_{\alpha(n)})$. This is a complex analytic subset of U' containing x_n ; see Fig. 1. Since $A_n \subset \{\varphi \leq \varphi(x)\}$ by the choice of x, it follows that $\widetilde{\varphi} \leq \varphi(x) - \varepsilon$ on $A_n \cap \partial U = \partial(A_n \cap U)$ by property (2) of $\widetilde{\varphi}$. Hence, $\widetilde{\varphi} \leq \varphi(x) - \varepsilon$ on $A_n \cap U$ by the maximum principle for plurisubharmonic functions on complex analytic sets (see e.g., [1, §6.3]). However, $\widetilde{\varphi}(x_n) \to \varphi(x)$ as $n \to \infty$ by (1), and we arrive at a contradiction.

Lemma 3 Let $\pi: Y \to D$ be the universal covering of a strictly pseudoconvex domain by a complex manifold Y that is not biholomorphic to the ball. Suppose that $\pi': Y \to M$ is a covering of a complex manifold containing a connected compact complex analytic subset $B \in M$ of positive dimension. Then $\pi(\pi'^{-1}(B))$ is contained in a compact subset of D.

Remark 4 In this lemma, *D* does not need to be Stein.

638

Uniformization and Steinness

Proof Let $\varphi: \overline{D} \to (-\infty, 0]$ be a plurisubharmonic defining function for *D*. Following [5, §2.3], consider the function ψ on *M* defined by

$$\psi(x) \coloneqq \Big(\sup_{\pi'(y)=x} \varphi \circ \pi(y) \Big)^*,$$

where * denotes the upper semicontinuous regularisation. As shown in [5, §2.3], it follows from [5, Corollary 2.3] that ψ is plurisubharmonic and strictly negative on *M*. (It is explained in [5, §3.2] how to modify the proof of [5, Corollary 2.3] for non-Stein domains.) By the maximum principle,

$$\psi|_{B} \equiv \text{const.} < 0.$$

Hence,

$$\varphi \circ \pi(y) \leq \text{const.} < 0 \text{ for all } y \in \pi'^{-1}(B)$$

and therefore $\pi(\pi'^{-1}(B))$ is relatively compact in *D*.

Remark 5 The key point in the proof of Lemma 3 is the application of [5, Corollary 2.3]. That result is a consequence of [5, Proposition 2.2], which is an extension of the well-known Wong–Rosay theorem [6,7] to universal coverings of strictly pseudoconvex domains in complex manifolds.

References

- E. M. Chirka, *Complex analytic sets*. Mathematics and its Applications (Soviet Series), 46, Kluwer Academic Publishers, Dordrecht, 1989. http://dx.doi.org/10.1007/978-94-009-2366-9
- [2] W. M. Goldman, M. Kapovich, and B. Leeb, Complex hyperbolic manifolds homotopy equivalent to a Riemann surface. Comm. Anal. Geom. 9(2001), 61–95. http://dx.doi.org/10.4310/CAG.2001.v9.n1.a3
- [3] F. Forstnerič, A complex surface admitting a strongly plurisubharmonic function but no holomorphic functions. J. Geom. Anal. 25(2015), 329–335. http://dx.doi.org/10.1007/s12220-013-9430-9
- [4] S. Nemirovski and R. Shafikov, Uniformization of strictly pseudoconvex domains. I. Izv. Math. 69(2005), 1189–1202. http://dx.doi.org/10.1070/IM2005v069n06ABEH002295
- [5] S. Nemirovski and R. Shafikov, Uniformization of strictly pseudoconvex domains. II. Izv. Math. 69(2005), 1203–1210. http://dx.doi.org/10.1070/IM2005v069n06ABEH002296
- [6] J.-P. Rosay, Sur une caractérisation de la boule parmi les domaines de Cⁿ par son groupe d'automorphismes. Ann. Inst. Fourier (Grenoble) 29(1979), ix, 91–97.
- [7] B. Wong, Characterization of the unit ball in Cⁿ by its automorphism group. Invent. Math. 41(1977), 253–257. http://dx.doi.org/10.1007/BF01403050

Steklov Mathematical Institute, Moscow, Russia and

Fakultät für Mathematik, Ruhr-Universität Bochum, Germany e-mail: stefan@mi.ras.ru

Department of Mathematics, The University of Western Ontario, London ON N6A 5B7 e-mail: shafikov@uwo.ca