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The flow in a decelerating turbulent round jet is investigated using direct numerical
simulation. The simulations are initialised with a flow field from a statistically
stationary turbulent jet. Upon stopping the inflow, a deceleration wave passes through
the jet, behind which the velocity field evolves towards a new statistically unsteady
self-similar state. Assumption of unsteady self-similar behaviour leads to analytical
relations concerning the evolution of the centreline mean axial velocity and the shapes
of the radial profiles of the velocity statistics. Consistency between these predictions
and the simulation data supports the use of the assumption of self-similarity. The
mean radial velocity is predicted to reverse in direction near to the jet centreline
as the deceleration wave passes, contributing to an approximately threefold increase
in the normalised mass entrainment rate. The shape of the mean axial velocity
profile undergoes a relatively small change across the deceleration transient, and this
observation provides direct evidence in support of previous models that have assumed
that the mean axial velocity profile, and in some cases also the jet spreading angle,
remain approximately constant within unsteady jets.
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1. Introduction

Mixing processes in statistically unsteady jets are relevant to a wide range of
environmental, biological and technical systems. Modulation of the jet flow rate
affects the penetration of the jet, entrainment of surrounding fluid and mixing rates
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within the jet (Witze 1983; Bremhorst & Hollis 1990; Borée, Atassi & Charnay
1996; Borée et al. 1997; Johari & Paduano 1997; Craske & van Reeuwijk 2015a).
Mixing in decelerating jets is of particular importance for the fuel-injection process in
diesel engines, where deceleration of the fuel jet at the end of fuel injection enhances
dilution of the fuel (Musculus 2009).

The process of deceleration in a turbulent round jet was illustrated by measurements
presented by Witze (1983) and by Borée et al. (1996, 1997), and direct numerical
simulations (DNS) by Craske & van Reeuwijk (2015a). Borée et al. (1996, 1997)
reported hot-wire velocity measurements in a turbulent jet as the initially steady jet
velocity was cut suddenly to approximately half of its initial value. Witze (1983)
presented measurements of the centreline axial velocity in a single-pulsed air jet. The
pulse duration was sufficiently long that the velocity field approached a statistically
steady state in the near-field region before the deceleration phase began. The centreline
axial velocity measurements of Witze (1983) showed that, after the jet inflow was
stopped suddenly, a deceleration wave passed through the flow field. In the region
following behind the deceleration wave, the centreline axial velocity decayed over
time. In contrast, the deceleration region in the studies by Borée et al. was confined
to a narrow band that propagated downstream, separating the new steady-state jet
from the original steady-state jet. Phase-averaged velocity statistics in the confined
deceleration region displayed temporal self-similarity when viewed in the moving
frame of reference of the deceleration region. Within the deceleration region, the
profile of the phase-averaged radial velocity component exhibited marked differences
compared to its profile in a statistically steady turbulent jet; in particular, radial inflow
was observed near to the centreline as opposed to outflow in the statistically steady
jet. The increased radial inflow resulted in an increase of the entrainment coefficient
by a factor of two or more (Borée et al. 1997; Johari & Paduano 1997) compared to
the value in statistically steady jets.

The Morton, Taylor & Turner (1956) theory for turbulent plumes provides a simple
and effective model for the integrated mass and momentum fluxes in an important
set of flows involving statistically steady turbulent jets and plumes. Modelling for
statistically unsteady turbulent jets has been the subject of recent developments,
including Scase et al. (2006), Musculus (2009), Scase & Hewitt (2012), Craske
& van Reeuwijk (2015a,b). Other related unsteady turbulent jet and plume models
were discussed by Craske & van Reeuwijk (2015a). The two key assumptions of
the Morton et al. (1956) theory are first that the mean axial velocity profile is
self-similar with respect to scaled radius η = r/x, where r is radius, X is axial
position, and x= X− X0 is the axial distance from a virtual origin at X0, and second
that entrainment rates can be related to a local velocity scale, such as the mean
velocity at the centreline of the jet ūc. Scase et al. (2006) extended the Morton et al.
(1956) theory for statistically unsteady turbulent jets and plumes, retaining both the
self-similarity and entrainment assumptions. The analysis by Musculus (2009) retained
the assumption of self-similarity, but replaces the assumption regarding entrainment
with an assumption that the statistically unsteady jet maintains a constant spreading
angle during the deceleration transient. In contrast to the previous approaches, Craske
& van Reeuwijk (2015a) formulated equations for unsteady integrated fluxes following
the momentum–energy approach of Priestley & Ball (1955), without invoking
self-similarity. However, to obtain predictions from the model by Craske & van
Reeuwijk (2015a) it is still necessary to account for the effect of the shape of
the axial velocity profile on the integrated fluxes. Craske & van Reeuwijk (2015b)
developed modelling for the transport of the integrated fluxes based on the self-similar
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profile of axial velocity in the statistically stationary jet, with additional modelling
to account for deviation of the axial velocity profile from the statistically stationary
profile in statistically unsteady jets.

Validation of the various self-similarity-based statistically unsteady turbulent jet and
plume models in Scase, Caulfield & Dalziel (2008), Musculus (2009), Scase, Aspden
& Caulfield (2009) and Craske & van Reeuwijk (2015b) indicates that assumption
of self-similar mean axial velocity profiles provides a useful basis for development
of models in statistically unsteady jets; however, the underlying assumption that
self-similarity persists as the jet decelerates has not been examined directly. On the
contrary, the measurements by Borée et al. (1996) indicate that the radial profiles of
phase-averaged axial velocity and other velocity moments deviate from the self-similar
profiles of a statistically steady jet as the jet decelerates, and that the profiles vary
axially through the confined deceleration region (Borée et al. 1996, 1997). Here,
we hypothesise that the flow field in a decelerating jet asymptotes towards a new
temporally stationary self-similar state in which the radial profiles of normalised
velocity moments are axially uniform. The experiment described by Borée et al.
(1996) does not achieve this state fully because the deceleration region is confined
between the initial and final statistically steady jet flows. Instead, we investigate
self-similarity in decelerating jets through theoretical analysis and statistical analysis
of a stopping jet using new DNS data where the inflow stops abruptly.

2. Analysis

The averaged continuity and axial momentum equations for a round jet of
incompressible fluid are

∂ ū
∂x
+

1
r
∂(r v̄)
∂r
= 0, and (2.1)

∂ ū
∂t
+ ū

∂ ū
∂x
+ v̄

∂ ū
∂r
= ν

(
∂2ū
∂x2
+
∂2ū
∂r2

)
−
∂u′u′

∂x
−

1
r
∂
(
r u′v′

)
∂r

−
1
ρ

∂ p̄
∂x
, (2.2)

where u, v, ρ and p are axial velocity, radial velocity, density and pressure, the overbar
denotes circumferential and ensemble averaging, and prime denotes fluctuation from
the mean. The velocity statistics, normalised by the centreline ensemble-averaged
velocity (ūc(x, t)), are assumed to be self-similar with respect to a scaled radius
η= r/x. The averages appearing in (2.2) can then be expressed as

ū= ūcf (η), v̄ = ūcg(η), u′v′ = ū2
ch(η) and u′u′ + (p̄− p0)/ρ = ū2

ck(η), (2.3a−d)

where f , g, h, and k are the shape functions of the corresponding flow properties, with
p0 taken as the ambient pressure.

2.1. Centreline velocity evolution
Substituting the expressions for self-similar properties (2.3) into the continuity
equation (2.1) and rearranging gives

x
ūc

∂ ūc

∂x
=

1
f

(
η
∂f
∂η
−

g
η
−
∂g
∂η

)
, (2.4)

which is separably constant and leads to a solution for the centreline velocity

ūc(x, t)= A(t)xn, (2.5)

with time-dependent factor A(t). The exponent n will be constant within a self-similar
region, but can vary between different self-similar regions. The momentum equation
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can be rearranged by substituting (2.3) and (2.5) into (2.2) and multiplying by
x1−2n/A2, giving:

x(1−n) 1
A2

∂A
∂t

f + nf 2
− ηf

∂f
∂η
+
∂f
∂η

g

=−
1
η

∂(ηh)
∂η
− 2nk+ η

∂k
∂η
+

1
Rec

[
−n(1− n)f + 2(1− n)η

∂f
∂η
+ η2 ∂

2f
∂η2

]
, (2.6)

where Rec= ūcx/ν=Axn+1/ν. Note that unlike statistically steady jets, Rec can be time-
and space-dependent for statistically unsteady jets. Henceforth, Rec is assumed to be
sufficiently large that the viscous terms can be neglected, but note that this assumption
is not strictly applicable when the decelerating jet relaminarises. Self-similarity of
(2.6) demands that n= 1 for the statistically unsteady jet. Solving (2.6) for A(t) and
substitution into (2.5) gives

ūc =
x

CA(t− t0)
, (2.7)

where CA and t0 are constants of integration, the latter of which is interpreted as the
virtual time origin for the self-similar decelerating jet. Note that the first two viscous
terms in (2.6) are then identically zero, and the Reynolds number, Rec, scales with x2

and t−1. The dimensionless constant CA is given by

CAf︸︷︷︸
−∂ ū/∂t

= f 2
− ηf

∂f
∂η︸ ︷︷ ︸

ū∂ ū/∂x

+ g
∂f
∂η︸︷︷︸

v̄∂ ū/∂r

+
1
η

∂(ηh)
∂η︸ ︷︷ ︸

1
r
∂(ru′v′)
∂r

+ 2k− η
∂k
∂η︸ ︷︷ ︸

∂(u′u′+p/ρ)/∂x

, (2.8)

where the origin of each term is labelled. If (2.8) is integrated over a cross-stream
plane it becomes

CA =

4
∫
∞

0
f 2η dη+ 4

∫
∞

0
kη dη∫

∞

0
fη dη

. (2.9)

Since the integrals of f and f 2 are necessarily positive and the magnitude of the
integral of k is typically smaller than the integral of f 2 in a jet, CA is expected to be
positive. Since positive CA in (2.7) corresponds to deceleration, unsteady self-similarity
in the form given by (2.3) is not expected in accelerating jets.

The measurements of Witze (1983) replotted in figure 1(a) exhibit a linear
dependence between (X − X0)/ūc and time in the decelerating region of the jet,
as predicted by (2.7), with CA = 2.3 providing the best fit to the data. The time
values reported by Witze (1983) are measured from the start of the fluid injection
pulse. The linear increase of axial mean velocity with axial distance in decelerating
jets is in contrast with the observation in statistically steady jets that the centreline
axial velocity is inversely proportional to axial distance (n = −1). On the basis of
their respectively different assumptions, Scase et al. (2006), Craske & van Reeuwijk
(2015b) and, in the limit t→∞ and x→∞, Musculus (2009) also predict the x/t
dependence for the axial velocity scale in decelerating jets.
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FIGURE 1. (a) Inverse centreline velocities measured at different downstream locations
from pulsed jets of Witze (1983), with X0 being the virtual origin and time measured from
the start of the fluid injection pulse. (b) Cross-sectional colour maps of the instantaneous
axial velocity at t/τ = 1, 11 and 21 following stopping of the jet at t/τ = 0, where τ =
D/U0 and time t is measured from the start of the deceleration.

Defining the location of the deceleration wave as the intersection of the centreline
velocity profile of the original statistically steady jet and the centreline velocity
predicted by (2.7) gives the speed of the deceleration wave equal to

cwave =
CA

2
uc,steady. (2.10)

Based on CA/2≈ 1.1 from the data of Witze (1983), the wave speed is approximately
equal to the local centreline velocity in the initial statistically steady jet. A
similar wave speed dependence arises in Musculus (2009) where, considering an
approximately Gaussian axial velocity profile, the constant of proportionality is equal
to 1.0, and in Scase et al. (2006) where, considering a top-hat velocity profile, small
disturbances convect with the local speed of the jet.

2.2. Radial velocity profiles
The shape function for the mean radial velocity g in a decelerating self-similar jet
can be expressed in terms of the axial velocity shape function f by integrating the
continuity equation (2.4),

g= ηf −
n+ 2
η

∫ η

0
η′f dη′. (2.11)

The relationship between f and g therefore depends on whether the self-similar jet is
statistically steady (n=−1) or decelerating (n= 1). Differentiating (2.11) with respect
to η and considering the rotational symmetry of the flow implies that ∂g/∂η=−n/2
at the centreline. It is well known that ∂g/∂η= 0.5 at the centreline of a statistically
steady round turbulent jet (e.g. Pope 2000), and this value is recovered with n=−1.
The corresponding prediction for a decelerating self-similar jet with n = 1 is that
∂g/∂η = −0.5, indicating that the radial velocity reverses near to the centreline in
the deceleration wave.
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The different radial velocity profile in the statistically unsteady jet changes the
rate of mass entrainment, E = −2πρxūc limη→∞(ηg). Using (2.11), the normalised
entrainment rate for the self-similar jet can be written

E
ρxūc
= lim

η→∞

[
−2πη2f + (n+ 2)

∫ η

0
2πη′f dη′

]
= (n+ 2)Qη, (2.12)

with integral mass flux Qη =
∫
∞

0 2πηf dη. If the integrated mass flux Qη remains
constant, as assumed by Musculus (2009), the scaled mass entrainment rate in
the decelerating self-similar jet (n = 1) is predicted to be three times the rate in
a statistically stationary jet (n = −1). However, the mean axial velocity profile and
therefore the integrated mass flux Qη are also subject to change within the decelerating
region of the jet (Borée et al. 1996), further affecting the scaled entrainment rate
given by (2.12). To be shown in (2.14), the unsteady self-similar h-profile depends on
the corresponding f -profile, indicating that Qη and h are not independent each other.

2.3. Reynolds shear stress profiles

An expression for the shape function h for the Reynolds shear stress u′v′ in self-
similar jets can be obtained from (2.6). For a statistically steady jet with n=−1,

h=
f
η

∫ η

0
η′f dη′ + ηk. (2.13)

At the centreline, the gradient of h is ∂h/∂η= 1/2+ k(0). The typical centreline value
of shape function k in a statistically steady jet is approximately 0.025 (e.g. Pope 2000)
which, with n=−1, gives (∂h/∂η)η=0 ≈ 0.525.

For a self-similar decelerating jet, using (2.7) and n= 1 in (2.6) gives,

h=
CA

η

∫ η

0
η′f dη′ +

4
η

∫ η

0
η′f 2 dη′ +

3f
η

∫ η

0
η′f dη′ + ηk−

4
η

∫ η

0
η′k dη′. (2.14)

Differentiating the expression for h with respect to η and evaluating it at η= 0 gives
∂h/∂η= (CA−1)/2+ k(0), which provides a convenient means for evaluating CA from
the h gradient and k at the centreline.

3. Simulation details

The data presented were obtained from DNS of a stopping jet. The simulation
methods and an analysis of the precursor statistically steady turbulent jet solution
were reported in Shin, Sandberg & Richardson (2017). Initially, a round jet with jet
Reynolds number Re= (U0D)/ν= 7, 290 was issued from a flat plate into a quiescent
environment, where U0 was the bulk jet velocity, D was the jet inlet diameter, and
ν was the kinematic viscosity. Pseudo-turbulent velocity fluctuations with 1.7 %
turbulence intensity were superimposed on an approximately top-hat velocity profile.
Shin et al. (2017) showed that the velocity field in the precursor statistically steady
jet simulation was statistically stationary and displayed self-similarity downstream of
an initial development region. The centreline decay rate constant was 6.7, consistent
with experimental data of Weisgraber & Liepmann (1998). The mean axial and
radial velocities and the Reynolds shear stress were found to be in agreement with
laboratory measurements from a converging jet nozzle by Panchapakesan & Lumley
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(1993). Shin et al. (2017) also demonstrated self-similarity of jet fluid mass fraction
statistics in agreement with measurement data from a converging nozzle experiment
by Mi, Nathan & Nobes (2001).

The present decelerating jet simulations were run by restarting a precursor
simulation from Shin et al. (2017) and abruptly reducing the inflow velocity at
a start time taken as t = 0. The evolution of the axial velocity field after the inflow
was stopped is shown in figure 1(b). Four statistically independent realisations of the
stopping event were simulated to provide statistics for the deceleration process.

The simulations were performed with the HiPSTAR DNS code (Sandberg & Tester
2016), solving the compressible Navier–Stokes equations in a cylindrical coordinate
system. The numerical approach is described fully by Shin et al. (2017). The
Kolmogorov length scales in the flow are expected to increase during the deceleration
transient since the jet width remains approximately constant (Craske & van Reeuwijk
2015b) while velocity magnitudes decrease. Therefore the numerical grid used for
the precursor statistically steady jet simulation (Shin et al. 2017) provides sufficient
resolution for the decelerating jet simulation, and the same grid was retained for this
study. The grid consisted of 3020 × 834 × 130 structured nodes in the axial, radial
and circumferential directions (≈327 million nodes in total), spanning axially from
x/D= 0–60 and radially from r/D= 0–30. The grid was stretched to provide greater
refinement in the shear layer near to the jet inlet, with 145 points radially across the
diameter of the jet.

4. Results

4.1. Centreline velocity evolution
Here, the DNS data are used to investigate how the centreline profile of the
mean axial velocity varies in the stopping jet, and to assess the validity of (2.7).
Statistical properties of the flow are evaluated at each instant by averaging in the
circumferential direction, due to the statistical rotational symmetry of the flow, and
ensemble averaging of the four realisations of the simulation. Figure 2(a) shows
ensemble-averaged profiles of axial velocity along the centreline, where the virtual
origin is taken as 2.3D downstream of the inlet, as in the analysis of the statistically
steady jet (Shin et al. 2017). For reference, the averaged axial velocity from the initial
statistically steady jet is shown as a thick solid line. Once the jet inflow is arrested, a
deceleration wave travels downstream at a speed close to the local centreline velocity.
Upstream of the deceleration wave, the centreline axial velocity decays over time and
develops a linear dependence on x, with the gradient decreasing in time. Downstream
of the deceleration wave, the centreline velocity profile is yet to be affected by the
deceleration and resembles the profile of the statistically steady jet.

Figure 2(b) shows that, taking t0 = 14τ with τ = D/U0, the quantity ūc(t − t0)/x
asymptotes towards the value 1/CA = 0.46. The resulting value CA = 2.2 in the
stopping jet simulation is close to the value CA = 2.3 obtained from the data from
Witze (1983) in figure 1(a). The time taken for the asymptotic decelerating state to
arrive at x = 18D is approximately 40τ . The value t0 = 14τ is obtained by fitting
(2.7) to data from the decelerating region of the near-field (0 < x/D < 20) after
reaching the asymptotic decelerating state (t > 40τ ). The agreement between (2.7)
and data from the decelerating region of the jet demonstrates that the dynamics of
the centreline mean axial velocity are consistent with the assumption of self-similarity
used to derive (2.7).
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FIGURE 2. (a) Centreline profiles of the mean axial velocity at several instants in the
range t/τ = 0–69. A supplementary animation of the temporal evolution of the profile
is available online at https://doi.org/10.1017/jfm.2017.600 (movie 1). (b) The temporal
evolution of the centreline mean axial velocity at several axial positions in the range
x/D= 5–18.

4.2. Self-similar profiles
The analysis developed in § 2 relies upon the radial profiles of normalised velocity
statistics being self-similar. Figure 3 compares the radial profiles of ū, v̄, u′v′, u′u′,
v′v′, and (p− p0)/ρ from the decelerating region of the stopping jet averaged over
50 < t/τ < 69 and 10 < x/D < 18 and from the same spatial region of the initial
statistically steady jet. Additional lines corresponding to predictions from § 2 are also
shown for comparison. To reduce the influence of fluctuations of the centreline mean
axial velocity caused by the limited statistical convergence in the data, the velocity
statistics from the decelerating jet are normalised by a smoothed centreline mean axial
velocity obtained by fitting a sixth-order polynomial to the data. The shaded region
in each panel of figure 3 covers one standard deviation either side of the average
profile from the decelerating jet. This deviation is due to finite statistical convergence
of the instantaneous ensemble-averaged shape functions in the data, and due to any
continuing development of the instantaneous ensemble-averaged profiles through the
axial and temporal averaging windows. The magnitude of the deviation is sufficiently
small that the data show a clear distinction between the profiles in the statistically
steady jet and a new asymptotic self-similar state reached in the decelerating region
of the stopping jet. For reference purposes, ensemble-averaged profiles showing the
transition between the initial statistically steady state and the asymptotic decelerating
self-similar state shown in figure 3 are provided as supplementary movies 2–7 and
figure 1 in the supplementary material, for a selection of time instants and axial
positions.

Figure 3(a) shows that the mean axial velocity profile in the stopping jet
transitions from the near-Gaussian steady-state profile to a slightly fuller profile
in the decelerating region, similar to the change of shape recorded by Borée et al.
(1996) in the statistically unsteady region after halving the jet flow rate. The overall
width of the profile remains unchanged, supporting the assumption of a constant jet
spreading angle used in the model by Musculus (2009).

Figure 3(b) shows that there is a marked difference between mean radial velocity
profiles in the deceleration region and in the statistically steady jet. As predicted in
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FIGURE 3. Self-similar profiles averaged over x/D= 12.5− 20 and t/τ = 50− 69 of (a)
axial velocity, (b) radial velocity, (c) u′v′, (d) u′u′, (e) v′v′, and ( f ) pressure.

§ 2.2, the centreline gradient of the mean radial velocity is very close to the value
of −0.5, and so opposite to the value in the statistically steady jet. The overall radial
velocity profile in the decelerating region is in approximate agreement with (2.11)
evaluated using the axial velocity profiles from figure 3(a) for either the statistically
steady or stopping jets. The normalised radial velocity magnitude at η→∞ increases
by a factor of 3.6 during the deceleration transient. The dominant contribution to
the increase in entrainment rate is the factor of three change of the factor (2 + n)
in (2.12), which derives from self-similarity and incompressibility of the fluid. The
remaining 20 % contribution is likely due to the integrated mass flux Qη increasing
due to the change in the mean axial velocity profile shown in figure 3(a). The
actual calculated increase of Qη from figure 3(a) is about 30 % when integrated over
η ∈ [0, 0.23]. Considering the statistical convergence error on the axial and radial
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FIGURE 4. Budget terms of x-momentum equation for (a) the decelerating region of the
stopping jet and (b) the statistically steady jet.

velocities, the increased Qη is in close agreement with the remaining 20 % increase
of the entrainment rate.

Figure 3(c–e) shows that the peak magnitudes of the Reynolds stresses approximately
double upstream of the deceleration wave. The overall profile of h is well modelled
by (2.14), using f and k profiles from the self-similar decelerating region of the
stopping jet, with the centreline gradient of h in close agreement with the prediction
given by (CA − 1)/2 + k(0) ≈ 0.6. Neglecting the terms in (2.14) involving k has a
minor impact on the overall prediction of h, implying that the Reynolds shear stress
profile can be estimated based only on the axial velocity profile f , which itself is
approximated reasonably closely by the self-similar profile of the initial statistically
steady jet. A more comprehensive examination of the turbulent transport budgets
could be considered in future work.

Figure 3( f ) shows the self-similar profiles of the pressure term (p− p0)/ρ, with
the profile of −v′v′ from the decelerating jet added for reference. Analysis of
statistically steady jets shows that there is an approximate balance between v′v′ and
the pressure term (e.g. Pope 2000). However, the peak magnitude of v′v′ in the
deceleration region of the jet is double the peak magnitude of the pressure term, and
this imbalance provides a measure of the acceleration of fluid towards the centreline
of the decelerating jet.

4.3. Momentum budgets
Figure 4 presents the budget of the momentum equation for self-similar round jets
(2.6) evaluated using profiles of f , g, h and k from figure 3(a–f ), both for the
statistically steady jet and for the decelerating region of the stopping jet. The budget
is scaled to give ū∂ ū/∂x=−1 and 1 at the centreline in the statistically steady and
stopping jets, respectively. Comparison with the statistically steady jet momentum
budget shows that the deceleration (∂ ū/∂t) in the stopping jet is dominated by
the influx of lower-momentum fluid due to axial convection (ū∂ ū/∂x) and radial
entrainment (v̄∂ ū/∂r), with enhanced engulfment of low-momentum fluid indicated
by greater area under the Reynolds shear stress term ((1/r)∂(ru′v′)/∂r). The small
magnitude of the balance term confirms that the viscous terms omitted from (2.6) are
negligibly small for the period considered.
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5. Conclusion

The decelerating flow in a stopping turbulent round jet is investigated using DNS.
Upon stopping the inflow, a deceleration wave travels through the initially statistically
steady turbulent jet. It is found that normalised velocity moments appearing in the
unsteady momentum equation evolve towards a statistically stationary and axially
uniform self-similar state in the decelerating region of the flow. Self-similarity leads
to analytical relations concerning the evolution of the centreline mean axial velocity
and the shapes of the radial profiles of the velocity statistics. The predictions derived
from the assumption of self-similarity are shown to be consistent with data from
the stopping jet. In particular, the centreline mean axial velocity is predicted to
be proportional to axial position and inversely proportional to time upstream of the
deceleration wave, with the wave speed proportional to the local centreline velocity in
the preceding statistically steady turbulent jet. Furthermore, the mean radial velocity
is predicted to reverse in direction near to the jet centreline as the deceleration wave
passes, contributing to an approximately threefold increase in the normalised mass
entrainment rate. The shape of the mean axial velocity profile undergoes a relatively
small change across the deceleration transient; however, this change contributes 20 %
of the enhancement of the mass entrainment rate. Previous modelling for unsteady
jets based on the assumption that the shape of the mean axial velocity profile remains
unchanged may benefit by taking account of the new decelerating self-similar state
observed in this study.
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