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Unperforated Pairs of Operator Spaces and
Hyperrigidity of Operator Systems

Raphaël Clouâtre

Abstract. We study restriction and extension properties for states on C∗-algebras with an eye to-
wards hyperrigidity of operator systems. We use these ideas to provide supporting evidence for
Arveson’s hyperrigidity conjecture. Prompted by various characterizations of hyperrigidity in terms
of states, we examine unperforated pairs of self-adjoint subspaces in a C∗-algebra. _e conûgu-
ration of the subspaces forming an unperforated pair is in some sense compatible with the order
structure of the ambient C∗-algebra. We prove that commuting pairs are unperforated and obtain
consequences for hyperrigidity. Finally, by exploiting recent advances in the tensor theory of oper-
ator systems, we show how the weak expectation property can serve as a �exible relaxation of the
notion of unperforated pairs.

1 Introduction

_e study of uniform algebras (i.e., closed unital subalgebras of commutative C∗-al-
gebras) combines concrete function theoretic ideas with abstract algebraic tools [20].
It is a classical topic that has proven to be useful in operator theory. Indeed, a pro-
totypical instance of a uniform algebra is the disc algebra of continuous functions on
the closed unit disc which are holomorphic on the interior. _rough a basic norm
inequality of von Neumann, one can bring the analytic properties of the disc algebra
to bear on the theory of contractions on Hilbert space. _e seminalwork of Sz.-Nagy
and Foias on operator theory aptly illustrates the depth of this interplay [36], and to
this day the link is still being exploited.

In light of this highly successful symbiosis between operator theory and function
theory, it is natural to look for further analogies. One may wish to transplant the
sophisticated machinery available for uniform algebras in the setting of general op-
erator algebras. _is ambitious vision was pioneered by Arveson, who instigated an
in�uential line of inquiry in his landmark paper [3]. _erein, he introduced the no-
tion of boundary representations for an operator system S, and proposed that these
should be the non-commutative analogue of the so-called Choquet boundary of a
uniform algebra. Furthermore, he noticed that these boundary representations could
be used to construct a non-commutative analogue of the Shilov boundary as well.
Although Arveson himself was not able to fully realize this program at the time, via
the hard work of many hands [6, 14, 17, 21], the C∗-envelope of an operator system
was constructed by analogy with the classical situation. Nowadays, this circle of ideas
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is regarded as the appropriate non-commutative version of the Shilov boundary of a
uniform algebra, and it has emerged as a ubiquitous invariant in non-commutative
functional analysis [9, 13, 19,22].
Arveson also recognized that the non-commutative Choquet boundary is a rich

source of intriguing questions. For instance, in [7] he proposed a tantalizing con-
nection with approximation theory by recasting a classical phenomenon in operator
algebraic terms. _e classical setting is a result of Korovkin [28], which goes as fol-
lows. For each n ∈ N, let Φn ∶C[0, 1] → C[0, 1] be a positive linear map and assume
that

lim
n→∞

∥Φn( f ) − f ∥ = 0

for every f ∈ {1, x , x2}. _en it must be the case that

lim
n→∞

∥Φn( f ) − f ∥ = 0

for every f ∈ C[0, 1]. In otherwords, the asymptotic behaviour of the sequence (Φn)n
on the C∗-algebra C[0, 1] is uniquely determined by the operator system S spanned
by 1, x , x2. _is striking phenomenon was elucidated by several researchers (see, for
instance, [1] for a recent survey), but the perspective most relevant for our purpose
here was oòered by Šaškin [37], who observed that the key property of S is that its
Choquet boundary coincides with [0, 1].
A natural non-commutative analogue of Korovkin-type rigidity would be an op-

erator systemS ⊂ B(H)with the property that for any sequence of unital completely
positive linear maps

Φn ∶C∗(S)Ð→ C∗(S), n ∈ N
such that

lim
n→∞

∥Φn(s) − s∥ = 0, s ∈S,

wemust have
lim
n→∞

∥Φn(a) − a∥ = 0, a ∈ C∗(S).

In fact, Arveson introduced evenmore non-commutativity in this picture and deûned
the operator system S to be hyperrigid if for any injective ∗-representation

π∶C∗(S)Ð→ B(Hπ)
and for any sequence of unital completely positive linear maps

Φn ∶B(Hπ)Ð→ B(Hπ), n ∈ N
such that

lim
n→∞

∥Φn(π(s)) − π(s)∥ = 0, s ∈S,

wemust have
lim
n→∞

∥Φn(π(a)) − π(a)∥ = 0, a ∈ C∗(S).

Note that even in the case where C∗(S) is commutative, a priori this phenomenon
is stronger than the one observed by Korovkin, as we allow themaps Φn to take val-
ues outside of C∗(S). Nevertheless, in accordance with Šaškin’s insightful observa-
tion, Arveson [7] conjectured that hyperrigidity is equivalent to thenon-commutative
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Choquet boundary ofS being as large as possible, in the sense that every irreducible
∗-representation of C∗(S) should be a boundary representation for S. _is is now
known as Arveson’s hyperrigidity conjecture, and it has garnered signiûcant interest in
recent years [12,26,27,32]. Arveson himself showed in [7] that the conjecture is valid
whenever C∗(S) has countable spectrum. Recently, it was veriûed in [15] in the case
where C∗(S) is commutative.

_e hyperrigidity conjecture is themain motivation behind our work here. Tech-
nically speaking, however, the paper is centred around extensions and restrictions of
states on C∗-algebras, and these issues occupy us for the majority of the article. We
feel this approach to hyperrigidity is very natural, but as far aswe know it has not been
carefully investigated beyond the early connection realized in [6,_eorem 8.2]. In the
ûnal section of the paper, we introduce what we call unperforated pairs of subspaces
in a C∗-algebra. As we show, they constitute a device that can be leveraged to gain
information about states, and ultimately to detect hyperrigidity. _ey also highlight a
novel angle of approach to the hyperrigidity conjecture.

We now describe the organization of the paper more precisely. In Section 2, we
gather the necessary background material. In particular, we recall that hyperrigidity
of an operator system S is equivalent to the following unique extension property:
for every unital ∗-representation π∶A → B(H) and every unital completely positive
linear map Π∶A → B(H) that agrees with π on S, we have π = Π. In Section 3, we
explore the link betweenhyperrigidity and two properties of states, namely the unique
extension property and the pure restriction property. _e ûrst main result of that
section establishes these properties as a tool to detect hyperrigidity. We summarize
our ûndings (_eorem 3.2, Corollary 3.3, and_eorem 3.10) in the following theorem.

_eorem 1.1 Let S be an operator system and let A = C∗(S). Assume that every
irreducible ∗-representation ofA is a boundary representation forS. Let π∶A→ B(H)
be a unital ∗-representation and let Π∶A → B(H) be a unital completely positive ex-
tension of π∣S. _e following statements are equivalent.
(i) We have π = Π.
(ii) We have Π(A) ⊂ π(A).
(iii) Every pure state on C∗(Π(A)) restricts to a pure state on π(A).
(iv) _ere is a family of states on C∗(Π(A)) that separate (Π − π)(A) and restrict to

pure states on π(A).
(v) Every pure state on C∗(Π(A)) has the unique extension property with respect to

π(A).
(vi) _ere is a family of pure states on C∗(Π(A)) that separate (Π− π)(A) and have

the unique extension property with respect to π(A).

_e other main result of Section 3 provides evidence supportingArveson’s conjec-
ture (_eorem 3.6).

_eorem 1.2 Let S be an operator system and let A = C∗(S). Assume that every
irreducible ∗-representation ofA is a boundary representation forS. Let π∶A→ B(H)
be a unital ∗-representation and let Π∶A → B(H) be a unital completely positive ex-
tension of π∣S. _en the subspace (π −Π)(A) contains no strictly positive element.
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In Section 4, we delve deeper into the unique extension property for states. Based
on a general construction (_eorem 4.3), we exhibit natural examples where the
unique extension property is satisûed by an abundance of states, which is relevant
in view of_eorem 1.1.
Finally, in Section 5,we introduce thenotion of anunperforatedpair. Apair (S,T)

of self-adjoint subspaces in a unital C∗-algebra is said to be unperforated if whenever
a ∈S and b ∈ T are self-adjoint elementswith a ≤ b,wemay ûnd another self-adjoint
element b′ ∈ T such that ∥b′∥ ≤ ∥a∥ and a ≤ b′ ≤ b. _is provides a mechanism to
construct families of states with pure restrictions (_eorem 5.2). _e precise relation
to hyperrigidity is illustrated in the following theorem (Corollaries 5.3 and 5.5).

_eorem 1.3 Let S be a separable operator system and let A = C∗(S). Assume
that every irreducible ∗-representation of A is a boundary representation for S. Let
π∶A→ B(H) be a unital ∗-representation and let Π∶A→ B(H) be a unital completely
positive extension of π∣S. _en the pair ((Π−π)(A), π(A)) is unperforated if and only
if Π = π. In particular, this is satisûed if (Π − π)(A) commutes with π(A).

Unperforated pairs appear to be elusive in the absence of some form of commuta-
tivity. Accordingly, we aim to ûnd a meaningful relaxation of that notion. Based on
recent advances in the tensor theory of operator systems and the so-called tight Riesz
interpolation property, we propose that the weak expectation property is an appro-
priate relaxation. Our position is substantiated by the following result (_eorem 5.7).

_eorem 1.4 Let A be a unital C∗-algebra and let B ⊂ A be a unital separable
C∗-subalgebra with the weak expectation property. Let a ∈ A be a self-adjoint element
and let ε > 0. _en there is a sequence (βn)n of self-adjoint elements in B with the
following properties.
(i) We have ∥βn∥ ≤ (1 + ε)∥a∥ for every n ∈ N and lim supn→∞ ∥βn∥ ≤ ∥a∥.
(ii) We have

lim sup
n→∞

ψ(βn) ≤ inf{ψ(b) ∶ b ∈B, b ≥ a},

sup{ψ(c) ∶ c ∈B, c ≤ a} ≤ lim inf
n→∞

ψ(βn)

for every state ψ on B.

As an application of the previous result, we reûne_eorem 3.10 in the presence of
the weak expectation property (Corollary 5.10).

2 Preliminaries

2.1 Operator Systems and Completely Positive Maps

Let B(H) denote the C∗-algebra of bounded linear operators on some Hilbert space
H. An operator system S is a unital self-adjoint subspace of B(H). Due to work of
Choi and Eòros [11], operator systems can be deûned in a completely abstract fashion,
but the previous “concrete” deûnition will suõce for our present purposes. Likewise,
wewill always assume thatC∗-algebras are concretely represented on aHilbert space.
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For each positive integer n, we denote byMn(S) the complex vector space of n × n
matrices with entries inS, and regard it as a unital self-adjoint subspace of B(H(n)).
A linear map φ∶S→ B(Hφ) induces a linear map φ(n)∶Mn(S)→ B(H(n)φ ) deûned
as

φ(n)([s i j]i , j) = [φ(s i j)] i , j

for each [s i j]i , j ∈Mn(S). _emap φ is said to be completely positive if φ(n) is positive
for every positive integer n.
Formost of the paper,wewill be dealingwith unital completely positivemapswith

one-dimensional range. Such amap ψ∶S→ C is called a state. _e set of states on S
is denote by S(S). It is a weak-∗ closed convex subset of the closed unit ball of the
dual spaceS∗, and so in particular it is compact in the weak-∗ topology.

_e structure of unital completely positive maps on C∗-algebras is elucidated by
the Stinespring construction, a generalization of the classical Gelfand–Naimark–Segal
(GNS) construction associated with a state. More precisely, given a unital C∗-algebra
A and a unital completely positivemap φ∶A→ B(H), there is aHilbert space Hφ , an
isometry Vφ ∶H → Hφ and a unital ∗-representation σφ ∶A→ B(Hφ) satisfying

φ(a) = V∗

φ σφ(a)Vφ , a ∈ A
and Hφ = [σφ(A)VφH]. Here and throughout, given a subset V ⊂ H we denote by
[V] the smallest closed subspace ofH containing V. _e triple (σφ ,Hφ ,Vφ) is called
the Stinespring representation of φ, and it is unique up to unitary equivalence. _e
following fact is standard.

Lemma 2.1 Let A be a unital C∗-algebra and let B ⊂ A be a unital C∗-subalgebra.
Let ψ∶A→ B(H) be a unital completely positivemap and let φ = ψ∣B. _en there is an
isometry W ∶Hφ → Hψ such that WVφ = Vψ and

σψ(b)W =Wσφ(b), b ∈B.

Proof We ûrst note that if b1 , . . . , bn ∈B and ξ1 , . . . , ξn ∈H, then

∥
n

∑
j=1

σψ(b j)Vψ ξ j∥
2
=

n

∑
j,k=1

⟨V∗

ψ σψ(b∗kb j)Vψ ξ j , ξk⟩ =
n

∑
j,k=1

⟨ψ(b∗kb j)ξ j , ξk⟩

=
n

∑
j,k=1

⟨φ(b∗kb j)ξ j , ξk⟩ =
n

∑
j,k=1

⟨V∗

φ σφ(b∗kb j)Vφ ξ j , ξk⟩

= ∥
n

∑
j=1

σφ(b j)Vφ ξ j∥
2
.

Using that Hφ = [σφ(B)VφH], a routine argument shows that there is an isometry
W ∶Hφ → Hψ such that

W(
n

∑
j=1

σφ(b j)Vφ ξ j) =
n

∑
j=1

σψ(b j)Vψ ξ j

for every b1 , . . . , bn ∈B and ξ1 , . . . , ξn ∈H. It follows readily that WVφ = Vψ and

Wσφ(b) = σψ(b)W , b ∈B.
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2.2 Purity, Extreme Points, and the Choquet Integral Representation

Let S be an operator system. A completely positive map ψ∶S → B(H) is said to be
pure if whenever φ∶S → B(H) is a completely positive map with the property that
ψ − φ is also completely positive, we must have that φ = tψ for some 0 ≤ t ≤ 1. It
is known that the pure unital completely positivemaps on a C∗-algebra are precisely
those for which the associated Stinespring representations are irreducible [3, Corol-
lary 1.4.3].

We let Sp(S) denote the collection of pure states. It is a standard fact that a state
is pure if and only if it is an extreme point of S(S) (see for instance [16, Proposi-
tion 2.5.5], the proof of which is easily adapted to the setting of an operator system).
A subtlety arises for unital completely positivemapswith higher dimensional ranges:
it follows from [38, Example 2.3] and [18] that amatrix state ψ∶S→ B(Cn) is pure if
and only if it is a so-calledmatrix extreme point.

_e following tool will be important for us. It follows from [8, _eorem 4.2] (see
also [34, Chapter 3]). Recall that ifS is separable, then theweak-∗ topology on S(S)
is compact andmetrizable.

_eorem 2.2 Let S be a separable operator system and let ψ be a state on S. _en
there is a regular Borel probability measure on S(S) concentrated on Sp(S) and with
the property that

ψ(s) = ∫
Sp(S)

ω(s)dµ(ω), s ∈S.

2.3 Unique Extension Property, Boundary Representations, and Hyperrigidity

One important property of completely positivemaps on operator systems is that they
satisfy a generalization of the Hahn–Banach extension theorem. Indeed, let S ⊂
B(H) be an operator system and let φ∶S → B(Hφ) be a completely positive map.
_en, by Arveson’s extension theorem [3], there is another completely positive map
ψ∶B(H)→ B(Hφ) with the property that ψ∣S = φ. In particular, a completely posi-
tivemap onS always admits at least one completely positive extension to any operator
system T ⊂ B(H) containing S. We denote the set of such extensions by E(φ,T).
_is notation will be used consistently throughout the paper.

In general, the set of extensions may contain more than one element, and this pos-
sibility is one of themain themes of the paper. _e following fact quantiûes the free-
dom in choosing an extension, and it follows from a verbatim adaptation of the proof
of [7, Proposition 6.2].

Lemma 2.3 Let S ⊂ T be operator systems and let φ be a state on S. _en

max
ψ∈E(φ ,T)

ψ(t) = inf{φ(s) ∶ s ∈S, s ≥ t},

min
ψ∈E(φ ,T)

ψ(t) = sup{φ(s) ∶ s ∈S, s ≤ t},

whenever t ∈ T is self-adjoint.
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Let S ⊂ T be operator systems. We say that a completely positive map ψ∶T →
B(Hψ) has the unique extension property with respect to S if the restriction ψ∣S ad-
mits only one completely positive extension to T, namely ψ itself. An irreducible
∗-representation π∶C∗(S) → B(Hπ) is said to be a boundary representation for S if
it has the unique extension property with respect to S.

We advise the reader to exercise some care: in other works (such as [6]) the use
of the terminology “unique extension property” is reserved for ∗-representations on
C∗(S). Our deûnition is more lenient, as we do not restrict our attention to ∗-rep-
resentations and no further relation is assumed between S and T beyondmere con-
tainment.

_ese notions can be used to reformulate the property of hyperrigidity considered
in the introduction. _e following is [7,_eorem 2.1]; therein, some special attention
is paid to separability conditions, but a quick look at the proof reveals that the next
result holds with no cardinality assumptions.

_eorem 2.4 Let S be an operator system. _en S is hyperrigid if and only if every
unital ∗-representation of C∗(S) has the unique extension property with respect to S.

_e driving force behind our work is the following conjecture of Arveson [7],
which claims that it is suõcient to focus on irreducible ∗-representations to detect
hyperrigidity.

Arveson’s hyperrigidity conjecture An operator systemS is hyperrigid if every ir-
reducible ∗-representation of C∗(S) is a boundary representation for S.

To be precise, we should point out that Arveson was more cautious and restricted
the operator system in his conjecture to be separable. We explain why this conjecture
is especially sensible in that case. We may think of an arbitrary ∗-representation as
some kind of integral of a family of irreducible ∗-representations against somemea-
sure. Since the irreducible ∗-representations are all assumed to have the unique ex-
tension property with respect toS, the question then becomeswhether this property
is preserved by the integration procedure. _is rough sketch can bemade precise, and
in fact thiswas the philosophy used byArveson in [6]. One of themain contributions
therein [6,_eorem 6.1] establishes that if the result of the integration procedure has
the unique extension property with respect to S, then the integrandmust have it al-
most everywhere. Arveson’s hyperrigidity conjecture essentially asserts the converse.
Note that in the “atomic" situation where the integral is in fact a direct sum, this con-
verse does indeed hold [7, Proposition 4.4].
Finally, we note that we choose not to make separability of our operator systems a

blanket assumption, although such conditions will occasionally make an appearance
for technical reasons throughout.

3 Characterizing Hyperrigidity via States

In this section, we make partial progress towards verifying the hyperrigidity conjec-
ture and provide several diòerent characterizations of hyperrigidity using states.
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Before proceeding, we make an observation that will be used numerous times
throughout. Let S be an operator system and let A = C∗(S). Let π∶A → B(H)
be a unital ∗-representation and let Π∶A → B(H) be a unital completely positive
extension of π∣S. _en we have

(3.1) π(A) = C∗(π(S)) = C∗(Π(S)) ⊂ C∗(Π(A)) .
_e basic tool of this section is the following.

Lemma 3.1 Let S be an operator system and let A = C∗(S). Assume that every
irreducible ∗-representation ofA is a boundary representation forS. Let π∶A→ B(H)
be a unital ∗-representation and let Π∶A→ B(H) be a unital completely positive exten-
sion of π∣S. _en we have that ψ ○Π = ψ ○ π whenever ψ is a unital completely positive
map on C∗(Π(A)) with the property that ψ∣π(A) is pure.

Proof Recall that π(A) ⊂ C∗(Π(A)) by (3.1). Let φ = ψ∣π(A), which is pure by as-
sumption. Let (σψ ,Hψ ,Vψ) and (σφ ,Hφ ,Vφ) denote the Stinespring representations
for ψ and φ, respectively. By Lemma 2.1,we see that there is an isometryW ∶Hφ → Hψ
with the property that WVφ = Vψ and

W∗σψ(π(a))W = σφ(π(a))
for every a ∈ A. Since π and Π agree on S, we see that themap

a z→W∗σψ(Π(a))W , a ∈ A
is a unital completely positive extension of σφ ○ π∣S. Because φ is pure, we infer that
σφ is irreducible. In particular, σφ ○π is an irreducible ∗-representation ofA, and thus
is a boundary representation for S. We conclude that

W∗σψ(Π(a))W = σφ(π(a))
for every a ∈ A. Hence, using that WVφ = Vψ , we obtain

ψ(Π(a)) = V∗

ψ σψ(Π(a))Vψ = V∗

φ W
∗σψ(Π(a))WVφ

= V∗

φ σφ(π(a))Vφ = φ(π(a)) = ψ(π(a))
for every a ∈ A, and therefore ψ ○Π = ψ ○ π.

Our next task is to reformulate Lemma 3.1 in a language that is conveniently ap-
plicable to our purposes in the paper. Let A be a unital C∗-algebra and let S ⊂ A
be a self-adjoint subspace. Let F be a collection of states on A. We say that the
states in F separate S if for every non-zero self-adjoint element s ∈ S we have that
supψ∈F ∣ψ(s)∣ > 0.

_eorem 3.2 Let S be an operator system and let A = C∗(S). Assume that every
irreducible ∗-representation ofA is a boundary representation forS. Let π∶A→ B(H)
be a unital ∗-representation and let Π∶A → B(H) be a unital completely positive ex-
tension of π∣S. _e following statements are equivalent.
(i) We have π = Π.
(ii) Every pure state on C∗(Π(A)) restricts to a pure state on π(A).

https://doi.org/10.4153/CJM-2018-008-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-008-1


1244 R. Clouâtre

(iii) _ere is a family of states on C∗(Π(A)) that separate (Π − π)(A) and restrict to
pure states on π(A).

Proof If π = Π, then C∗(Π(A)) = π(A) so that (i) implies (ii). It is trivial that (ii)
implies (iii), since (Π − π)(A) ⊂ C∗(Π(A)) by (3.1). Finally, assume that there is
a family F of states on C∗(Π(A)), which separate (Π − π)(A) and restrict to pure
states on π(A). To establish Π = π, it suõces to show that

sup
ψ∈F

∣ψ(Π(a) − π(a))∣ = 0

for every self-adjoint element a ∈ A. _is follows from an application of Lemma 3.1.
We conclude that (iii) implies (i).

In viewof theprevious statement,wenote in passing that it is generallynot true that
if every state on a unital C∗-algebra A restricts to be pure on a unital C∗-subalgebra
B, then B = A. Indeed, simply consider the trivial case ofB = CI.

We extract an easy consequence related to hyperrigidity.

Corollary 3.3 Let S be an operator system and let A = C∗(S). Assume that every
irreducible ∗-representation ofA is a boundary representation forS. Let π∶A→ B(H)
be a unital ∗-representation and let Π∶A → B(H) be a unital completely positive ex-
tension of π∣S. _en π = Π if and only if Π(A) ⊂ π(A).

Proof Assume that Π(A) ⊂ π(A). _en we have

π(S) = Π(S) ⊂ Π(A) ⊂ π(A),

which implies that
π(A) = C∗(π(S)) = C∗(Π(A)) .

_us, the pure states on π(A) coincide with those on C∗(Π(A)), and _eorem 3.2
implies that π = Π. _e converse is trivial.

In light of_eorem 3.2, it behooves us to understand the states on a unital C∗-al-
gebraA that restrict to be pure on a unitalC∗-subalgebraB. Fixing a stateψ onA and
allowing B to vary (while still being non-trivial), it is sometimes possible to arrange
for the restriction ψ∣B to be pure as well; see [23] and references therein. Typically,
however, one does not expect purity of the restriction, as easy examples show.

Example 3.4 Let M2 be the complex 2 × 2 matrices and let {e1 , e2} be the canon-
ical orthonormal basis of C2. Choose non-zero complex numbers γ1 , γ2 such that
∣γ1∣2 + ∣γ2∣2 = 1 and put ξ = γ1e1 + γ2e2 . Deûne a state ω on M2 as

ω(a) = ⟨aξ, ξ⟩, a ∈M2 .

_eGNS representation ofω is seen to be unitarily equivalent to the identity represen-
tation onM2, which is irreducible. _us, ω is pure. Note however that the restriction
of ω to the commutative C∗-subalgebra C⊕C ⊂M2 is not multiplicative, since both
γ1 and γ2 are non-zero, and therefore the restriction is not pure.
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Nevertheless, the insight provided by_eorem 3.2will guide us throughout the pa-
per, and it already contains non-trivial information regarding the hyperrigidity con-
jecture as we proceed to show next. First, we need a technical tool.

Lemma 3.5 Let S be an operator system and let A = C∗(S). Assume that every
irreducible ∗-representation ofA is a boundary representation forS. Let π∶A→ B(H)
be a unital ∗-representation and let Π∶A → B(H) be a unital completely positive ex-
tension of π∣S. Fix a state φ on π(A) and an element a ∈ A such that π(a) − Π(a) is
self-adjoint. _en we have that

sup{φ(π(c)) ∶ c ∈ A, π(c) ≤ π(a) −Π(a)} ≤ 0.

Proof By (3.1), we have π(A) ⊂ C∗(Π(A)). Put x = π(a)−Π(a) ∈ C∗(Π(A)). We
infer from Lemma 3.1 that ψ(x) = 0 for every state ψ on C∗(Π(A)) such that ψ∣π(A)
is pure. In particular, if c ∈ A satisûes π(c) ≤ x and ω is a pure state on π(A), then
we see that

ω(π(c)) = ψ(π(c)) ≤ ψ(x) = 0
for every state ψ on C∗(Π(A)) such that ψ∣π(A) = ω. By the Krein–Milman theorem,
the state φ lies in the weak-∗ closure of the convex hull of Sp(π(A)), and thus

sup{φ(π(c)) ∶ c ∈ A, π(c) ≤ x} ≤ 0.

LetS be an operator system and letA = C∗(S). We assume that every irreducible
∗-representation of A is a boundary representation for S. Further, let π∶A → B(H)
be a unital ∗-representation and let Π∶A→ B(H) be a unital completely positivemap
that agrees with π on S. If the hyperrigidity conjecture held, then we would have
π = Π. In other words, the self-adjoint subspace (π − Π)(A) would be trivial. _e
next development, which is one of themain result of this section, establishes that this
subspace cannot contain any strictly positive element of C∗(Π(A)), thus supporting
Arveson’s conjecture.

_eorem 3.6 Let S be an operator system and let A = C∗(S). Assume that every
irreducible ∗-representation ofA is a boundary representation forS. Let π∶A→ B(H)
be a unital ∗-representation and let Π∶A → B(H) be a unital completely positive ex-
tension of π∣S. _en the subspace (π − Π)(A) contains no strictly positive element
of C∗(Π(A)).

Proof Let a ∈ A and assume that the element x = π(a) − Π(a) is strictly positive,
so that x ≥ δI for some δ > 0. We infer that

sup{φ(π(c)) ∶ c ∈ A, π(c) ≤ x} ≥ φ(π(δI)) = δ
for every state φ on A, which contradicts Lemma 3.5.

Until now, the underlying theme of this section has been the purity of restrictions
of states to C∗-subalgebras. _e dual process of extending states from a C∗-algebra
to a larger one is also relevant for hyperrigidity, and we explore this idea next. We
start by clarifying the relation between the unique extension property for states and
the corresponding property for ∗-representations.
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_eorem 3.7 LetA be a unital C∗-algebra and letS ⊂ A be an operator system. _e
following statements hold.
(i) Assume that every pure state on A has the unique extension property with respect

toS. _en every irreducible ∗-representation ofA has the unique extension prop-
erty with respect to S.

(ii) Assume that every state onA has the unique extension property with respect toS.
_en every unital ∗-representation of A has the unique extension property with
respect to S. In particular, in the case where A = C∗(S), we conclude that S is
hyperrigid.

Proof _e two statements are established via near identical arguments, so we inter-
twine their proofs. Let π∶A → B(H) be a unital ∗-representation (irreducible in the
case of (i)) and let Π∶A→ B(H) be a unital completely positivemap that agrees with
π on S. Wemust show that π = Π on A, for which it is suõcient to establish that

⟨π(a)ζ , ζ⟩ = ⟨Π(a)ζ , ζ⟩
for every unit vector ζ ∈ H and every a ∈ A. Indeed, in that case, for each a ∈ A the
numerical radius of π(a) −Π(a) ∈ B(H) is 0, and thus π(a) = Π(a).
Fix henceforth a unit vector ζ ∈H and consider the state χ on A deûned as

χ(a) = ⟨π(a)ζ , ζ⟩, a ∈ A.

If π is irreducible, it is routine to verify that the GNS representation of χ is unitarily
equivalent to π, whence χmust be pure in this case. Consider now another state ψ on
A deûned as

ψ(a) = ⟨Π(a)ζ , ζ⟩, a ∈ A.
We see that ψ and χ agree on S, whence they agree on A by assumption. In other
words,

⟨π(a)ζ , ζ⟩ = ⟨Π(a)ζ , ζ⟩, a ∈ A,
and the proof is complete.

In the classical case where C∗(S) is commutative, the pure states coincide with
the irreducible ∗-representations, whence the converse of _eorem 3.7(i) holds. For
general operator systems S however, it can happen that S is hyperrigid while there
are some pure states on C∗(S) that do not have the unique extension property with
respect to S. We provide an elementary example.

Example 3.8 Let {e1 , e2} denote the canonical orthonormal basis of C2. Consider
the associated standard matrix units E12 , E21 ∈ M2. Let S ⊂ M2 be the operator
system generated by I, E12 , E21. _en M2 = C∗(S). For 1 ≤ k ≤ 2, we let χk be the
vector state on M2 deûned as

χk(a) = ⟨aek , ek⟩, a ∈M2 .

We see that theGNS representations of χ1 and χ2 are unitarily equivalent to the iden-
tity representation onM2, which is irreducible. _us, χ1 and χ2 are both pure. More-
over, every element s ∈S has the form

s = c0I + c12E12 + c21E21
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for some c0 , c12 , c21 ∈ C. We note that χk(c0I + c12E12 + c21E21) = c0 for 1 ≤ k ≤ 2, so
that χ1∣S = χ2∣S,while χ1 /= χ2. _us, χ1 does not have the unique extension property
with respect to S.

On the other hand, it is well-known that up to unitary equivalence the only uni-
tal ∗-representations ofM2 aremultiples of the identity representation. _e identity
representation is a boundary representation for S by Arveson’s boundary theorem
[4, _eorem 2.1.1]. Since the unique extension property is preserved under direct
sums [7, Proposition 4.4], we conclude that every unital ∗-representation ofM2 has
the unique extension property with respect to S.

Our next task is to relate the unique extension property to the pure restriction
property. For this purpose, we recall some well-known facts that follow easily from
standard convexity arguments (see Subsection 2.3 about the notation used here).

Lemma 3.9 Let S ⊂ T be operator systems.
(i) Let χ be a pure state onT that has the unique extension property with respect toS.

_en the restriction χ∣S is pure.
(ii) Let ω be a pure state onS. _enE(ω,T) is aweak-∗ closed convex subset of S(T)

whose extreme points are pure states on T. In particular, ω admits a unique state
extension to T if and only if it admits a unique pure state extension to T.

In view of this interplay between the unique extension property for states and the
pure restriction property, we give another characterization of hyperrigidity.

_eorem 3.10 Let S be an operator system and let A = C∗(S). Assume that every
irreducible ∗-representation ofA is a boundary representation forS. Let π∶A→ B(H)
be a unital ∗-representation and let Π∶A → B(H) be a unital completely positive ex-
tension of π∣S. _e following statements are equivalent.
(i) We have π = Π.
(ii) Every pure state on C∗(Π(A)) has the unique extension property with respect to

π(A).
(iii) _ere is a family of pure states on C∗(Π(A)) that separate (Π− π)(A) and have

the unique extension property with respect to π(A).

Proof If π = Π, then C∗(Π(A)) = π(A) so that (i) implies (ii). It is trivial that
(ii) implies (iii), since (Π − π)(A) ⊂ C∗(Π(A)) by (3.1). Assume that there is a
family of pure states on C∗(Π(A)) that separate (Π − π)(A) and have the unique
extension property with respect to π(A). By Lemma 3.9, this family consists of states
which restrict to be pure on π(A). _us, π = Π by virtue of _eorem 3.2, and (iii)
implies (i).

4 The Unique Extension Property for States

In the previous section, we gave several diòerent characterizations of hyperrigidity
in terms of states. In particular, _eorem 3.10 provides motivation to examine the
unique extension property for states in greater detail. _is is the task we undertake
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in this section. First, we remark that these uniqueness considerations for pure states
on amaximal abelian self-adjoint subalgebra of B(H)were at the heart of the famous
Kadison–Singer problem [24] thatwas solved in [30]. _e case of general subalgebras
has also been studied extensively; see [2] and references therein.

We now turn to examining the unique extension property for states that are not
pure. In the separable setting, those are exactly the states that are given as the inte-
gration of a collection of pure states with respect to some probability measure (see
_eorem 2.2). More generally, we have the following proposotion.

Proposition 4.1 Let A be a unital C∗-algebra and let S ⊂ A be an operator system.
Let ψ be a state on A such that

ψ = ∫
S(A)

χdµ

for some Borel probabilitymeasure µ on S(A). Assume that ψ has the unique extension
property with respect to S. If χ is a state on A satisfying µ({χ}) > 0, then χ has the
unique extension property with respect to S.

Proof Fix a state χ0 on A with the property that µ({χ0}) > 0. Choose a state ε0 on
A that agrees with χ0 on S. Next, deûne a state φ on A as

φ(a) = µ({χ0})ε0(a) + ∫
S(A)∖{χ0}

χ(a)dµ(χ), a ∈ A.

_en we see that φ and ψ agree on S, and thus by assumption we must have that
φ = ψ. _erefore, for each a ∈ A we ûnd that

µ({χ0})ε0(a) = φ(a) − ∫
S(A)∖{χ0}

χ(a)dµ(χ)

= ψ(a) − ∫
S(A)∖{χ0}

χ(a)dµ(χ) = µ({χ0})χ0(a).

Since µ({χ0}) > 0, we conclude that ε0 = χ0, and the proof is complete.

In particular, the previous proposition implies that if a statewith the unique exten-
sion property is given as some ûnite convex combination of states, then all of those
have the unique extension property as well. _e question asking whether the con-
dition on χ being an “atom” of µ can be removed from the statement appears to be
diõcult. A related fact is known to hold at least in the case where S is separable;
see [6, _eorem 6.1]. In the setting of that paper, however, states are replaced by
∗-representations, and it is systematically assumed that A = C∗(S). Under these
conditions, the unique extension property is known to be equivalent to a dilation the-
oreticmaximality property [6, Proposition 2.4]. _is important characterization was
ûrst discovered in [31] and exploited with great success in [17]. It plays a crucial role
in Arveson’s proof of [6, _eorems 5.6 and 6.1], and the lack of an analogue in our
context is amajor obstacle to adapting his ideas.

In the other direction, we exhibit an example that shows that integrating a col-
lection of pure states with the unique extension property against some probability
measure does not necessarily preserve the unique extension property.
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Example 4.2 Let B2 ⊂ C2 denote the open unit ball and let S2 be its topologi-
cal boundary, the sphere. Let A(B2) denote the ball algebra, that is, the algebra of
continuous functions on B2 that are holomorphic on B2. Endow this algebra with
the supremum norm over B2. By means of themaximum modulus principle, we can
regard A(B2) as a unital closed subalgebra of C(S2). Let

S = A(B2) + A(B2)∗ ⊂ C(S2)
be the operator system generated by A(B2) inside of C(S2). For every λ ∈ B2, denote
by ελ the state on S uniquely determined by

ελ( f ) = f (λ), f ∈ A(B2).
It is a classical fact [20] that S2 is the Choquet boundary of A(B2). Hence, for each
ζ ∈ S2 the state εζ onS has a unique extension to a state χζ on C(S2). _is state χζ is
in fact the character on C(S2) of evaluation at ζ , and in particular, it is pure.
Considernow the unique rotation invariant regularBorel probabilitymeasure σ on

S2, and letψσ denote the state onC(S2) of integration against σ . By virtue of Cauchy’s
formula [35, Equation 3.2.4], we have that ψσ( f ) = f (0) for every f ∈ A(B2). On the
other hand, let µ denote Lebesguemeasure on the circle

{(ζ1 , ζ2) ∈ S2 ∶ ∣ζ1∣ = 1, ζ2 = 0}
and letψµ denote the state on C(S2) of integration against µ. _enψµ /= ψσ . _e one-
variable version of Cauchy’s formula shows that ψµ( f ) = f (0) for every f ∈ A(B2).
In particular, we conclude that ψσ does not have the unique extension property with
respect to S. Finally, note that

ψσ = ∫
S2
χζdσ ,

and we saw in the previous paragraph that each χζ is pure and has the unique exten-
sion property with respect to S.

From the point of view of hyperrigidity, we see that _eorem 3.10 oòers some �ex-
ibility, in the sense that it only requires that there be suõciently many states with the
unique extension property. Accordingly, we next aim to identify a class of natural
examples where the unique extension property is satisûed by a separating family of
states. We start with a general result.

Recall that if J is a closed two-sided ideal of a C∗-algebra A, then J admits a con-
tractive approximate identity. In other words, there is a net (eλ)λ∈Λ of positive ele-
ments eλ ∈ J such that ∥eλ∥ ≤ 1 for every λ ∈ Λ and with the property that

lim
λ

∥beλ − b∥ = lim
λ

∥eλb − b∥ = 0

for every b ∈ J.

_eorem 4.3 Let A be a unital C∗-algebra and let J ⊂ A be a closed two-sided ideal
with contractive approximate identity (eλ)λ∈Λ . Let χ be a state on A such that

lim
λ
χ(aeλ) = χ(a)

for every a ∈ A. _en χ has the unique extension property with respect to J +CI.
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Proof Let ψ be a state on A that agrees with χ on J + CI. Let (σψ ,Hψ , ξψ) be the
associated GNS representation, where ξψ ∈ Hψ is a unit cyclic vector. Put HJ =
[σψ(J)Hψ], which is an invariant subspace for σψ(A). We can decompose Hψ as

Hψ = HJ ⊕H′

J ,

and accordingly, we have

σψ(a) = σψ(a)∣HJ
⊕ σψ(a)∣H′

J
, a ∈ A.

If we let π′J∶A→ B(H′

J) be the unital ∗-representation deûned as
π′J(a) = σψ(a)∣H′

J
, a ∈ A,

then it is readily veriûed that π′J(J) = {0}. Hence, if we decompose

ξψ = ξJ ⊕ ξ′J ∈ HJ ⊕H′

J ,

then we observe that

χ(b) = ψ(b) = ⟨σψ(b)ξψ , ξψ⟩ = ⟨σψ(b)ξJ , ξJ⟩
for every b ∈ J. Note however that

1 = χ(I) = lim
λ
χ(eλ)

whence ∥χ∣J∥ = 1. We conclude that ∥ξJ∥ = 1 and ξ′J = 0, whence ξψ = ξJ ∈ HJ. A
standard veriûcation then yields limλ σψ(eλ)ξψ = ξψ in the norm topology ofHψ . On
the other hand, we have that aeλ ∈ J for each a ∈ A and for each λ ∈ Λ, and thus

χ(a) = lim
λ
χ(aeλ) = lim

λ
ψ(aeλ) = lim

λ
⟨σψ(aeλ)ξψ , ξψ⟩

= lim
λ
⟨σψ(a)σψ(eλ)ξψ , ξψ⟩ = ⟨σψ(a)ξψ , ξψ⟩ = ψ(a).

_is completes the proof.

We can now identify natural examples where many states have the unique exten-
sion property. Recall that a subsetD ⊂ B(H) is said to be non-degenerate ifDH =H.

Corollary 4.4 Let A ⊂ B(H) be a unital C∗-algebra and let J ⊂ A be a closed two-
sided ideal that is non-degenerate. Let X ∈ B(H) be a positive trace class operator with
trX = 1, and let τX be the state on A deûned as

τX(a) = tr(aX), a ∈ A.

_en τX has the unique extension property with respect to J +CI.

Proof Let (eλ)λ be a contractive approximate identity for J. By assumption, we
know that H = JH. A standard calculation then shows that (eλ)λ∈Λ converges to
the identity operator in the strong operator topology of B(H). Since τX is weak-∗
continuous, we conclude that

lim
λ

τX(aeλ) = τX(a), a ∈ A.

By virtue of_eorem4.3,we conclude that τX has the unique extension property with
respect to J +CI.
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Note that _eorem 3.10 implies in particular that C∗(Π(A)) = π(A) if there is a
family of pure states on C∗(Π(A)) that separate (Π − π)(A) and have the unique
extension property with respect to π(A), assuming that every irreducible ∗-repre-
sentation of A is a boundary representation for S. We point out here that it is not
generally the case that two unital C∗-algebras B ⊂ A coincide whenever there is a
family of pure states on A that separate A and have the unique extension property
with respect to B. _e next example illustrates this phenomenon, along with the
various properties of states considered thus far.

Example 4.5 Let H be an inûnite dimensional Hilbert space. Let B be the C∗-al-
gebra generated by the identity I and the ideal of compact operators K(H). Clearly,
B /= B(H). Recall that any non-degenerate ∗-representation of K(H) is unitar-
ily equivalent to some multiple of the identity representation. Standard facts about
the representation theory of C∗-algebras (see the discussion preceding [5, _eorem
I.3.4]) then imply that any unital ∗-representation of B(H) is unitarily equivalent to
id(γ)⊕πQ , where γ is some cardinal number and πQ is a ∗-representation of B(H)
that annihilates K(H). In light of the GNS construction, this shows that a pure state
on B(H) is either a vector state or it annihilatesK(H). For a general stateψ on B(H),
we have the decompositionψ = τ+ψQ ,where τ is a positiveweak-∗ continuous linear
functional on B(H), and ψQ is a positive linear functional on B(H) that annihilates
K(H). Furthermore, there is a positive trace class operator Xψ ∈ B(H) such that

τ(a) = tr(aXψ), a ∈ B(H).
We now carefully analyze the states on B(H) using this description.
First, note that ifψ = τ+ψQ where both τ andψQ are non-zero, then the restriction

ρ = ψ∣B is not pure. For then ρ − τ∣B and ρ − ψQ ∣B are positive linear functionals.
However, τ∣B and ψQ ∣B cannot be linearly dependent, as they are both non-zero, and
ψQ annihilates K(H), while τ does not.

Second, assume that ψ = τ + ψQ where ψQ is non-zero. We claim that ψ does not
have the unique extension property with respect toB. Indeed, since B(H)/K(H) is
not merely one-dimensional and ψQ(I) /= 0, there exists a positive linear functional χ
on B(H) that annihilates K(H) and satisûes χ(I) = ψQ(I), while χ /= ψQ . _en the
state τ + χ agrees with ψ on B, yet it is distinct from ψ.

_ird, assume that ψ = ψQ . We claim that ψ restricts to be pure on B. To see this,
put ρ = ψ∣B and suppose that there are states φ1 , φ2 on B with the property that

ρ = 1
2
(φ1 + φ2).

_enwe have φ1(K) = −φ2(K) for every K ∈K(H). Since φ1 and φ2 are positive, we
conclude that

φ1(K) = φ2(K) = 0
whenever K ∈ K(H) is positive. Using the Schwarz inequality for states [33, Propo-
sition 3.3], we see that

∣φ1(K)∣2 ≤ φ1(K∗K) = 0, K ∈K(H).
Hence, φ1 annihilates K(H), and so does φ2 by the same argument. Since φ1(I) =
φ2(I) = 1, wemust have φ1 = φ2 = ρ. _erefore, ρ is pure.
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Finally, assume that ψ = τ. _en ψ has the unique extension property with respect
toB by virtue of Corollary 4.4. Also, it is readily seen fromLemma 3.9 thatψ restricts
to be pure on B if and only if Xψ has rank one (i.e., ψ is a vector state).

5 Unperforated Pairs of Subspaces in a C∗-algebra

In the previous section,we focused on the unique extension property for states, partly
because it provides a means to produce a family of states on a C∗-algebra with the
pure restriction property (see_eorem 3.10 and its proof). In this section, we explore
a diòerent path and introduce a concept, which, under appropriate conditions, also
leads to the identiûcation of an abundance of states that restrict to be pure.

Let A be a unital C∗-algebra. Let S and T be self-adjoint subspaces of A. We say
that the pair (S,T) is unperforated if for every pair of self-adjoint elements a ∈S, b ∈
T such that a ≤ b, we can ûnd another self-adjoint element b′ ∈ T with the property
that ∥b′∥ ≤ ∥a∥ and a ≤ b′ ≤ b. Clearly, the pair (S,T) is automatically unperforated
ifS ⊂ T.

We now provide an example of an unperforated pair (S,T) for which there are
self-adjoint elements a ∈ S, b ∈ T with a ≤ b such that no element b′ ∈ T can be
chosen to satisfy a ≤ b′ ≤ b and ∥b′∥ = ∥a∥.

Example 5.1 Let M3 denote the 3 × 3 complex matrices. Consider

s =
⎡⎢⎢⎢⎢⎢⎣

−2 0 0
0 −1 0
0 0 −1

⎤⎥⎥⎥⎥⎥⎦
∈M3 and t =

⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 −2 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
∈M3 .

Let S = Cs and T = Ct, which are both self-adjoint subspaces ofM3. Let a = αs and
b = βt for some α ∈ C and β ∈ C. Assume that a ≤ b, so that

⎡⎢⎢⎢⎢⎢⎣

−2α 0 0
0 −α 0
0 0 −α

⎤⎥⎥⎥⎥⎥⎦
≤
⎡⎢⎢⎢⎢⎢⎣

β 0 0
0 −2β 0
0 0 β

⎤⎥⎥⎥⎥⎥⎦
.

_is is equivalent to the inequalities −2α ≤ β, −α ≤ β ≤ α/2. In particular, we see that
α ≥ 0 and ∣β∣ ≤ α. _us, ∥b∥ = 2∣β∣ ≤ 2α = ∥a∥. We conclude that the pair (S,T)
is unperforated. In fact, it has an additional noteworthy property. Choose α = 1 and
β = 1/2. _en we trivially have that

−2α ≤ β, −α ≤ β ≤ α/2

so the corresponding elements a ∈ S and b ∈ T satisfy a ≤ b as seen above. If λ ∈ R
satisûes a ≤ λt ≤ b, then

⎡⎢⎢⎢⎢⎢⎣

−2 0 0
0 −1 0
0 0 −1

⎤⎥⎥⎥⎥⎥⎦
≤
⎡⎢⎢⎢⎢⎢⎣

λ 0 0
0 −2λ 0
0 0 λ

⎤⎥⎥⎥⎥⎥⎦
≤
⎡⎢⎢⎢⎢⎢⎣

1/2 0 0
0 −1 0
0 0 1/2

⎤⎥⎥⎥⎥⎥⎦
,

which forces λ = 1/2. We infer that ∥λt∥ = 1 < ∥a∥.
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We will give further examples of unperforated pairs below (see Proposition 5.4).
In the meantime, we illustrate their usefulness for our purposes by leveraging their
deûning property.

_eorem 5.2 Let A be a unital C∗-algebra, letS ⊂ A be a self-adjoint subspace, and
let T ⊂ A be a separable operator system. Assume that the pair (S,T) is unperforated.
_en, for every self-adjoint element s ∈ S, there is a state ψ on A that restricts to be
pure on T and such that ∣ψ(s)∣ = ∥s∥. In particular, there is a family of states on A that
separateS and restrict to be pure on T.

Proof Fix a self-adjoint element s ∈ S. It is no loss of generality to assume that
∥s∥ = 1. Upon replacing s with −s, we can ûnd a state θ on A with the property that
θ(s) = 1. Since T is assumed to be separable, we can invoke _eorem 2.2 to ûnd a
Borel probability measure µ concentrated on Sp(T) with the property that

θ(t) = ∫
Sp(T)

ω(t)dµ(ω), t ∈ T.

Assume on the contrary that for each pure state χ on T, we have that

max
ψ∈E(χ,A)

∣ψ(s)∣ < 1.

We will derive a contradiction by showing that µ(Sp(T)) = 0. To see this, ûrst use
Lemma 2.3. We infer that for every pure state χ on T, we have that

inf{χ(t) ∶ t ∈ T, t ≥ s} < 1,

and thus there is a self-adjoint element tχ ∈ T such that tχ ≥ s and χ(tχ) < 1. Since
the pair (S,T) is unperforated, there is t′χ ∈ T such that ∥t′χ∥ ≤ 1 and s ≤ t′χ ≤ tχ . In
particular, we note that χ(t′χ) < 1. Consider now the weak-∗ open set

Aχ = {ω ∈ Sp(T) ∶ ω(t′χ) < 1}.
_en χ ∈ Aχ , and we see that Sp(T) = ∪χ∈Sp(T)Aχ . Moreover, since ∥t′χ∥ ≤ 1 and

1 = θ(s) ≤ θ(t′χ) = ∫
Sp(T)

ω(t′χ)dµ(ω),

we ûnd µ(Aχ) = 0.
By assumption, T is separable, and thus so is the subset

Q = {t′χ ∶ χ ∈ Sp(T)}.
Accordingly, let {χn}n∈N be a countable subset of Sp(T) such that {t′χn}n∈N is dense
in Q. Let χ ∈ Sp(T) and ω ∈ Aχ , so that ω(t′χ) = 1 − ε for some ε > 0. _ere is N ∈ N
such that ∥t′χN − t′χ∥ < ε/2, whence

ω(t′χN ) < ω(t′χ) + ε/2 = 1 − ε/2
and ω ∈ AχN . _is shows that

Sp(T) = ∪χ∈Sp(T)Aχ = ∪n∈NAχn .

Since µ(Aχn) = 0 for every n ∈ N, we conclude that µ(Sp(T)) = 0. _is contradicts
the fact that µ has total mass 1.
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Based on _eorem 3.2, we can now relate unperforated pairs and hyperrigidity.

Corollary 5.3 Let S be a separable operator system and let A = C∗(S). Assume
that every irreducible ∗-representation of A is a boundary representation for S. Let
π∶A→ B(H) be a unital ∗-representation and let Π∶A→ B(H) be a unital completely
positive extension of π∣S. _en the pair ((Π−π)(A), π(A)) is unperforated if and only
if Π = π.

Proof IfΠ = π, then (Π−π)(A) = {0} ⊂ π(A) so that the pair ((Π−π)(A), π(A))
is trivially unperforated. Conversely, assume that the pair ((Π − π)(A), π(A)) is
unperforated. By _eorem 5.2, there is a family of states on C∗(Π(A)) that separate
(Π−π)(A) and restrict to be pure on π(A). _enΠ = π by virtue of_eorem 3.2.

Next, we exhibit a non-trivial condition that ensures that a pair (S,T) is unper-
forated.

Proposition 5.4 Let A be a unital C∗-algebra. LetS and T be self-adjoint subspaces
ofA such thatT is unital. Assume thatS commuteswithT. _en, the pair (S, C∗(T))
is unperforated.

Proof Let a ∈ S, b ∈ C∗(T) be self-adjoint elements such that a ≤ b. Deûne a
continuous function f ∶R→ R as

f (t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t if ∣t∣ ≤ ∥a∥,
∥a∥ if t > ∥a∥,
−∥a∥ if t < −∥a∥.

Observe that f (a) = a and that ∥ f (b)∥ ≤ ∥a∥ by choice of f . Now, since a ≤ b,
we must have −∥a∥I ≤ b, and thus the spectrum of b is contained in [−∥a∥, ∥b∥].
Furthermore, we have that f (t) ≤ t for every t ≥ −∥a∥. _ese two observations
together show that f (b) ≤ b.

We claim that a ≤ f (b). To see this, we note that C∗(T) commutes with C∗(S),
since S and T are self-adjoint, whence the unital C∗-algebra C∗(a, b, I) is commu-
tative. _erefore, there is a compact Hausdorò space Ω and a unital ∗-isomorphism
Φ∶C∗(a, b, I) → C(Ω). Put φa = Φ(a), φb = Φ(b). Recalling that a = f (a), the
claim is equivalent to the fact that f ○ φa ≤ f ○ φb on Ω. Since we have that a ≤ b, it
follows that φa ≤ φb . _e function f is non-decreasing,whence f ○φa ≤ f ○φb on Ω,
and the claim is established. Finally, theproof is completed by choosing b′ = f (b).

In particular, we single out the following noteworthy consequence.

Corollary 5.5 Let S be a separable operator system and let A = C∗(S). Assume
that every irreducible ∗-representation of A is a boundary representation for S. Let
π∶A→ B(H) be a unital ∗-representation and let Π∶A→ B(H) be a unital completely
positive extension of π∣S. Assume that (Π− π)(A) commutes with π(A). _en Π = π.

Proof Simply combine Proposition 5.4 with Corollary 5.3.
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In trying to verify that a general pair (S, C∗(T)) is unperforated, onemay hope to
proceed as in the proof of Proposition 5.4 and use the functional calculus to “truncate"
b inside of C∗(T) tohavenorm atmost ∥a∥. However, in general it isnot clear that this
truncation should still dominate a. Indeed, the non-decreasing function f deûned in
the proof is not operator monotone. In fact, there aremany simple instances of non-
unperforated pairs.

Example 5.6 Let T = C⊕C and letS ⊂M2 be the self-adjoint subspace generated
by thematrix [ 0 1

1 0 ]. _en the pair (S,T) is not unperforated. Indeed, consider

a = [0 2
2 0] ∈S, b = [1 0

0 5] ∈ T,

and note that

b − a = [ 1 −2
−2 5 ]

is positive, whence a ≤ b. Let

b′ = [x 0
0 y] ∈ T

be self-adjoint such that a ≤ b′ and ∥b′∥ ≤ ∥a∥ = 2. _en

b′ − a = [ x −2
−2 y ] ≥ 0.

In particular, we see that x ≥ 0, y ≥ 0 and xy ≥ 4. Since ∥b′∥ ≤ 2, we conclude that
max{x , y} ≤ 2. Hence, x = y = 2 so that

b′ = [2 0
0 2] .

But then

b − b′ = [−1 0
0 3]

is not positive.

In view of this diõculty, a pressing question emerges: how common are unperfo-
rated pairs? We saw in Proposition 5.4 that they can be found easily in the presence
of some form of commutativity, but Example 5.6 indicates the situation may be bleak
in general. Accordingly we aim to introduce �exibility in the deûning condition for a
pair to be unperforated. _e key property we require is the following.
A C∗-algebra A is said to have the weak expectation property [29] if for every in-

jective ∗-representation π∶A→ B(Hπ), there is a unital completely positivemap

Eπ ∶B(Hπ)Ð→ π(A)′′

satisfying Eπ(a) = π(a) for every a ∈ A (see, for instance, [10] for details). _e next
development shows that ifB ⊂ A are unital C∗-algebras, then the weak expectation
property forBmay be viewed as a variation on the fact that the pair (A,B) is unper-
forated. Interestingly, this fact uses (albeit indirectly) some recent technology from
the theory of tensor products of operator systems.
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_eorem 5.7 Let A be a unital C∗-algebra and let B ⊂ A be a unital separable
C∗-subalgebra with the weak expectation property. Let a ∈ A be a self-adjoint element
and let ε > 0. _en there is a sequence (βn)n of self-adjoint elements in B with the
following properties.
(i) We have ∥βn∥ ≤ (1 + ε)∥a∥ for every n ∈ N, and lim supn→∞ ∥βn∥ ≤ ∥a∥.
(ii) We have

lim sup
n→∞

ψ(βn) ≤ inf{ψ(b) ∶ b ∈B, b ≥ a}

and
sup{ψ(c) ∶ c ∈B, c ≤ a} ≤ lim inf

n→∞
ψ(βn)

for every state ψ on B.

Proof Assume that B ⊂ A ⊂ B(H). Consider the sets

Ua = {b ∈B ∶ b ≥ a}, La = {c ∈B ∶ c ≤ a}.
Since B is separable, so are Ua and La . _us, there are countable dense subsets
{un}n∈N ⊂ Ua , {ℓn}n∈N ⊂ La . Because B has the weak expectation property, it fol-
lows from [25,_eorem 7.4] that it has the so-called tight Riesz interpolation property
in B(H). Noting that B is unital and that

−(1 + εn−1)∥a∥I < a < (1 + εn−1)∥a∥I, n ∈ N,
this interpolation property guarantees that for each n ∈ N we can ûnd a self-adjoint
element βn ∈B satisfying

−(1 + εn−1)∥a∥I < βn < (1 + εn−1)∥a∥I,
ℓ j − n−1I < βn < uk + n−1I

for every 1 ≤ j, k ≤ n. In particular, we note that

∥βn∥ ≤ (1 + ε)∥a∥, n ∈ N
and

lim sup
n→∞

∥βn∥ ≤ ∥a∥.

Moreover, it follows from the construction of the sequence (βn)n that if ψ is a state
on B, then

sup
m∈N

ψ(ℓm) ≤ lim inf
n→∞

ψ(βn) ≤ lim sup
n→∞

ψ(βn) ≤ inf
m∈N

ψ(um).

On the other hand, we have that

inf
m∈N

ψ(um) = inf{ψ(b) ∶ b ∈B, b ≥ a}

and
sup
m∈N

ψ(ℓm) = sup{ψ(c) ∶ c ∈B, c ≤ a}

by density. Hence,

lim sup
n→∞

ψ(βn) ≤ inf{ψ(b) ∶ b ∈B, b ≥ a}
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and

sup{ψ(c) ∶ c ∈B, c ≤ a} ≤ lim inf
n→∞

ψ(βn).

Of course, theweak expectation property arises naturally without the need for any
kind of commutativity, so that properties (i) and (ii) from _eorem 5.7 constitute a
�exible substitute for the fact that the pair (A,B) is unperforated. We substantiate
this claim in what follows. We start with a concrete observation.

Example 5.8 Let H be an inûnite dimensional separable Hilbert space. _e unital
separable C∗-algebraB =K(H)+CI is nuclear, sinceK(H) is nuclear [10, Exercise
2.3.5]. In particular, it has the weak expectation property [10, Exercise 2.3.14]. Next,
let θ be a state on B(H) that has the unique extension property with respect toB. By
Example 4.5 we conclude that there is a positive trace class operator Xθ ∈ B(H) with
tr(Xθ) = 1 and such that

θ(a) = tr(aXθ), a ∈ B(H).

Upon applying the spectral theorem to Xθ , wemay ûnd a sequence of positive num-
bers (tn)n∈N and a sequence of orthonormal vectors (ξn)n∈N such that

θ(a) = tr(aXθ) =
∞

∑
n=1

tn⟨aξn , ξn⟩

for every a ∈ B(H). In particular, we see that ∑∞n=1 tn = 1. Now ûx a self-adjoint
element a ∈ B(H). Amoment’s thought reveals that theremust be ξ ∈ {ξn}n∈N with
the property that

∣⟨aξ, ξ⟩∣ ≥ ∣θ(a)∣.

Furthermore, if we denote by χ the vector state on B(H) corresponding to ξ, we see
from Example 4.5 that χ restricts to be pure onB. _is is amanifestation of a general
phenomenon, as we show next.

_eorem 5.9 Let A be a unital C∗-algebra and let B ⊂ A be a unital separable
C∗-subalgebra with the weak expectation property. Let θ be a state on A that has the
unique extension property with respect to B. _en for every self-adjoint element a ∈ A
there is a state ψ on A that restricts to be pure on B and such that ∣ψ(a)∣ ≥ ∣θ(a)∣.

Proof Fix a self-adjoint element a ∈ A, which we can assume is non-zero without
loss of generality. _e desired conclusion is unchanged if we replace a by −a, so we
can assume that θ(a) ≥ 0. We argue by contradiction. Assume on the contrary that
for each pure state ω on B, we have

max
ψ∈E(ω ,A)

∣ψ(a)∣ < θ(a).

_en we infer from Lemma 2.3 that

inf{ω(b) ∶ b ∈B, b ≥ a} < θ(a).
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Now, by _eorem 5.7, there is a sequence (βn)n∈N of self-adjoint elements in B with
∥βn∥ ≤ 2∥a∥ for every n ∈ N and such that

sup{θ(c) ∶ c ∈B, c ≤ a} ≤ lim inf
n→∞

θ(βn)

and

lim sup
n→∞

ω(βn) ≤ inf{ω(b) ∶ b ∈B, b ≥ a} < θ(a)

for every pure state ω onB. Since θ is assumed to have the unique extension property
with respect to B, by Lemma 2.3 we ûnd

θ(a) ≤ lim inf
n→∞

θ(βn).

On the other hand, sinceB is assumed to be separable, we can invoke _eorem 2.2
to ûnd a Borel probability measure µ concentrated on Sp(B) with the property that

θ(b) = ∫
Sp(B)

ω(b)dµ(ω), b ∈B.

Upon applying Fatou’s lemma to the sequence of non-negative continuous functions

ω z→ 2∥a∥ − ω(βn), ω ∈ Sp(B),
a simple calculation yields

lim sup
n→∞

( ∫
Sp(B)

ω(βn)dµ(ω)) ≤ ∫
Sp(B)

( lim sup
n→∞

ω(βn))dµ(ω).

Consequently,

lim sup
n→∞

θ(βn) = lim sup
n→∞

( ∫
Sp(B)

ω(βn)dµ(ω))

≤ ∫
Sp(B)

( lim sup
n→∞

ω(βn))dµ(ω) < θ(a).

But this implies that

θ(a) ≤ lim inf
n→∞

θ(βn) ≤ lim sup
n→∞

θ(βn) < θ(a),

which is absurd.

We mention a noteworthy consequence of _eorem 5.9 that is related to hyper-
rigidity.

Corollary 5.10 Let S be a separable operator system and let A = C∗(S). Assume
that every irreducible ∗-representation of A is a boundary representation for S. Let
π∶A → B(H) be a unital ∗-representation such that π(A) has the weak expectation
property, and let Π∶A → B(H) be a unital completely positive extension of π∣S. _en
π = Π if and only if there is a family of states on C∗(Π(A)) that separate (Π − π)(A)
and have the unique extension property with respect to π(A).

Proof Assume that there is a family of states onC∗(Π(A)) that separate (Π−π)(A)
and have the unique extension property with respect to π(A). We can apply_eorem
5.9 to the inclusion π(A) ⊂ C∗(Π(A)) (see (3.1)) to ûnd a (potentially diòerent)
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family of states on C∗(Π(A)) that separate (Π − π)(A) and restrict to be pure on
π(A). Consequently, π = Π by virtue of_eorem 3.2. _e converse is trivial.

We draw the reader’s attention to themain point of Corollary 5.10: unlike in _e-
orem 3.10, the separating family is not assumed to consist of pure states.

We ûnish bymentioning that itwould be of interest to obtain a version of_eorem
5.2 orCorollary 5.3 based on_eorem 5.7. It is not clear to us how this can be achieved
at present. _e promise of such an application of_eorem 5.7 is the reasonwe chose to
state it in the context ofB being separable. _e reader will notice that this condition
can be removed at the cost of obtaining a net rather than a sequence. We opted for
the current version, as sequences seem more appropriate for arguments relying on
integration techniques.
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