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C. J. EVERETT 

Introduction. The basis theorem for directed graphs is, in effect, a result 
on weakly ordered sets, and, in §1, a proof is given, based on Zorn's lemma, 
that generalizes, and perhaps clarifies the exposition in (1, Chapter 2). In §2, 
a graph G* is defined, on an arbitrary collection Q of non-void subsets of a 
set X (which includes all its one-element subsets), in such a way that the 
partitions of X into Q-sets correspond to the kernels of G*. Applied to the 
collection Q of non-null internally stable subsets of a graph G without loops, 
this identifies the chromatic number of G with the least cardinal number of 
any kernel of G*. 

1. The basis theorem. A non-null set X is weakly ordered by a relation 
( < ) in case 

(R) x < x, x G Xj and 
(T) x < y and y < z => x < z\ 

partly ordered if also 
(A ) x < y and y < x => x = y. 

In a weakly ordered set, the relation x = y, defined as x < y and y < x, is 
an equivalence relation, which induces a partition of X into a set P = P(X) 
of classes [x] = {y;y = x}. The order relation [x] < [3/] defined by x < 3/ 
is well defined on classes, and partly orders the set P (2, Chapter I, Theorem 
3). 

A subset B of a weakly ordered set X will be called a fams in case 
(Bl) b ^ bi;b, bi £ B implies b = bi, and 
(B2) for every x £ X, there is a b G 5 such that x < 6. 

THEOREM l.Ifa weakly ordered set X has a basis B, then B is a representation 
system for the set M of maximal classes m (m < p =» m = £) of P = P (X). 
Hence all bases have the same cardinal number. Moreover, the set M has the 
covering property 

(C):for every p G P there is an m > p,m G M. 
Conversely, if M satisfies (C), then every representation system of M is a basis 
forX. 

Proof. If B is a basis, we show that b —> [b] is one-one on B to all of M; 
hence B is a representation system for M. For, [6] < [x] implies b < x, while 
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x < bxe B by (52). Thus b < fa by (T), b = fa by (51), and b = x, 
[x] = [6] G M. Since [6] = [ii] implies b = bi by (51), 6 —> [i] is one-one. 
If [m] G M, then m < & G 5 by (52) so [ra] < [b], [m] = [i], and 6 -> [w]. 
Moreover, for [x] G P , we have x < ô G 5 by (52), so that [x] < [b] where 
[b] G M, and (C) holds. 

Conversely, if M satisfies (C), and 5 is a representation system for M, then 
B is a basis. Under the conditions of (Bl) , we have [b] < [bi] G M, [b] = [&i], 
and b = 61 since B is a representation system. By (C), we have [x] < [m] = [b], 
x < b G 5 , and (52) holds. 

COROLLARY 1. 4̂ weakly ordered set X has a basis if and only if the set M of 
maximal classes of P(X) has the covering property (C). 

We now invoke the axiom of choice in the following well-known form 
(2, p. 42): 

LEMMA 1 (Zorn). If every chain C of a partly ordered set P has an upper bound 
u ( > C) in P, then P contains a maximal element m, and indeed, the set M of all 
such has the covering property (C). 

Remark. A chain is a non-null partly ordered set with x < y or y < x for all 
x, y. The second statement of the lemma follows at once from the first applied 
to the partly ordered subset of all pi > p; cf. Theorem 1. 

Thus we have 

COROLLARY 2 (Basis Theorem). A weakly ordered set X has a basis if every 
chain in P(X) has an upper bound. 

That the conditions of Lemma 1 and Corollary 2 are by no means necessary 
is shown by 

Example 1. The set X = {±2*, zh2ipi;i = 1, 2, . . .} , where pt is the ith 
odd prime, is weakly ordered by the relation x < y meaning x divides y, and 
P(X) consists of the classes {±2*}, {±2*£<}. Although the chain of elements 
{±2*} has no upper bound in P(X), the set M of maximal classes {±2*^} 
has property (C), and X has a continuum of bases. 

One can prove a partial converse of Lemma 1 ; cf. (2, Chapter 2, Theorem 2). 

LEMMA 2. If the set M of a partly ordered set P has property (C) and is finite, 
then every chain of P has an upper bound. 

Proof. To each c of a chain C, assign a maximal element m(c) > c. Then at 
least one of the finite set of values ra* of m (c) is an upper bound of C. Otherwise, 
for each m* there is a C-element c(m*) not <w*. The finite set of such chain 
elements may be written C\ < . . . < ck. Then ck < m(ck) = m0*, and 
c(m0*) = Ci is not <m0*. But ct < ck < ra0*, a contradiction. 
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COROLLARY 3. If a weakly ordered set X has a finite basis, then every chain C 
in P(X) has an upper bound. 

In view of Corollary 1, and Example 1, it may be of interest to note the 
following "generalization" of Zorn's lemma: 

LEMMA 3. The set M of a partly ordered set P has property (C) if and only if 
{C)\ every p G P is contained in a maximal chain {there is at least one) that 
has an upper bound. 

Proof. Zorn's lemma is trivially equivalent to that of Hausdorff: every chain 
in a partly ordered set is contained in a maximal chain (2, p. 42). Thus, for 
every p G P , {p} is a chain, and there is always a maximal chain C D {p}. 

If (C) is true, let p G C < u, C maximal. Then u G C, since C is a maximal 
chain, and u £ M for the same reason. 

Conversely, if M satisfies (C), and p < m G M, the chain {p,m\ is contained 
in a maximal chain C (Hausdorff). 

Since m G M, m > C, we have 

COROLLARY 4. A weakly ordered set has a basis if and only if its partly ordered 
setP(X) has property (C). 

The sufficient condition required by Zorn's lemma cannot be restricted to 
countable chains, as shown by the following example. 

Example 2. The set X of all countable subsets x of real numbers is already 
partly ordered under the relation of set-inclusion x C y> Thus the elements 
of the associated set P = P(X) are classes of the form {x}, consisting of one 
element each. Every countable chain C C P has an upper bound {u\ G P 
where the countable set u is the union of all sets x involved in C. Nevertheless, 
P contains no maximal element (hence not every chain has an upper bound), 
and X has no basis. 

Note that a "countable chain" means a chain of (at most) countably many 
elements cn, and need not be of the sequential form c\ < c2 < . . . ; for example, 
concentric circles of rational radii. Indeed we shall cite below (cf. 3, p. 5). 

LEMMA 4. A countable chain C = {cn} either contains a maximal element, or 
it contains a sequential subchain c\ < c<l < . . . which is co-final with C; i.e., for 
every cn G C, there is a c/ > cn. 

Proof. Suppose C contains no maximal element. Define c\ = C\. Assume that 
c/ is already defined for a particular j > 1, so that Cj < c/. Then there exists a 
cn > c/ and we need only define cj+i = max(cw, cj+i). 

Now let G = (X, F) be a directed graph, namely a non-null set X with a 
function F{x) C X on elements of X to definite subsets (null-set 0 allowed) 
of X. One defines 

F (A) = \J {F{a);a G A C.X}, 
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and, inductively, 

/ w ( x ) = F(Fn(x)), n > 1. 

The set R{x) = {x} U F(x) U F2(x) U . . . thus consists of x and all its 
''progeny." The relation x < y meaning y £ i^(x) is a weak order on X, and 
a fom's B of G is by definition a basis for the weakly ordered set (X, < ) . The 
preceding results therefore apply in a way sufficiently obvious. Moreover, 
every weakly ordered set (X, < ) is that of a (transitive) graph G = (X, F), 
namely that defined by F(x) = {y\x*Cy}, and the examples given are 
relevant for graph theory. In particular, Example 2 indicates that the basis 
theorem as stated in (1, Chapter 2, Theorem 1) is either false, or is intended 
to apply only to graphs of some restricted type. We give next a result of this 
sort which appears to be correct. 

Let G = (X, F) be called inductive (1, p. 13) if, for every sequence {XÙ i > 1} 
with Xj+i £ F(xi), there exists a z > xt, i > 1, z G X. 

COROLLARY 5. If G = (X, F) is inductive, and if the partly ordered set P(X) 
associated with its weak order contains only countable chains, then G has a basis. 
In particular, this is true if X or even P{X) is (at most) countable. 

Proof. By Corollary 2, it suffices to prove that every chain C C P has an 
upper bound. Now C either already contains an upper bound, or, by Lemma 4, 
it contains a co-final subchain c\ < c<i < . . . , where Cj = [yj], and hence 
yj < yj+i, i.e., yj+i Ç R(yj). This implies that the sequence {3̂ } has a refine
ment {xt}, where xi+i G F(xt), i > 1. Since G is inductive, we have a z > xu 

i > 1; hence z > yh and [z] > [3 ]̂ = Cj, j > 1. Since {cf\ is co-final with C, 
it follows that [z] > C. 

2. The chromatic number. If G = {X, F) is a graph, a subset Y (Z X 
is called internally stable if its elements are unrelated, i.e. Y f\ F(Y) = 0; 
externally stable if for every x (£ Y, F(x) P\ Y 7e- 0; and a kernel if it has both 
properties (1, pp. 35, 40, 45). For example, the bases of a weakly ordered set 
coincide with the kernels of the associated graph with 

F'(x) = {y; x < y and x ^ y}. 

A more interesting example arises in set theory. Suppose that Q is any 
collection of non-null subsets g of a set X, including all its one-element subsets 
{x}. Let G* = (Q, T7*) denote the graph on Q defined by 

Concerning G* we have 

THEOREM 2. A subset Qi (Z Q is internally stable if and only if its distinct 
elements qx are disjoint, and externally stable if and only if its elements cover X. 
Hence the partitions of a set X into Q-sets are defined by the kernels of the graph G*. 
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Proof. If Qi is internally stable and qi 9^ q are in Qh they are unrelated by 
F*, and hence disjoint. T h e converse is equally obvious. If Qi is externally 
stable and x f l , then {x} G Q; either {x} G (?i and x is covered, or {x} G Ci 
and, since Qi is externally stable, there exists a #i G F*{x} Pi <2i, hence 
<Zi P {#} 5^ 0, and x G <Zi. 

Conversely, suppose X is covered by the gi of Ci. If q (? (?i, let x £ q. Then 
x G gi for some gi G (?i, #i H g ^ 0, and certainly gi ^ g. Hence gx G F*(q) 
and Ci is externally stable. 

If G = (X, T7) is a graph, a parti t ion of X is said to be chromatic when every 
two adjacent vertices x, y (x ^ y, and y G F(x) or x G ^(3>)) fall in different 
classes (3, Chapter 14). We may call the least cardinal number (2, p . 44) 
of classes in any such parti t ion the chromatic number y(G). For a graph without 
loops (x G F(x), all x) it is self-evident t ha t a part i t ion is chromatic if and only 
if its classes are internally stable subsets of G. T h u s we have 

COROLLARY 6. The chromatic partitions of a graph G = (X, F) without loops 
are defined by the kernels of the graph G* = (Q, F*)} where Q is the collection of 
all non-null internally stable subsets of G, and F* is defined as above. Thus the 
chromatic number y(G) is the least cardinal number of any kernel of G*. 

T h e set 5 of all internally stable subsets of a graph G = (X, F) is par t ly 
ordered under set inclusion. Since the union of a chain of internally stable 
sets is internally stable, the set M of maximal elements of S has the covering 
proper ty (C) by Lemma 1. Since an externally stable set obviously cannot be 
properly contained in an internally stable set, every kernel of G is necessarily 
an element of M. If G has no loops, and is symmetric (y G F(x) => x G F(y))t 

then conversely every element of M is externally stable and hence a kernel 
(1 , p . 46) . For such a graph we conclude t ha t the kernels of G are s imply its 
maximal internally stable subsets, every internally stable subset being 
contained in a kernel. 

Since the graph G* is symmetric without loops, we have the following 
Corollary, under the provisions of Theorem 2 and Corollary 6: 

COROLLARY 7. The partitions of X into Q-sets are defined by the maximal 
internally stable subsets of G*. In particular, the chromatic number of a graph G 
without loops is the least cardinal of any maximal internally stable subset of C7*. 
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