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An Introduction to Affine Lie Algebras
and the Associated Groups

The aim of this chapter is first to set some basic notation and preliminaries
(to be used throughout the book) and then recall the definition of affine Kac—
Moody Lie algebras and their basic representation theory and to study the
associated groups and their flag varieties.

In Section 1.1 we recall the basic notation and preliminaries centered around
schemes, varieties, ind-schemes, ind-group schemes, representable functors,
quasi-coherent sheaves and vector bundles over ind-schemes. We also recall
the Yoneda Lemma (cf. Lemma 1.1.1). The notation set here will implicitly be
used throughout the book.

Let g be a finite-dimensional simple Lie algebra over C and let G be the
connected, simply-connected complex algebraic group with Lie algebra g.

In Section 1.2 we recall the definition of the associated affine Kac—Moody
Lie algebra § and its completion § and their various subalgebras, including the
standard Cartan f), standard Borel b and standard maximal parabolic subalgebra
. Our g and g do not include the degree derivation. Then we define their Verma
and generalized Verma modules and give an explicit construction of integrable
highest-weight modules 77°().) (cf. Definition 1.2.6). Further, we show that
this explicit construction exhausts all the integrable highest-weight modules of
g and, moreover, these modules are irreducible (cf. Theorem 1.2.10). We also
define the affine Weyl group and its action on the Cartan subalgebra of g (by
affine transformations).

In Section 1.3 we define the loop group G((¢)) (without the central exten-
sion) associated to the Lie algebra § and its various subgroups, e.g., G[[]],
G[t~1]. We define the affine group scheme GI[¢]] which is a non-noetherian
scheme and ind-affine group schemes G((1)) and Gt~ '] (cf. Definition 1.3.1).
They respectively represent the functors G(R[[¢]]), G(R((¢))) and G (R[t~'])
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2 An Introduction to Affine Lie Algebras

from the category Alg of C-algebras to the category of groups (cf. Lemma
1.3.2). In particular, G[[¢]], G((¢)) and G[t~'] have C-points G[[t]], G((¢))
and G[t~'], respectively. Then we study the associated infinite Grassmannian
X = G((1))/Gl[]]. Consider the functor Z5: R € Alg ~ G(R((1)))/
G (R[[t]]) and let its sheafification be denoted by 2. We first take G = SLy
and prove that Zgy, is represented by an ind-projective scheme XsL v using
the lattice construction (cf. Theorem 1.3.8). Moreover, X'SLN (€) = Xsry-
We further observe that the ind-group scheme SLy((¢)) acts on the ind-
scheme )_KSLN (cf. Definition 1.3.10). Then we prove that the product map
EN([I’I])* x SLy[[t]] — ﬁN((I)) is an isomorphism onto an open subset
of SLy ((2)), where SLy ([t’l 1)~ is the ind-scheme theoretic kernel of the eval-
uation homomorphism ﬁN([t’]]) — SLy, ' > 0 (cf. Corollary 1.3.15).
This last result is generalized for any connected reductive G in Lemma 1.3.16.
This allows us to realize the infinite Grassmannian X as the C-points of an
ind-projective scheme X which represents the functor 2 (cf. Proposition
1.3.18). The projection 7 : G((t)) — Xg is a locally trivial principal G[[¢]]-
bundle and X is an ind-projective scheme as proved in Corollary 1.3.19. This
result is extended to X replaced by G((z))/P for any parahoric subgroup
P c G[[#]] in Exercise 1.3.E.11.
We prove the following general result (cf. Theorem 1.3.22).

Theorem Let & be an ind-affine group scheme filtered by (affine) finite
type schemes over C and let 94 be the associated reduced ind-affine group
scheme. Assume that the canonical ind-group morphism i : 9™ — 9 induces
an isomorphism of the associated Lie algebras. Then i is an isomorphism of
ind-groups, i.e., 4 is a reduced ind-scheme.

The basic idea of the proof involves considering the completion G of 4
at the identity e, which is a formal group. Further, the formal groups in
characteristic zero are determined by their Lie algebras. Moreover, the Lie
algebras of ¢ and 9 are isomorphic. Thus, by assumption, we get that 9 is
isomorphic with the completion @red of @4 at ¢ (and hence the completions
of ¥ and ¥™ at any C-point are isomorphic). From the isomorphism of the
completions of ¢ and "¢ at any C-point, we conclude that ¢ and ¢
themselves are isomorphic.

As a consequence of the above theorem, we get that the ind-affine group
scheme G[t~!] is reduced and hence so is G[t~!]~ (cf. Theorem 1.3.23). In
particular, the infinite Grassmannian X G is a reduced ind-scheme. Moreover,
GI[[t]] is reduced. Thus, so is G((¢t)) (cf. Remark 1.3.26(b)). It is shown
that the ind-scheme X coincides with the ind-variety X{; defined via the
representation theory (cf. Proposition 1.3.24).
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We show that for any algebraic group H with a surjective algebraic
group homomorphism H — C*, H[¢t] is not reduced (cf. Example 1.3.25 and
Remark 1.3.26(a)).

In Section 1.4 we study the central extension(s) of the ind-group scheme
G((t)). We define the adjoint representation of G(R((¢))) in Definition 1.4.2.
The projective representation of g ® C((¢)) in any integrable highest-
weight module J# (1.) integrates to a projective representation of G(R(()))
(cf. Proposition 1.4.3 and Theorem 1.4.4). The projective representation
of the loop group G(R((t))) in any ' (A.) ® R gives rise to a central
extension (A}M — G((t)), which is a G, -principal bundle, where fo is a
reduced ind-group scheme (cf. Definition 1.4.5 and Proposition 1.4.12). In
particular, the projective repres_entation of G(R((2))) in SZ(A:) ® R lifts

to an actual representa_tion of (A},\C in 5 (Ac) (cf. Corollary 1.4.7). Further,

the central extension (A;,\C — G((t)) splits over GI[]1] as well as G[t~'1~
(cf. Theorem 1.4.11).

1.1 Preliminaries and Notation

Unless otherwise explicitly stated, we take the base field to be the field of
complex numbers C. Though the bulk of the content of this book generalizes
easily to any algebraically closed field of characteristic 0. The identity map of
a set X is denoted by Iy , Ix or Idy (or when no confusion is likely, by I, I or
1d itself).

By schemes we mean quasi-compact (i.e., finite union of open affine
subschemes) separated schemes over C but not necessarily of finite type over
C (cf. (Mumford, 1988, §11.6, Definition 3), though quasi-compactness is not
assumed here). Let S be the category of schemes and morphisms between
them. For a fixed scheme S € S, let Sg be the category of S-schemes whose
objects are morphisms f: T — § (with target S) and the set of morphisms
Mor (f, f)) (f': T" — §) consists of morphisms #: T — T’ making the
following triangle commutative:

T

N

By a variety we mean a reduced scheme which is of finite type over C. We do
not require varieties to be irreducible. When we talk of points of a variety or
scheme X, we always mean closed points, i.e., points in X (C) (see below).
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4 An Introduction to Affine Lie Algebras

By an ind-scheme X = (X,),>0 we mean a collection of schemes X,
together with closed embeddings i,: X, < X4+ for all n > 0. We thus
think of X, as a closed subscheme of X,, 1. Let Y = (¥;)n>0 be another ind-
scheme with closed embeddings j,: Y, < Y,+1. By amorphism f: X — Y
we mean a sequence of non-negative integers (m(0) < m(1) < m(2) < ---)
and a collection of morphisms f,,: X, — Yj,(») (for all n > 0) such that the
following diagram is commutative:

Xy _— Ym(n)

iy jm(nJrl)flo"'ij(n)

Jn
Xn+1 — Yinn+1)-
If f/: X — Y is another morphism with the underlying sequence (m'(0) <
m'(l) < m'(2) < ---), then we say that f and f’ are equivalent if the
following diagram is commutative for all n > 0 (assuming m(n) < m'(n),
otherwise we reverse the arrow in the following diagram to Y, 5y = Yiu@)):

I
Xn Ym (n)

X\ %10'”0]})1@)

Ym’(n)~

We do not distinguish between two equivalent morphisms. This allows us to
talk about isomorphisms of ind-schemes.

Let X := Un>0 X, endowed with the direct limit Zariski topology, where
X, is identified as a closed subspace of X,i via i,. Then, a morphism
f: X — Y clearly gives rise to a continuous map f: X — Y which only
depends upon the equivalence class of f.

A scheme X can be thought of as an ind-scheme by taking X, = X. We
call an ind-scheme X =(X,),>0 of ind-finite type if each scheme X, is of finite
type over C. If each X, is a projective (resp. affine) scheme over C, we call
X an ind-projective scheme (resp. ind-affine scheme). If each X, is a variety
we call X an ind-variety. If each X,, is a projective (resp. affine) variety we
call X an ind-projective variety (resp. ind-affine variety). An ind-scheme X
is called irreducible if under the (direct limit) Zariski topology on X, it is an
irreducible space.

A morphism f: X — Y between ind-schemes is called a closed embedding
(also called a closed immersion) if for eachn > 0, f,,: X,, — Yiun) is a closed
embedding, f(X)isclosedin Y and f: X — f(X)isa homeomorphism
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under the subspace topology on f(X). In this case we also say that X is a
closed ind-subscheme of Y .

Let Alg be the category of commutative algebras over C with identity
(which are not necessarily finitely generated) and all C-algebra homomor-
phisms between them. Also, let Set be the category of sets. For any ind-scheme
X, define the covariant functor

hy: Alg — Set, R ~~ Mor(Spec R, X),

where Mor is the set of all the morphisms. The functor hx extends to a
contravariant functor

hyx: S — Set, Y ~ Mor(Y, X).

Recall the Yoneda Lemma (cf. (Mumford, 1988, §11.6, Proposition 2) for
schemes; its extension to ind-schemes is straightforward).

Lemma 1.1.1  For any ind-schemes X, Y,
Mor(X,Y) ~ Hom(hy,hy),

where Hom denotes the set of natural transformations. Hence, h is a fully
faithful functor from the category of ind-schemes to the category of functors
from Alg to Set.

By R-points of an ind-scheme we mean
X (R) := Mor(Spec R, X). @))

Then, X (C) are the closed points of X.
Let Var be the category of ind-varieties and morphisms between them.
Then, the functor

Var — Set, X ~ X(O),
is a faithful functor, i.e., for X,Y € Var,
Mor(X,Y) — Maps(X (C),Y(C)) is injective 2)

(cf. (Mumford, 1988, §I1.6, p. 162)).

We sometimes abuse the notation and denote ind-scheme X by X (C).

By an affine algebraic group we mean an affine algebraic group of finite
type over C.

An ind-scheme X = (X,),>0 is called an ind-group scheme if it is equipped
with morphisms

w:XxX—>X, t:X—> Xande: SpecC - X
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6 An Introduction to Affine Lie Algebras

playing the role of multiplication, inverse and the identity element, respec-
tively. Thus, they are required to satisfy the following three conditions:

(a) Associativity: o (u x Ix) = po (Ix x u): X> — X.

(b) Identity: The two morphisms @ o (Ix X €) and pwo (€ x Ix): Spec C x
X — X coincide with Ix.

(c) Inverse: The morphism u o (Ix,t): X — X coincides with the
composite morphism X — Spec C 5 X.

In this book we only consider ind-affine group schemes, i.e., ind-group
schemes X = (X,)n>0 such that each X, is an affine scheme. So, by ind-group
schemes, we will always mean ind-affine group schemes.

For an ind-group scheme X and any R € Alg, X (R) is clearly an abstract
group given by the multiplication g, inverse tg and the identity eg. If an
ind-group scheme X is an ind-variety, then we call X an ind-group variety.

Let X = (X,)n>0 be an ind-scheme. By a quasi-coherent sheaf I over X,
we mean a collection of quasi-coherent sheaves J, over X, together with an
isomorphism of O, -modules:

On: Fn = i3 (Fnt1),
forall n > 0, where i,, : X;;, — Xp+1 is the closed embedding.

If each J), is a locally free Ox,-module of rank r, then we call I a rank-r
vector bundle over X. If r = 1, then, of course, F is called a line bundle.
For a quasi-coherent sheaf & over X, define

HP(X,F) = lim HP(X,,3n),

n

where the map H? (X,,4+1,Fn+1) = HP(X,,T,) is defined as the composite
Hp(thva:n«H) - Hp(Xn+lvin*3~n) x~ Hp(Xn,Srn):

where the first map is obtained from the &, ,-module map ;11 — i,,,,(F7)
via the adjoint of the isomorphism 6, (cf. (Hartshorne, 1977, Chap. II, §5))
and the second isomorphism is obtained from the closed embedding i, (cf.
(Hartshorne, 1977, Chap. III, Lemma 2.10)).

If an ind-group scheme I' acts on ind-scheme X, then by a I'-equivariant
vector bundle V over X we mean a vector bundle V over X with an
isomorphism of vector bundles ¢: u*(V) >~ (V) over I' x X satisfying
the standard cocycle condition as in Mumford, Fogarty and Kirwan (2002,
Definition 1.6), where 7y : I' x X — X is the projectionand ;t: ' x X — X is
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1.2 Affine Lie Algebras 7

the action map. For a I'-equivariant vector bundle V over X, there is a natural
action of I'(C) on H? (X, V) as follows (also see Definition B.22).

Take y: SpecC — I'. This gives rise to a morphism pu,: X — X by
restricting p to Spec C x X via y and identifying Spec C x X with X. Thus,
we get a canonical map

HP(X,V) — HP (X, pu5V) > HP (X, V),

where the second isomorphism is obtained by restricting the isomorphism ¢ to
Spec C x X ~ X. This is the required action of I'(C) on H? (X, V).

A covariant functor .# from Alg — Set is called a representable functor if
there exists an ind-scheme X such that there is a natural equivalence of functors
between .% and hx. By Lemma 1.1.1, if such an X exists, then it is unique up to
an isomorphism. Of course, we can extend this definition for any contravariant
functor © — Set.

For any § € & and any ind-scheme X — §, define the contravariant functor

hxs: S5 — Set, (Y — S) ~ Mors(Y, X).

Then, a contravariant functor F: Sg — Set is called representable by an
ind-scheme X over S if there is a natural equivalence of functors between F
and £ X/S-

For a projective variety X and an affine algebraic group G, any C-analytic
G-bundle over X has a unique algebraic G-bundle structure and any analytic
morphism between G-bundles is an algebraic morphism (cf. (Serre, 1958,
§6.3)). The same is true for vector bundles.

1.2 Affine Lie Algebras

For a more exhaustive treatment of the theory, we refer to the standard text
(Kac, 1990).

Let g be a finite-dimensional simple Lie algebra over C. Choose a Cartan
subalgebra I) and a Borel subalgebra b D b. Let AT C b* be the set of positive
roots (i.e., the roots for the subalgebra b) and let A = AT LI A~ be the set of
all the roots of g, where A~ := —A™T. Let {«y,...,0p} C AT be the set
of simple roots and let {e)', ... )} C b be the set of corresponding simple
coroots, where £ := dim } is the rank of g. Let (-, -) be the invariant (symmetric,
nondegenerate) bilinear form on g normalized so that the induced form on the
dual space b* satisfies (6,0) = 2 for the highest root 6 of g. Unless otherwise
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8 An Introduction to Affine Lie Algebras

stated, we will always take the invariant form on g to be normalized as above.
For any o € A, let g, C g denote the root space corresponding to the root «.

Definition 1.2.1  Let g be (as above) a finite-dimensional simple Lie algebra
over C and let A := C[t,¢t71], resp. K = C((¢)) := CI[e [~ be the algebra
of Laurent polynomials, resp. the field of Laurent power series. Define the
affine Kac—Moody Lie algebra (for short affine Lie algebra)

§:=(3®c A) ® CC, (1)
under the bracket
x[1"] 4 2C,x'[t" 1 4 2/C1 = [x, X" 1 + M8y (£, X")C,  (2)

forz,7/ € C,m,m’ € Z and x,x’ € g, where x[ P] denotes x ® P.
We will be particularly interested in the following ‘completion’ § of g
defined by

§:=g®c K CC, 3)
under the bracket

[x[P]+zC,X'[P1+ 7 Cl = [x,x'][PP'] + ltzzeos (@P)P)(x,x"\C, @

for P,P' € K, z,77 € C and x,x’ € g, where Res denotes the coefficient of

t=0
t~dt.
Clearly, § is a Lie subalgebra of g.
The Lie algebra § admits a derivation d defined by

d(X[P])=X[t <Z—f)}, d(C) =0, for P € K and x € g. 5)

Clearly, d keeps g stable. Thus, we have semidirect product Lie algebras
Cd x gand Cd x §.
Define the (formal) loop algebra

9((n) == 9 ®c K, (6)
under the bracket
[x[P],x'[P']] = [x,x'][PP'], for P,P’ € K, and x,x’ € g. @)
Then, § can be viewed as a 1-dimensional central extension of g((7)):
0—> CC - d > g((1)) = 0, (®)

where the Lie algebra homomorphism 7 is defined by n(x[P]) = x[P], for
P € K and x € g,and m(C) = 0. As proved by Garland (1980, Theorem 3.14)
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and also independently by V. Chari (unpublished), the above is a universal
central extension of g((¢)) (see also Kac (1990, Exercises 3.14 and 7.8)). (For
a geometric proof, see Kumar (1985, Corollary 1.9(c)).)

Definition 1.2.2 (Some subalgebras of §)  The Lie algebra g is embedded in
§ as the subalgebra g ® 1°. Define the (standard) Cartan subalgebra of §:

h:=pe:"®CC, (1)
the (standard) Borel subalgebra:
b:=g® (Cl/]) ®b® 1’ ® CC, 2
and the (standard) maximal parabolic subalgebra
p:=g®C[lt]] & CC. 3)
Also, define the following subalgebras of §:
8+ = 0® (ClIAD, §-:=g@ 'CH"), li=g@"®CC. @

Then, g+ is an ideal of p and we have the Levi decomposition (as vector
spaces):

p=1®§,. (5)
Also, as vector spaces:
a=p®d4-. (6)

We can similarly define b, 84,0, P.
Finally, define the 3-dimensional subalgebra of g:

1= ®1 ' ®gp@tSCC—0Y), (7)

where gy is the root space corresponding to the highest root 6 and 8V € b is
the coroot corresponding to 6.

Let X = (8 (1)), Y = (‘1) 8), H = ((1) _01) be the standard basis of s¢,. Take
any xg € gp and yp € g_g satisfying (xg, yo) = 1.

The following lemma is trivial to verify using the commutation relations
insé;.

Lemma 1.2.3  The Lie algebra 1 defined above is isomorphic with the Lie
algebra sy under an isomorphism y: sty — 1 taking X — yo ®t, Y
xo®t Yand H— C —6V.
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10 An Introduction to Affine Lie Algebras

Definition 1.2.4  (a) Let s be a Lie algebra and let V be an s-module. Then
V is called a locally finite s-module if, for any v € V, there exists a finite-
dimensional s-submodule V;, C V containing v.

In particular, a linear transformation 7: V — V (for a vector space V) is
called locally finite if, for any v € V, there exists a finite-dimensional 7'-stable
subspace V), containing v. Similarly, T is called locally nilpotent if, for any
v € V, there exists n, € Z>1 such that 7" (v) = 0.

(b) A representation V of g (or §) is called integrable if V is a locally finite
g-module as well as a locally finite r-module.

Clearly, any submodule of an integrable module is integrable and so is any
quotient.

(c) A representation V of § is called a highest-weight module if V contains
a nonzero vector vy € V satisfying the following two properties:

(c1) The line Cu, is stable under the action of b.
(c2) vy generates the 3-module V, i.e., the only g-submodule of V
containing v is the whole of V.

For a Lie algebra s, let U (s) denote its enveloping algebra.
Any highest-weight g-module V decomposes into homogeneous compo-
nents:

V = ®qez, Va, where V; :=Uy (g ® C[t_ll) V4, Ly = Lo,

x[n] denotes x[t"] and Uy (3 ® C[t 1) is the span of x;[n1]. .. xk[nx] € U(8)
with n; <0and Y5, n; = —d.

In exactly the same way we can define the highest-weight modules for the
Lie algebra g, where we replace the Borel subalgebra b of § by the standard
Borel subalgebra

b:=g® (Ct) @b’ @ CC. (1)

Since § = p ® §_ (cf. identity (6) of Definition 1.2.2) and § = p & g, it
is easy to see that any highest-weight module of § is also a highest-weight
module for g, where

p:= (s Clr]) ®CC. 2)

Any quotient module of a highest-weight module is clearly a highest-weight
module.
(d) (Verma modules) For any A € b*, define the Verma module

M()A») =U(®Q) ®U(fw) (CX’ 3)
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1.2 Affine Lie Algebras 11

where U (f)) acts on U (§) via right multiplication and (Ci is the 1-dimensional
b-module so that the commutator [f), f)] of course acts trivially on (Ci and f) acts
via the character A. (Observe that b=1ho b, f)].) The action of U(g) on M ()A\)
is via left multiplication on the first factor.

Clearly, M@ is a highest-weight g-module. Further, any highest-weight
g-module is a quotient of M ()A») for some A € h*.

In exactly the same way, for any % € b*, we can define the Verma module
M ()A») of g. Then, the canonical map i: M ():) -~ M (i) (induced from the
inclusion § <> @) is an isomorphism. In particular, the g-module structure on
M ()) extends to a §-module structure.

Similarly, we define the generalized Verma module M (V,c) for any
g-module V and any ¢ € C as follows:

M(V,¢):=U® ®ug) 1e(V) = U®) ®ue) le(V), 4)

where P (resp. p) is defined by identity (3) of Definition 1.2.2 (resp. identity (2)
of Definition 1.2.4), U (p) acts on U (§) via right multiplication and I.(V) is
the vector space V on which p acts via (x[P] +zC) - v = P(0)x - v + zcv, for
P e C[[t]]l, x € g,v € V, z € C. Here P(0) denotes the constant term of P.
To prove the second equality in (4), use identity (6) of Definition 1.2.2 and the
analogous identity for g.

Let V be a highest-weight g-module generated by a highest-weight vector
vy# 0 € V of weight A € b* (i.e., the line Cuv is stable under b, v4 generates
V as a g-module and the action of b on v is via the weight A). Then, for any
¢ € C, there is a unique g-module map

7 M) — M(V,0),

taking 1®1;, +> 1®uv, where A, € h* is defined by Acjy = A and A.(C) = c.
Since V is a highest-weight g-module (by assumption), U(g) - v4+ = I.(V).
Thus, 7 is surjective. In particular, in this case M (V,c) is a highest-weight
g-module.

Lemma 1.2.5  For any locally finite g-module V and any ¢ € C, M(V,c) is
locally finite as a g-module.

Proof  Recall the decomposition § = p @ §_ from identity (6) of Definition
1.2.2. Then, by the Poincaré—Birkhoff-Witt (PBW) theorem,

U@® =U®) & UB-)
as vector spaces, and hence the inclusion

t:U@B-) ®c 1(V) — U@©) ®yp 1(V)
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12 An Introduction to Affine Lie Algebras

is an isomorphism of vector spaces. We next claim that ¢ is an isomorphism of
g-modules, where g acts on U (g_) via the adjoint action: (ad x)a = xa — ax,
forx € g,a € U(§_), and g acts on U(§_) ®c I.(V) via the standard tensor
product action. (Of course, g acts on the range of ¢ via its standard embedding
g < §.) To prove the claim, for x € g,a € U(3_) and v € I.(V), we have

tx - (a®v)) :L((adx)a®v)+t(a®x~v)
(adx)a®@v+a®x-v
=(xa—ax)@v+ax v
=xa®v

=x-tla ®v).

This proves that ¢ is a g-module isomorphism. Now, by assumption, the
action of g on 1.(V) is locally finite and it is easy to see that the adjoint action
of gon U(§_) is locally finite. This proves the lemma. ]

Definition 1.2.6 Let D C h* be the set of dominant integral weights
for g, i.e.,

D :={i € b* : A(e;) € Zy for all the simple coroots a;” }.

For any A € D, let V(X) be the finite-dimensional irreducible g-module with
highest weight A.
Define the set of dominant integral weights D for § as follows:

D={heb*:h,eD and i(C)—i@®") e}
We will denote A € H* by A¢, where A := ih) and ¢ = A(C).
For any A = Ao € D, define the -module
M(V(3).c)
U@ - ((xe[t—ll)f—w”+1 ® v+)’

I (Ae) =

where xy is a nonzero element of gy and vy is a nonzero vector in the unique
line Cvy C V(A) stabilized by b.

We prove that 57 (A.) is g-integrable, for which we need the following
general result.

Lemma 1.2.7  (a) Let s be any Lie algebra and let x € s. Define
sy :={yes:(adx)”y =0, forsomen, e N},

where N := Z>1. Then, s is a Lie subalgebra of s.
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1.2 Affine Lie Algebras 13

(b) For any representation (V,m) of s and x € s, define V, = {v € V:
w(x)™v =0, for some n, € N}. Then V, is a s,-submodule of V.

(c) Let (V,m) be a representation of s such that s is generated (as a Lie
algebra) by the set Fy = {x € s : adx acting on s is locally finite and 7 (x) is
locally finite}. Then

(c1) sisspanned over C by Fy. In particular, if s is generated by the set F
of its ad locally finite vectors, then F spans s.

(c2) Ifdims < oo, then any v € V lies in a finite-dimensional
s-submodule of V.

Proof  (a) follows immediately from the Leibnitz formula (i.e., adx is a
derivation)

n

(ad x)” [y,z] = Z (’;) [(adx)-/ ¥, (adx)n—j Z].

J=0

For a locally finite 7:V — V, we can define an automorphism
expT: V — V in the usual manner:

o T”
expT:I—i—Z?. (1)
n=1
Then,
exp(kT) = (expT)*,  foranyk € Z. )
In an associative algebra R, we have the identity (for any a,b € R and
k e N)
£ k
k r k—ry 1
= —1 3
(ada)* b ZO( ) <r>a ba', 3)
r=

where ada: R — R is defined by
(ada)b = ab — ba.

To obtain (3), apply the Binomial Theorem to (L, — R,)¥ for the two
commuting operators L, and R, given respectively by L,b = ab, R,b = ba.

From (3) it is easy to see that for two linear maps 7,S5: V — V such that
T is locally finite and {(ad T)" S,n € N} spans a finite-dimensional subspace
of End V, we have
(ad T)"

n!

(exp T)Sexp(—T) = ) (S) )

n>0
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14 An Introduction to Affine Lie Algebras

as operators on V, where ad T on the right-hand side is to be thought of as an
operator on the associative algebra End V (of all the linear operators of V).

Similar to identity (3), considering the Binomial Theorem for the operator
L = (adx + Ry)", we obtain in any associative algebra R and any elements
x,a € R,

n n
x"a = ( ) (adx)’ a)x"/.
; i) )

Applying the above identity to v, the (b)-part follows.

We first show that for a,x € Fy andt € C, (exp(tada)) x € Fy: Since &
is a Lie algebra representation, for any y,z € sandn € Z,

7((@dy)" z) = (adw(y)" 7(2), (5)
as elements of End(V). In particular, for a,x € Fy,
n((exp(ad a))x) = (exp(adn(a)))rr(x)
=exp(wa) w(x) exp(—ma), by 4). (6)

(Observe that, since a € Fy, w(a) is locally finite and, by (5), {(ad 7 (a))" 7 (x) :
n € N} is finite dimensional.) This shows that ((exp(t ad a))x) is locally finite.
Taking V to be the adjoint representation, we see that (exp(t ad a)) x € Fy.
Let sy C s be the C-span of Fy. Since
exp(t ad —
limit ( P a))x * = [a,x],

t—0 t

we see that [a,x] € sy (for a,x € Fy). In particular, sy is a Lie subalgebra
of s. This proves (c). Now (c3) follows from (c1) by the PBW theorem. ]

Proposition 1.2.8  For any A, € D, the §-module (X¢) is an integrable
highest-weight §-module.
By Exercise 1.1.E.4, 7 (\.) is nonzero.

Proof  We have already seen in Definition 1.2.4(d) that 5#(A.) is a highest-
weight g-module. By Lemma 1.2.5, it is locally finite as a g-module. So, to
prove that it is integrable, it suffices to show that it is locally finite as an
r-module.

Apply Lemma 1.2.7(b) in the case s = g, x = xg [t~ and V = S (0.).
By Exercise 1.1.E.1, s,=s. Moreover, clearly 1® vy € V, and, by
Lemma 1.2.7(b), V, is an s, = s submodule of V. Further, the s-submodule
of V generated by 1 ® v is the whole of V. To prove this, observe that the
canonical map j: M) — M (A¢) is an isomorphism and, moreover, the
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1.2 Affine Lie Algebras 15

canonical map 7 : M(AC) — M(V(A), ¢) is surjective (cf. Definition 1.2.4(d)).
Thus, V=V, ie. xp[t~!] acts locally nilpotently on 7(A.). By the
same argument we see that x_g[f] acts locally nilpotently on V. Now,
any sf>-module L such that X and Y act locally nilpotently on L is a locally
finite s€>-module. This follows, e.g., by Lemma 1.2.7(c;). Thus, in view of
Lemma 1.2.3, the proposition is proved. O

A (Cd x g)-module V is called integrable if it is integrable as a g-module.
It is called a highest-weight (Cd x )-module if there exists a line Cv, C V
which is stable under Cd x b and vy generates V as a (Cd x 3)-module, where
b is defined by identity (2) of Definition 1.2.2. (The notion of a highest-weight
(Cd x g)-module can, of course, be defined similarly.) With this definition we
recall the following important theorem from Kumar (2002, Corollaries 2.2.6,
3.2.10 and Theorem 13.1.3).

Theorem 1.2.9  Any integrable highest-weight (Cd X @§)-module is
irreducible.

Theorem 1.2.10  Any integrable highest-weight §-module is isomorphic
with a unique € (M), ¢ € D.

Thus, . — € (A.) sets up a bijective correspondence between D and the
set of isomorphism classes of integrable highest-weight §-modules.

Moreover, 7 (1) is an irreducible §-module.

Proof  Take an integrable highest-weight g-module V. Let Cvy. C V be a
line stable under b such that the §-submodule generated by vy is the whole
of V. Let A. € b* be the character by which b acts on the line Cv,.. Since V
is integrable, the g-submodule V¢ generated by v is finite dimensional and
so is the r-submodule V' generated by v.. Since the Borel subalgebra b C g
keeps the line Cv stable, from the representation theory of g applied to V?,
we get A € D and V? >~ V(A) as g-modules (cf. (Serre, 1966, Théoréme 1 and
Proposition 3(d), Chapitre VII)). Moreover, from the s¢;-representation theory
(cf. (Serre, 1966, Corollaire 1, Chapitre IV)) and Lemma 1.2.3, A.(C — 8Y) €
Zy,ie., A € D.
Since 3. annihilates vy and hence V, we get a surjective §-module map

¢: M(V(R),c) =V,

taking I.(V (X)) s e isomorphically as al= (g ® CC)-module.
Again, using the s{,-representation theory (cf. (Serre, 1966, Corollaire 1,
Chapitre IV)) and Lemma 1.2.3,

(o[t~ DO+ Ly, =0 in V.
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16 An Introduction to Affine Lie Algebras

Thus, ¢ factors through (as a surjective 3-module map)
¢ HO)— V.
For any g-module L and any ¢ € C, define the action of d on
M(L.¢) ~ U@E-) ®c I(L)

via its standard derivation action on U(g_) induced from the action on §_
given in identity (5) of Definition 1.2.1 (d acts trivially on I.(L)). This
action of d turns the §g-module M (L,c) into a (Cd x §)-module. Clearly, this
(Cd x §)-module structure on M (V(A),c) descends to a (Cd x §)-module
structure on the quotient 7 (). ), making it an integrable and a highest-weight
(Cd x g)-module (cf. Definition 1.2.4(d) and Proposition 1.2.8); in particular,
an integrable and highest-weight (Cd x g)-module. Thus, by Theorem 1.2.9, it
is an irreducible (Cd x §)-module, and hence an irreducible (Cd x §)-module.
We next show that it is irreducible as a g-module.
Let N C J#(A.) be a nonzero g-submodule. Consider the decomposition

H(he) = @iz, (M),
where
H(\e)i i ={ve () :d-v=—iv}. (D
Observe that for any n € Z and x € g,
x[t"]- K (he)i C H(Ne)i-n- 2

For any nonzero v € € (Ac), v = Y v; with v; € ()i, set |v|= D i :
v; # 0. Choose a nonzero v’ € N such that |[v°| < |v| for all nonzero v € N.
Then,

x[t"]-v’ =0 foralln > 1andx € g. 3)

For, otherwise, |x[¢"]-v?| < |v°|, which contradicts the choice of v°. If |[v?| > 0,
take a nonzero component vl‘.l with i, > 0. By (1) and (2),

x[t"]~vf; =0 foralln>1landx €g.

In particular, by the PBW theorem, the (Cd x §)-submodule of J# (i)
generated by vl."g is proper, which contradicts the irreducibility of 7 (A.) as
a (Cd x g)-module. Thus, [v°| = 0, i.e., v° € J#(A.)o and hence, by the PBW
theorem, the (Cd x §)-submodule of #(A.) generated by v° is the same as
the g-submodule of 57 ().) generated by v°. Hence, N = 57 ().), proving the
irreducibility of J#(A.) as a g-module.
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From the irreducibility of #(A.) as a d-module, we get that ¢ is an
isomorphism.

So, to complete the proof of the theorem, it suffices to show that for A, #
Uel € D, # (A¢) and J# (ju.r) are nonisomorphic as g-modules.

Define the g-submodule

A0 ={veH0): 84 -v=0}
Then, clearly, as a g-submodule of J# (1),
1@ V() = #(0 and #00)° = @) A G- @

i>0
We claim that, for any i > O,

S (he)? = 0. 5)

For, if not, the §-submodule of .7#°(A.) generated by .7 (A.)¢ would be proper
(again use the PBW theorem), contradicting the irreducibility of the §-module
F(A.). Thus,

M)’ =10 V().

So, if 77 (A.) and 77 (u.) are isomorphic as g-modules, then the g-modules
V()) and V(u) are isomorphic, i.e., A = . Moreover, the action of C on
(M) and S (u.) is by the same scalar, i.e., c = ¢’. Thus A, = u, proving
the theorem completely. O

Definition 1.2.11  Recall from the beginning of this section that (-, ) is the
invariant normalized form on g. Extend this to an invariant symmetric bilinear
form on g, still denoted by (-, -), as follows:

(x[P],y[Q]) = Reos (t7'PQ)(x,y), forx,y egand P,Q € K, (C,§) =0.
1=

This form clearly descends to a bilinear form on the loop algebra g((¢)) =
g ® K. It is easy to see that this form on g((#)) is nondegenerate.

Definition 1.2.12  Let W be the Weyl group of g. Then W can be realized as

the subgroup of Aut(f)) generated by the simple reflections {si, ..., sy}, where
si(h) :=h —a;(h)a;, forh €D. (1)
Then W is a Coxeter group with Coxeter generators {si, ..., s¢}.

The dual representation of W in h* is explicitly given by

si(A) = A — A(e)) o, for A € h*. (2)
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18 An Introduction to Affine Lie Algebras

Let Qv € ) be the coroot lattice of g:
1
0 = @ Za . (3)
i=1

Since «; (oajV) € Z (cf. (Serre, 1966, Chap. V, §11)), sin C Qv. Thus, W
keeps Qv stable.
Define the affine Weyl group to be the semidirect product

W=WxQ . 4)

For g € Qv, we denote the corresponding element of w by 7,. By definition,
W acts on by via affine transformations, where W acts linearly on ) via the
standard action (1) and 7, acts on }) via translation:

tq(h) =q + h. (5)
Consider the element sy € W defined by

50 = Tov Ve, (6)

where (as in Definition 1.2.2) 8" is the coroot corresponding to the highest root
0 and yy € W is the reflection through the root plane 0, i.e., yoh = h—0(h)0".

The following well-known result can be found, e.g., in (Kumar, 2002,
Propositions 13.1.7, 1.3.21 and the identity (13.1.1.7)).

Lemma 1.2.13  The affine Weyl group W is a Coxeter group with Coxeter
generators {sg, s, . ..,s¢}. In particular, for any & € W, we have the notion of
its length £(W).

The Coxeter relations among {s; }1<;<¢ together with the following relations
provide a complete set of relations for W

(a) s(% =1,

(b) (sosi)™ =1, foralll <i <,
where m; = 2,3,4,6 or 0o according as «;(6")60(;’) = 0,1,2,3 or > 4,
respectively.

1.2.E Exercises

(1) For any root vector xg € gg and n € Z, show that ad(xg[t"]): § — Gisa
locally nilpotent transformation.

(2) Show that for any highest-weight g-module V, its g-module structure
extends to a g-module structure.
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(3) For any A, € 5 show that the line (C(xg [t_l]c_l(ev”l ® v+) inside
M (V()),c) is stable under the action of b and is annihilated by §. . Thus,
the line is stable under b.

(4) Show that, for any A, € D, (A¢) is nonzero. Hint: Use Exercise 3.

(5) Show that, for any A, € D, the line Cv4 C J2(A) is the unique line
stable under b. Hence, any §-module endomorphism of .77 (\) is the
identity map up to a scalar multiple. Moreover, Cvy C J2(A.) is
the unique line annihilated by i := (g ® tC[[¢]]) & u, where 1 is the
nil-radical of b.

(6) Show that, for any A, € b, M (A¢) has a unique proper maximal
g-submodule. Hence, .77 ().) is the unique irreducible quotient of M (Ae).

(7) Forany f € K = C((t)), any root vector xg € gg, and any A, € ﬁ show
that xg[ f] acts locally nilpotently on J#'(A.).

1.3 Loop Groups and Infinite Grassmannians

We follow the convention from Section 1.1.

As in Definition 1.2.1, let K = C((¢)) = C[[¢]][t "] be the field of Laurent
power series.

For any commutative C-algebra R with identity and affine scheme X over
C, let X (R) denote the R-points of X. Then, X (R) can be identified with the
set of all the C-algebra homomorphisms f: C[X] — R, where C[X] is the
affine coordinate ring of X (cf. (Mumford, 1988, §I1.6, Definition 1 and §II.2,
Theorem 1)). We want to realize G(K), G(C[¢t~']) as C-points of ind-affine
group schemes and G (C[[¢]]) as C-points of an affine group scheme.

Recall first that Spec(Clyy,y2,...])(C) = C[[¢]], where an element
> >0 ant” € C[[t]] corresponds to the unique algebra homomorphism
(C[y?, y2,...]— C taking y, to a,.

Definition 1.3.1  Let G be any affine algebraic group (of finite type over C).
Take a faithful representation i : G < SLy C My, where My is the vector
space of N x N matrices over C, and let I C S(M},) be the radical ideal of G
inside My . For any 1 < i, j < N and an integer n, define the linear function

y;';/: My(@®) =My cC((1) - C, E® (Z a,,t”) [N yi,j(E)an»

nez

for E € My and Y, a,t" € C((t)), where y"/: My — C is the linear
function taking any E € My to its (i, j)th entry.
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20 An Introduction to Affine Lie Algebras

Forany P € C[My] = S(M}), let P: My ((t)) — C(()) be the (polyno-
mial) function obtained from extending the scalars from C to C((¢)). Express
P = Zmez ™. For any d > 0, restrict P to My ® t_d(C[[ t]] and denote
this restriction by P@ Then, P, A(d) =0form << Oand P, A( ) are polynomial
functions on My ® t~4C[[¢]]. o

Let R1(\7) be the polynomial ring in the variables {y,’},>_4.1<;, j<n and let
Iéd) be the ideal of Rl(g) generated by {i’\,ﬁd) :me€Z and P € Ig}.

Consider the affine (though non-noetherian) scheme G(t’d(C[[t]]) associ-
ated to the ring R](g)/l(d), ie.,

G(r=4C[[1]]) := Spec (Rg”/zg)) .
In particular, taking d = 0, we get the affine scheme
Gl = G(CII := Spec (RY/1E)

Exactly similarly, we can define the scheme

d

> Ct77 | := Spec (C[yn ] dsnsO,lsz,;gN)/ (F,ﬁ,d)) :

P=0 IMy® ZO(CI717
=

m € Zand P elc;>

Clearly, the inclusions (for any d > 0)

d+1

d
G (fd(C[[t]]) cé (fd*‘C[[t]]) and G| Y Ci7|cG|Y ],
p=0 =

under the above scheme structures, are closed embeddings. This gives rise to
ind-schemes

G((1) = {G(r‘dC[[r]]>}d>o and

Gl =G (cr ) = th

d>0

Observe that G((¢)) is an inductive limit of non-noetherian affine schemes
with closed embedding in ﬁN((t)), whereas G[t~!] is an inductive limit of
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noetherian affine schemes (in fact, affine schemes of finite type over C) with
closed embedding in SLy[r~ 1.

By virtue of the following Lemma 1.3.2, the (ind)-scheme structures on
GII1, G((t)) and G[r~!] do not depend upon the choice of a faithful
representation G < SLy.

Lemma 1.3.2  Let G be any affine algebraic group. Consider the covariant
Sfunctors F|, F», F3 from Alg to Set by

Z1(R) = G(RI[1]D),
F(R) = G(R((1))),
Z3(R) = G(R[t ™).

Then all these are representable functors represented respectively by the
scheme G[[t]] and ind-schemes G((t)) and G[t~1] (with the scheme structure
given in Definition 1.3.1).

In particular, the (ind)-scheme structures on these do not depend upon the
choice of a faithful representation i : G — SLy. Moreover, the C-points of
GIlt1l, G((t)) and Glt~"] coincide with G[[t]] = G(CI[t]]), G((r)):=
G(C((1))) and G[t~'] := G(C[t~ ")), respectively.

Further, G[[t1] is an affine group scheme, which is a closed subgroup
scheme of SLu[[£]]. Similarly, G((t)) and Gt~ are ind-affine group
schemes which are closed ind-subgroup schemes of EN((t)) and SLy[t™1],
respectively.

Proof  We prove the lemma for .%; the proof for .%, and .3 is similar. Let
R be a C-algebra. We need to prove that there is a functorial identification

Mor(Spec R, G[[t]]) = G (R[[t]]). (D

As at the beginning of the section, since G is an affine variety, there is a
canonical bijection

G (R[[r]]) >~ Hom,ig (C[G], R[[1]D), 2

where Homyjg(—, —) denotes the set of C-algebra homomorphisms. Further,
since G[[]] is an affine scheme, there is a canonical bijection

Mor(Spec R, G[[t1]) =~ Homye (C[G[[¢]]], R). 3)
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22 An Introduction to Affine Lie Algebras

Combining (1)—(3), it suffices to prove that there is a canonical bijection
Homyg (C[G], R[[#]]) ~ Homgg(CIG[[1]]], R). “4)
The closed embedding i : G < M gives rise to the closed embedding

ir: Gt = Myl[[t]],

where My[[¢]] is the scheme Spec (C[yi,’j],,zo; 1<i,j<N )
Clearly, the analogue of (4) for G replaced by My is true under the map
(following the notation in Definition 1.3.1)

@my - Homgg(CIMy ], RI[#]]) — Homug(CIMy[[1]], R), f + f,

where f(y"/) =Y",20 FOh9yem forany 1 <i,j < N.Forany P € C[My]
and any f € Homys (C[Mn], R[[#]]), it is easy to see that

fPy =" F(PO"
m>0
From this, it follows that the above bijection ¢y, restricts to a bijection ¢
under the canonical embeddings induced by i:

%G =
Homg (CIGL RI[7]) =  Homge(CIGII]]], R)
i i
Homgio (C[Mn], RI[2]1) o Homyg (CIMy[[£]1], R).
N
This proves (4) and hence (1).

The ‘In particular’ part of the lemma follows since the functor .7 is
independent of the choice of an embedding G < My (by (2)) and the
representing scheme is unique (cf. Lemma 1.1.1).

To prove that G[[¢]] is an affine group scheme, since .7 is representable by
G[[t]], it suffices to observe (using (Mumford, 1988, Chapter II, §6, Proposi-
tion 2)) that the morphism G x G — G, (g,h) — gh~", induces a natural map

Z1(R) x F1(R) — Z1(R) forany R € Alg. Itis a closed subgroup scheme of
SLy [ by construction. The proofs for G((t)) and G[r~!] are identical. O

Corollary 1.3.3  Let G be any affine algebraic group.

(a) Consider the morphism €(c0): G[t™'1 — G induced from the
C-algebra homomorphism Rt~ — R, t~1 — 0.

Let G[t~ 11" be the (ind)-scheme theoretic fiber of €(00) over 1. Then, it
represents the functor G(R[t~'])": Alg — Set defined as the kernel of the
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homomorphism €g(c0): G(R[:™']) — G(R) induced from the C-algebra
homomorphism Rt 1= Rt '—0.

Since G[t~'] < SLn[t"'is a closed embedding (cf. Definition 1.3.1), it
is easy to see that Gt~ — SLy[t™ 11" is a closed embedding.

(b) Let HC G be a closed subgroup. Consider the morphism €(0):
Gl = G induced from the C-algebra homomorphism R[[t]] — R, t — O.

Let G[[t11g be the scheme-theoretic inverse image of H. Then it represents
the functor G(R[[t]])y defined as the inverse image of H(R) under the
homomorphism €g(0): G(R[[t]]) — G(R).

Proof (a) By Lemma 1.3.2, Gt represents the functor G(R[t_l]) (and,
of course, G represents the functor G(R)). Now, by Exercise 1.3.E.6, (_}[t_l]_
represents the functor G(R[t~'])~. This proves (a).

The proof of (b) is identical. ]

Remark 1.3.4  Even though we do not need to, for any affine scheme X of
finite type over C, as in Definition 1.3.1 and Lemma 1.3.2, we can define an
affine (non-noetherian) scheme X[[#]] which represents the covariant functor
Fx : Alg — Set defined by

Fx(R) = X(R[[t]]) = Homygo(C[X], R[[#]]).

In particular, the C-points of X[[£1] = X (CI[1D).
Exactly the same remark applies to C[[¢]] replaced by Clt~ or C((1)).

Definition 1.3.5 (Infinite Grassmannian)  For any affine algebraic group
G over C, define the infinite Grassmannian 2 as the sheafification of the
functor 2 3: R ~ G(R((1)))/G(R[[t]]) (cf. Lemma B.2). Observe that .29
satisfies condition (1) of Lemma B.2 since for any fppf R-algebra R’, R — R’
is injective (cf. (Matsumura, 1989, Theorem 7.5)).

In the following, we show that 2 is representable, represented by an ind-
projective scheme X with C-points X := G((t))/G[[¢]] for any connected
reductive group G. We first consider the case G = SLy.

Definition 1.3.6 (Representing #sr,,, by an ind-projective scheme)  Denote
V = CN. For any non-negative integer n, define the nth special lattice functor
2, = quvz Alg — Set by 2, (R) = set of projective R[[¢]]-submodules LR
of R((¢)) ®c V satisfying the following two conditions:

(@ "LR c LR c +7"LR, where LR := R[[t]]®c V.

() ARy L5 — Agm (R((t)) ®c V) ~ R((r)) has image, denoted by
det LR, precisely equal to R[[]].
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Now, define the special lattice functor 2 = 2N by
Q(R) = UnZO e@n(R)

By Exercise 1.3.E.5, the functor 2 is the sheafificationZs,, of the functor

R ~ SLy(R((1)))/ SLy (R[[2]]).
In particular, taking R = C, define

0, :=2,C) and Q := 2(0C).

(In fact, any C[[¢]]-submodule LC of V((1)) := C((1)) ®¢c V satisfying (a) is
automatically C[[¢]]-free, being a submodule of a free module over a principal
ideal domain (PID). Thus, Q, consists of C[[z]]-submodules L of V((¢))
such that

t"L,Cc Lct "L, and det(L)= C[[¢]],

where L, := C[[f]] ®c V. In fact, in the proof of Theorem 1.3.8, we will
see that the condition det(L) = CJ[[¢]] can be replaced by the condition
dimc(L/t"L,) =nN.)

Recall that for any scheme X and any automorphism f of X, the fixed-
point subset X/ acquires a canonical scheme structure as the inverse image
subscheme of the diagonal A (X) under the morphism

f:rX—>XxX, xb (x,f(x)).

Consider the complex vector space V,, :=t~"L,/t"L, of dimension 2nN.
Then multiplication by ¢ induces a nilpotent endomorphism 7, of V,, and hence
1 + 7, is a unipotent automorphism of V,,. In particular, 1 + 7, induces an iso-
morphism (denoted by the same symbol) of the Grassmannian Gr(nN,2nN)
of nN-dimensional subspaces of the 2nN-dimensional space V,,. Let F, =
F,fv := Gr(nN,2nN)'*™n denote its fixed-point projective scheme and let
F, := F,(C) be the C-points of F,,. Then clearly the map i,,: Q, — F, C
Gr(nN,2nN) givenby L — L/t"L, is a bijection.

It is easy to see that the inclusion 6,: Gr(nN,2nN) — Gr((n + 1)N,
2(n+1)N) is a closed embedding, where (denoting kv .= *QV) the map 6,
takes V/ Ct"Lo/t"Ly ~ " 'V @& " 2V @--- @t "V tot"V @ V'. More-
over, it is easy to see that 6, restricts to a closed embedding 0,: F, — F,H_ 1

By virtue of the following lemma, we have a bijection 8: Xsr,, — Q.

Extending the scalar, the group SLy ((¢)) clearly acts on V ((¢)).
Lemma 1.3.7  The map
B: Xsiy — @V, gSLwllrll > gLo, for g € SLy((®),

is a bijection.
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Proof Letg e SLy((2)).Itis easy to see that there exists some n (depending
upon g) such that

"L, C gL, Ct7"L,. (D

Of course, gL, is t-stable. We next calculate the dimension of gL, /1" L,.

By the Bruhat decomposition (cf. (Kumar, 2002, Corollary 13.2.10)), we
may assume that g is an algebraic group homomorphism C* — D, where D
is the diagonal subgroup of SLy. Write

" o
gt) = , for teC* and n; €Z.
(0] "N
Then, since Img C SLy, we get ¥n; = 0. Now
N
dim (gL(,/t"LO) = Z(n —n;) =Nn—Xn; = Nn.
i=1
This proves that gL, € Q.

Conversely, take L € Q,. Since ¢ := C[[¢]]is a PID and t*L, is O-free of
rank N (for any k € Z), we get that L is O-free of rank N. Further, K @ o L —
V((¢)) is an isomorphism, where K = C((¢)). Let {ey, ..., en} be the standard
C-basic of V and take a 0-basis {vy, ...,vy} of L. Now, define the K-linear
automorphism g of V((z)) by ge; = v; (1 <i < N). We prove that det g is a
unit of &' write detg = t*u, where k € Z and u is a unit of &. Consider the
K -linear automorphism o« of V((¢)) defined by

aej =e¢;, for 1 <i <N
_ =k, —1 .
=t "u ‘ey, for i = N.

Then det(gor) = 1 and "L, c (ga)L, C t7"~IL,. Hence, by the earlier
part of the proof, we get

. ga(L,) N
dim (m) = (n + |k|)N (2)
On the other hand,
. ga(Ly) T 8L,
d1m (m) —dlm(tnLo +|k|N+k
= Nn+ |k|N + k, since L € Q,,. 3)

Combining (2) and (3), we get k = 0. Hence, ga(L,) = gL, = L. This proves
the surjectivity of 8. The injectivity of g is clear. This proves the lemma. O
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Theorem 1.3.8  For any fixed N > 1 and n > 0, the nth special lattice
functor 2, = 2V (defined in Definition 1.3.6) is representable, represented
by a projective scheme Hy, (with C-points Q,), which is a closed subscheme of
F, (defined in Definition 1.3.6). Moreover, the inclusion H, < F, induces an
isomorphism of the corresponding reduced schemes I:I,fEd 5 Fn’ed.

Further, the canonical morphism H, —> ﬁ,H_ 1 (induced from the inclusion
of the functors 2, C Z,11) is a closed embedding. Thus, we get an ind-
projective scheme H = (I:In),,zo representing the functor 2, with C-points
oV =1 Qllqv . Through the bijection B of Lemma 1.3.7, we get the C-points

n>0
of H to be Xs1,,.
Thus, by Exercise 1.3.E.5, H also represents the functor ZsLy- In particu-
lar, ZsLy (C) = XsLy- o )
We denote the ind-scheme H by Xs1.,. Thus, Xsy, represents the functor
ZSLy-

Proof By Eisenbud and Harris (2000, Exercise VI-18), Gr(nN,2nN) repre-
sents the functor

R ~~ Gr(nN,2nN; R)

:= set of R-module direct summands of R?*N of rank nN.

Thus, following the notation of Definition 1.3.6 and Exercise 1.3.E.3, the
functor represented by the scheme F), is given by

Z,(R) = Gr(nN,2nN; R)' 1

= set of R-module direct summands LX of of rank n N,

nyR

Lo
R

mLE

which are (1 + 7,)-stable.

Taking the inverse image LX of L¥ under LR — =" LR /1" LR, we get that
LR satisfies (a) of Definition 1.3.6 and L% is (1 + 7,,)-stable if and only if LR
is an R[[¢]]-submodule of =" LX. Further, L® is a projective R[[¢]]-module
if and only if L® is an R-module direct summand of +™"LE/"LE (cf.
Exercise 1.3.E.1).

We next show that when the C-algebra R is a field k D C,

Fn(k) = 2,(k), forany n > 0. (1)

Take any k[[#]]-submodule Lk satisfying condition (a) of Definition
1.3.6. By the Elementary Divisor Theorem for free modules over a
PID, we get that there exists a k[[t]]-basis {vy,...,vy} of Lﬁ such that
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{r=" iy, L TNy ) s a basis of LX, for some d; > 0. Now, condition
(b) of Definition 1.3.6 is equivalent to the condition

N
Z —n+d; =0. 2)
i=1
Further,
N
dimg LK =Y "@2n —di) = 20N =) " d;. (3)
i=1

Comparing (2) and (3), we see that condition (b) is equivalent to the
condition that dimy L*¥ = nN. This proves (1).
We next show that for any R € Alg,

2,(R) C Z,(R), forany n>0. 4)

Let LR be a projective R[[¢]]-submodule satisfying conditions (a) and (b)
of Definition 1.3.6. Taking C-algebra homomorphisms ¢: R — k (where k is
a field) and considering L = k[[1]] QR[] LR and using Exercise 1.3.E.2, we
get (from the case that R is a field proved earlier) that L¥ is of rank nN over
R, proving (4).

Conversely, assume that R € Alg has no nonzero nilpotents. In this case,
we prove that

Fn(R) C Zn(R). ®)

Take LR € .%,(R). Let R, be the localization of R at a prime ideal p
of R. Since a projective module over a local ring is free (cf. (Matsumura, 1989,
Theorem 2.5)), we get that LR := Ry[[111®grjr) L¥ is an Ry[[#]]-free module
of rank N (R,[[#]] is a local ring by Exercise 1.3.E.13). Thus, det(L%*) C
Ry((¢)) is given by "N P(1) - Ry[[]], where P(t) € Ry[[t]]. Now, take any
C-algebra homomorphism ¢: R, — k to a field k. From the case when R is
a field proved above as in (1), we get that the image Pk(1) of P(¢) in k[[]]
(via @) is "N times a unit of k[[]]. Since this is true for any ¢ and R has no
nonzero nilpotents, we get by using Atiyah and Macdonald (1969, Proposition
1.8) that P(¢) is ™ times a unit of Ryl[t]]. (In general, if we allow R to have
nilpotents, P(¢) would be of the form

Py =ao+ait+ - +apn_1t"™ " aunt™ 4+ ©)

where ag, ajy, . . .,a,n—1 are nilpotents in Ry, and a, is a unit of Ry.) Reverting
to the case when R has no nonzero nilpotents, from the above, we get that

det(LRr) = Ry[[1]]. (7
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Let M := det(L®) ¢ R((¢)). Then, from condition (a) of Definition 1.3.6,
we get

M = t_"NMO, where M, is a finitely generated ideal of R[[¢]]. ()

Take Q(t) = >~ bit' € M,.Then Q(1), considered as an element of Rp[[#]],
belongs to "V det(LRr) = "N R,[[¢]] for any prime ideal p of R (by (7)).
Thus, by = - -+ = b,ny—1 = 0 as elements of R, (for any p). Thus, by = --- =
byn—1 = 0 as elements of R (since R has no nonzero nilpotents). Hence,
M, C "V R[[¢]]. Since t”Lf c LR we have 1"V R[[t]] C M,. Consider the
quotient R-module

_ VR[] "N R{[2]1/ 2"V R[[1]]

A= T T My VR

Applying Atiyah and Macdonald (1969, Proposition 3.8) to the R-module A
and using (7), we get A = 0, i.e., det(L®) = R[[]]. Thus, L% satisfies con-
dition (b) of Definition 1.3.6, proving LX € 2,(R) by Exercise 1.3.E.1. This
proves (5).

Now, we analyze the failure of (5) for general R € Alg. Take any affine open
subset Spec(S) C F,, for a finitely generated C-algebra S. The inclusion gives
rise to the element i;f € Mor(Spec(S), F,) = %,(S) and hence a projective
S[[¢]]-module Lg satisfying (a) of Definition 1.3.6. Take an affine open cover
{Spec(S;)}i of Spec(S) so that the S;[[#]]-module

LS = S;[[1]] @spyy LS is free. 9)

This is possible by Exercise 1.3.E.4. Thus we get, from the proof of (5) given
above (see specifically (6)), that

det(L3) = t7"N P, (0§ [[1] € S; (), (10)
where P;(t) is of the form
Pty =ab+at+---+ay "N gal N
for some nilpotents aé, a’i, o ,ale_] in §;. (11D
The nilpotent ideal
Js, = (aé,a’i, - 7“2N71) C S;

clearly does not depend upon the choice of the representative P;(¢). In partic-
ular, these ideals descend to give a nilpotent ideal Jg C S. Taking an affine
open cover of F, by Spec S, we get a nilpotent ideal sheaf J C Of, . Now,
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define the closed subscheme H,, of F, given by the ideal sheaf ¢ . Thus, their
reduced subschemes are isomorphic:

AP~ Fred, (12)

We next prove that the scheme H, represents the functor 2, i.e., for any
R € Alg, there is a natural isomorphism

2,(R) = Mor(Spec(R), H,) — Mor(Spec R, F,) =: F,(R). (13)

By (4), we have an inclusion 2, (R) C .%,(R). We claim that the image
lands inside Mor(Spec(R), Hy,).
Take L® € 2,(R). Then, by definition,

det(L®) = R[[1]]. (14)

The element LR gives rise to a morphism L®: Spec(R) — F,. Since F} is
a scheme of finite type over C, we can assume that R is a finitely generated
C-algebra. Take ‘small enough’ affine open covers {Spec(R;)}; of Spec R and
{Spec(S;)}; of F,, such that LR restricts to Spec(R;) — Spec S; (i.e., gives
a C-algebra homomorphism f;: S; — R;) and the S;[[¢]]-module L(“j" is free,
where L3 is defined by (9). Thus, by (10), det(L5) = t="N P; () S;[[¢]], where

Pi(t) =Y aétd is of the form (11). In particular,
d>0

det (LR = Rillill @sin LY ) = 17"V fi(PG)RLNL (1)

where f;(P;(t)) is obtained from P;(¢) by applying f; to all the coefficients.
But L® = R;[[t]] ®ryjr) LR. Hence, by (14),

det(L") = R;[[1]]. (16)
Comparing (15) and (16), we get
fita@)) =0, forall 0<d <nN, (17)

i.e., the homomorphism f; factors through S; /(aé,a’i, . ,ai N_1)- This shows
that, from the definition of 1-_1,,, LR. Spec(R) — I-_In. Hence, the image of
2,(R) (inside F,,(R)) lands inside H, (R).

Conversely, take LR € Mor(Spec R, H,) and let L be the corresponding
projective R[[#]]-submodule of R((t)) ®c V (which satisfies condition (a) of
Definition 1.3.6). Then, by the above calculation (see (15) and (17)), for a
‘small enough’ open cover {Spec(R;)}; of Spec(R) (since L® has image inside
Hy), det(LRi) = b; (t) R;[[11], for some b; (1) = Y.’ ¢ € R;[[t]], where
LR := Ri[[t]1®g(1) LR. Considering C-algebra homomorphisms ¢: R; — k
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(for a field k), from the case when R is a field proved earlier, we get that
w(aé) # 0. Since this is true for any ¢, we get that aé is a unit of R;, i.e.,

det(L®1) = R;[[1]]. (18)

By (8), det(L®) = "N M,, for some finitely generated ideal M, of R[[¢]].
Since the image of M, in R;[[t]] equals "N Ri[[¢1] by (18) (for an affine open
cover {Spec(R;)}; of Spec R), we first conclude that M, C "N R[[¢]] (and, of
course, from the definition of L%, M, D 2N R[[t]]). Moreover, considering
the quotient R-module

_ VR[] "N R[]/ 2"V R[[1]]
M, T Mo/tVRI[r]]
and using Atiyah and Macdonald (1969, Proposition 3.8) together with
the equation (18), we get det(L®) = R[[¢]]. Thus, L satisfies condition
(b) of Definition 1.3.6 as well, i.e., L® € 2,(R), proving Mor(Spec R, H,) C
2,(R). Thus, 2,(R) ~ H,(R) and hence 2, (R) is a representable functor
represented by the scheme H,, for all n > 0.

Finally, we have the following commutative diagram of schemes and
morphisms between them:

A

(2)

H, " F,
Jn [9,,

ke in+1 =,
Hn+lc—> Fn—i—ls

where the morphism jj, : H, — I-_I,,_H is induced from the canonical inclusion
of functors 2, (R) — 2,4+1(R). Since i,, i+ are closed embeddings (by
definition, H, C F, is a closed subscheme) and 8,, is a closed embedding as
seen in Definition 1.3.6, we get that j, is a closed embedding. This completes
the proof of the theorem. O

The following example shows that the inclusion 2,(R) C %, (R) (cf. (4)
of the proof of Theorem 1.3.8) is proper for some R € Alg already forn = 1,
N = 2. In particular, by Theorem 1.3.8, the scheme F 12 is not reduced.

Example 1.3.9 Let R = C[e]/(€?). Consider the element g € GL(R((¢)))

given by
_ et +1 0
=0 o 1)
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Its inverse is (—er(‘)‘+1(1)). Clearly, IL§CgL§Ct_1L§' Now
Agp(€LY) = (er7" + DRII1 # RI[£]].
But

gLE (7' + DRI _ R[]
tLX —  tR[[t]] tRI[[1]]

is a free R-module of rank 2. To show this, observe that, as an R-module,

(et '+ DRI[[Z]] _ (e+0RIA RI]
1R[[t]] T (e4+0)(e—nDRI] T (e = ORIAY
where the last isomorphism follows since € + ¢ is not a zero divisor in R[[#]]
as can be seen by multiplying it by € — ¢.
Define an R-module map

0: R — R[[t]l/(t —€)RI[[t]] by r+—>r+ (t—e)R[[t]].

It is clearly surjective. Moreover, it is injective since if ¥ 4 ( —€) P(¢) = 0,
for some P(t) € R[[t]], then (t+€)r+12P(t) = 0. But 2 P(¢) has no ‘z-term,
thus r = 0.

Further, it is easy to see that gLX /¢ L¥ is an R-module direct summand of
t~ LR/t LR

o o "

Definition 1.3.10  Recall that SLy ((¢)) represents the functor SLy (R((¢)))
(cf. Lemma 1.3.2) and XSLN represents the functor Zsy,, (cf. Theorem 1.3.8).
Also, it is easy to see that the sheafification of the functor SLy (R((f))) X
%S’iN is SLy(R((t))) x ZsLy (since SLy(R((r))) is representable), where
.%”S‘iN(R) := SLy(R((2)))/ SLy (R[[¢]]). Thus, the multiplication

SLy (R((1)) x Zgp, (R) —> Zg1 . (R), (g,hoR) — ghor,
gives rise to a C-space functor morphism

SLy (R((1))) x ZsLy = ZsLy,

where op is the base point of SLy (R((¢)))/ SLy(R[[t]]). This, in turn, gives
rise to a morphism of ind-schemes

2 SLy (1)) x XsLy — XsLy-
We define the ‘basic’ line bundle . on X sLy as follows.

Definition 1.3.11 For any n > 0, let .,S,ﬁn be the dual of the tautologi-
cal line bundle over Gr(nN,2nN). Recall that the fiber of .,Z?,, over any V' e
Gr(nN,2nN) is the dual A" (V')*. Let %, be the pull-back line bundle over
H, via the embedding in: H, - Gr(nN,2nN ), which is the composite of
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: H, > F, < Gr(nN,2nN ) (cf. Definition 1.3.6 and the proof of Theorem
1 3.8). It is easy to see that ZH 1 restricts to Zl under the embedding 6,
(cf. Definition 1.3.6). Thus, from the commutative diagram Z in the proof of
Theorem 1.3.8, %, 1 restricts to .%, under the embedding j, : H, <> I-_I,,_H.
Hence, we get the ‘basic’ line bundle .# on Xs1 v

It is easy to see that the action of SLy[[¢]] on )_(SLN (cf. Definition 1.3.10)
canonically lifts to its action on .Z.

Definition 1.3.12  Let V" C V, := "L be the subspace t'V @ --- @

t~"V under the identification

t"L
Vo~t""'Ve...oVer've...er V.

Define a section 6, of %, over Gr(nN,2nN) by defining 6, (L) as the
linear form

L
Ga(L): A"™ (L) —> A" <—”

, forany L € Gr(nN,2nN),
t"L,

induced from the linear map (obtained from the inclusion L C V,,):

Vo _ Lo

L—-> —x~ .
Vs "L,

We identify A"V (L,/t"L,) with C under the basis

((t"_lel) A A (t"_leN))

A ((tn_zel) Al A (t"_zeN)) A A(elA... AeN),

where {eq, ...,ey} is the standard basis of V = CN,

It is easy to see that 6,4 restricts to &, under the embedding
0,: Gr(nN,2nN) — Gr((n + 1)N,2(n + 1)N).

Pulling back the sections &, via the embeddings i,: H, <> F, C
Gr(nN,2nN), we get a section o of the line bundle . over X sLy (cf. diagram
(2) in the proof of Theorem 1.3.8).

Let Z(o) C X sLy be the zero set of the section 0.

Lemma 1.3.13  The open ind-subscheme X sLy \Z (o) represents the functor

R~ 2(R)\Z(op),
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where
D(R\Z(og) == {LR € 2R): ipn:
LR —>(R((t)) Rc V)/(t_lR[t_l] ® V) isan isomorphism},
and i; r is induced from the inclusion LR c R(t)) ®c V.
Proof  We need to prove that for any R € Alg,
Mor (Spec R, )_(SLN\Z(O')) >~ Q(R)\Z(oR). (1)

Take f € Mor(Spec R, )_(SLN) ~ 2(R) (by Theorem 1.3.8) and let LR =
LR( f) € Z,(R) be the corresponding lattice (for some n > 0). To prove (1),
we need to prove that LR ¢ Q(R)\Z(op) if and only if

Im f C Xspy\Z(0).

Since X sLy is an ind-scheme filtered by schemes of finite type over C, and
for any maximal ideal m of a finitely generated algebra S over C, S/m ~ C
(cf. (Atiyah and Macdonald, 1969, Corollary 7.10)), to show (1), it suffices to
show that for any LR € 2, (R), where R is a finitely generated C-algebra,

L® € 2,(R\Z(or) <= (R/m) @& L® € 0,\Z(oc)

for all the maximal ideals m of R. 2)
Now
L® € 2,(R\Z(or)
it ST,

is an isomorphism by definition

LR R(1)Q®V

nJ R - nyr R —1 1

LA "LY)SCE 'R V)

is an isomorphism

@lTLR:

Lo Ru(@)®V
Ry R
(R ®r1"Ly)  (t"Le™) @ (1~ 'Rult=11® V)
is an isomorphism for all the maximal ideals m C R
by Atiyah and Macdonald (1969, Proposition 3.9)

< iLRm :
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LR (R/m)((1) ® V
mLEM™ L™ @ (N R/ @ V)

is an isomorphism by the Nakayama lemma
(R/m)(1) @V

Y R/m~hV

where LR := R, @g LR and LR/™ := (R, /mRy)Qg, LR ~ (R/m)Qg LK.

(Observe that since LR /"L (’f is a finitely generated projective R-module by
Exercise 1.3.E.1,

=4 iLR/IY] .

S iprm: LRM - is an isomorphism,  (3)

Rm LRm LR/m
®Rm 7 ~ m
mRy, Ry ®rt"L} "L /m

o

Moreover, since m is a finitely generated ideal, (R/m) ®g t"LE =~

Ly = (R[] ®c V)
The equivalence (3) is of course the same as the equivalence (2). This proves
the lemma. O

Proposition 1.3.14  The morphism 1 : SLy [t_l]_ - X SLy» induced from
the functor morphism g +— g - og for g € SLy(R[t™')", has its image
in XSLN\Z(O'), where SLy[t~1]~ is defined in Corollary 1.3.3(a) and op is
the base point of SLy(R((1)))/ SLy (R[[t]]). Moreover, u;: SLy[t™']” —
X sLy \Z (o) is an isomorphism of ind-schemes.

Proof By Corollary 1.3.3(a) and Lemma 1.3.13, it suffices to prove that for
any R € Alg, the map

u1(R): SLy(RIt™'])™ — 2(R), g — gLF,
gives a bijection onto Z(R)\Z(or). We first show that
Im (1 (R)) C 2(R)\Z(oR). (L

‘We show that gL(’f € 2(R) forany g € SLy(R((¢))). In fact, we show that for
g € SLy(R((1))) and LR € 2N(R), gLR € 2N (R), i.e., gLR satisfies prop-
erties (a) and (b) of Definition 1.3.6 for some n > 0. Let g € SLy ¢ 4RI[1]D)
(cf. Definition 1.3.1) and let LR ¢ Q,IX(R), for some d, m > 0. Then it is easy
to see that

gLR crm=dLR )

Choosing d’ > 0 such that g’1 € SLN(t’d/R[[t]]), we get from (2)
(replacing g by g~ "): g7 'LR c =4 LR, which gives (since 1" LX c LR
by assumption)
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P LR g LR, 3)

Combining (3) and (2), we get that gL satisfies property (a).

Let gL°: A%[m](LR) — R((¢)) be the map as in (b) of Definition 1.3.6 and
let e, ...,ey be the standard basis of V. = CV. Taking v; = vazl pijei €
LR, for pij € R((2)), itis easy to see that

BEL  (qui AL .. A guy) =detg - BL (i AL Auw)
— BL% (w1 AL Auy), since g e SLy(R((1)).

Thus, det(gL®) = det(L®) = R[[¢]], proving property (b).
Take g € SLN(R[t’l])’. Then (1) is equivalent to showing that igL§:

gLk — % is an isomorphism. Since g € SLy (R[t~']),
g 'R V) =R @ V. “)
Thus
¢ "¢ 'R V)y=t"'RI o V. (5)

Hence, i, r is an isomorphism if and only if iy & : LR — % is
an isomorphism, which follows from (5).

The injectivity of w1 (R) is easy to see.

Finally, take LR ¢ Q(R)\Z(og). We first show that the map (induced
from the inclusion) k: LEN (R~ @ V) — LR/tLR is an isomorphism of
R-modules.

From the definition of 2(R)\Z(or),
RV =L"e e 'RE'IQV), (6)
which gives R((1)) ® V = tL® @ (R[+~']1 ® V). Hence,
LR=LRnuLR® (R 1@ V)
=1L (LRN (R ® V)), since rLR c LK. (7

From (7), we get that k is an isomorphism.
We further claim that the map (induced from the inclusion) £: LR N

(R[t_l] ®V) > % is an isomorphism (of R-modules).

From (6), since t ' R[t~'1®@ V C Rt~ ® V, we get
RIQV = (LR NRI® V)) o (t_lR[t_l] ® v) .

This proves that € is an isomorphism.

https://doi.org/10.1017/9781108997003.003 Published online by Cambridge University Press


https://doi.org/10.1017/9781108997003.003

36 An Introduction to Affine Lie Algebras

Since % is a free R-module of rank N, by virtue of the isomor-
phism £, we get an R-module basis {vy, ...,vy} of LRN(R[:~11® V), where

vi=1®e (modt 'R[t~11® V). (8)

Since LR € 2(R), by the definition of 2, det(LR) = R[[¢]]. From this and
the choice of v; satisfying (8), we easily get that

BL i AL AN) =1, 9)

where ,BLR: A%[[t]](LR) — R((t)) is the map as in (b) of Definition 1.3.6.
Define g, € SLy (R[t~!])~ as follows:

goei = v, foralll <i < N. (10)
For any uy,...,uy € R((t)) @ V and g € My (R((¢))), we have
guiA...Aguy =detg- (Ui A... Aun). (11

Thus, from (9)—(11), we get that det(g,) = 1 and hence, from (8), we get that
indeed g, € SLN(R[t’l])’. From the definition of w1 (R) and g,, we get that

N
ni(R)(g) = ) RllAlv; € L.

i=1

By the isomorphism £,

N
LR =tLR 4+ " RI[1]]v;.

i=1
Hence, by the Nakayama lemma (Atiyah and Macdonald, 1969, Corollary 2.7),
we get that Z,NZI R[[f]]v; = L~®. (We have used here that any maximal ideal
of R[[t]] contains 7R[[t]], cf. Exercise 1.3.E.13.) Thus, /Ll(R)(go)zLR.
This proves the surjectivity of wi(R) onto 2Z(R)\Z(ogr), proving the
proposition. O

Following Definition 1.3.10, consider the morphism of ind-schemes:
m: SLy((t)) — XsLy, induced from g > gog for g € SLy(R((2))),

where o is the base point of SLy(R((#)))/ SLy (R[[t]]). Let Z(o) be the
inverse image of the zero set Z (o) under the above morphism, where o is the
section of the line bundle % over Xsp. v as in Definition 1.3.12.

Corollary 1.3.15  The morphism
u: S_LN[t_l]_ x SLy[[7]] = SLy((2)), induced from (g,h) — gh
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for g € SLN(R[t_l])_ and h € SLy(R[[t]]), is an isomorphism onto its
image SLy ((t)\Z (o) (which is an open subset of SLy ((1))).
In particular, 7 is a locally trivial principal SLy[[£]1]-bundle.

Proof From the representability of the functor 2(R)\Z(og) by
XsLy\Z(o) (cf. Lemma 1.3.13), representability of SLy (R((¢))) by SLy ((¢))
(cf. Lemma 1.3.2) and Exercise 1.3.E.6, we get that SLy ((t))\Z(o) represents
the functor

R ~ SLy(R((O)H\Z (o)

R()®V

. . . R
= {g e SLy(R((1))) : lgrr: 8Ly — FRE @V

is an isomorphism} .

(D

So, to prove the corollary, it suffices to show (by Lemma 1.3.2 and
Corollary 1.3.3(a)) that the map

W(R): SLy(RI:™'1)™ x SLy(RI[#]]) = SLy(R((1))), (g,h) > gh,

gives a bijection onto SLy (R((t))\Z (o).
From (1) and (5) of the proof of Proposition 1.3.14,

Im (Z(R)) C SLy(R())\Z(oR).

Conversely, take g’ € SLN(R((t)))\Z(aR). By Proposition 1.3.14, there
exists g € SLy(R[¢'])™ such that gL® = ¢'LR. But the isotropy of LX in
SLy (R((2))) is precisely equal to SLy (R[[¢]]). Thus, g’ = g - h, for some & €
SLy (R[[t]]). Hence, 7z(R) has image precisely equal to SLy (R((t)))\Z(GR).
It is easy to see that t(R) is injective. This proves the first part of the corollary.

Of course, the assertion that m is a locally trivial principal SLy[[11-
bundle follows from the first part and Proposition 1.3.14 once we prove that
‘_/ = )_(SLN, where V = UgesLy (1) & (}_(SLN \_Z(U)). But clearly V(C) =
Xs1y (C) = SLy((¢))/ SLy[[t]]. Since V and Xg1,, have the same C-points
and V is open in }_(SLN, we get that V = XSLN (since any ind-scheme of
ind-finite type has nonempty set of C-points). O

Now, we are ready to show that Z¢ is represented by an ind-scheme
(cf. Definition 1.3.5). We first prove the following lemma.

Lemma 1.3.16  For any connected reductive group G, the morphism
ng: C_;[fl]* x G[[t]] = G((t)), induced from the morphism (g,h) — gh,

for g € G(R[t_l])_ and h € G(R[[t]]), is an isomorphism onto an open
subset of G((1)).
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Proof  Take a faithful representation j: G < SLy. This gives rise to the
commutative diagram

e

Gt~ 17 x G[[t]] ———— G((1))
J 2 (2)
SLy[t='17 x SLyl[[#1] — SLy (1)),

where i is as in Corollary 1.3.15 and the vertical maps are induced from the
inclusion j. Let SLy ((t))\Z (o) be the open subset of SLy((¢)) asin Corollary
1.3.15. Then we assert that

Im (7g) = j; ' SLy (()\Z(0)); (D

in particular, j; ' (SLy((t)\Z (¢)) does not depend upon the choice of j.
Moreover, we show that fig is an isomorphism onto Im (1Z;).
By (1) of Corollary 1.3.15 and Exercise 1.3.E.6 applied to

G((1)) x (SLy((t)\Z(0)), the functor
SLy (1)

R ~ G(R(O))H\Zg (or)
- {g € GRR(N) : i jyigyir:

jz(g)Lf — % is an isomorphism}
represents the open subscheme j, ! (EN((I))\Z (0)) of the ind-scheme
G((@)).

Moreover, G(R[t~'1)~ (resp. G(R[[t]])) represents G[t~ 1]~ (resp. G[[¢]])
by Corollary 1.3.3(a) (resp. Lemma 1.3.2). Thus, to prove the lemma, it suffices
to show that for any R € Alg,

He(R): GRI™'D™ x G(RI[t]]) — G(R((1))), (gr,hr) > gr - hR
is a bijection onto G(R((1))\Zg (or).

We have the following commutative diagram (Zg) (analogue of the dia-
gram & for any R):
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GRI'D™ x GRID — T~ GR(1))

J1(R) J2(R) (9R)
SLy (R[]~ x SLy(RI[#1]) W SLy (R((1))),

where (R) is bijective onto its image SLN(R((t)))\Z(oR) (cf. Proof of
Corollary 1.3.15). From this, the injectivity of s (R) follows as well as

Im (726 (R)) C G(R())\Zg(oR). 2

To prove the converse, take xg € G(R((t)))\ZG (or). Then, by the proof of
Corollary 1.3.15, there exists gr € SLy(R[t~ D), hg € SLy(R[[#]]) such
that

gr - hr = j2(R)(xR). (3)

Choose a polynomial representation W over C of SL with a vector w, € W
such that the scheme-theoretic isotropy subgroup (SLy ), of w, in SLy is pre-
cisely equal to G (cf. (Borel, 1991, Chap. II, Theorem 5.1 and §5.5)). Then, for
any S € Alg, by Exercise 1.3.E.6 applied to SLy V>‘<] w, (forthemap SLy — W,

g — gw,), we get that
G (9) is precisely the isotropy of w, in SLy (S). )

Evaluating identity (3) at w, € R((t))® W and applying (4) for S = R((?)),
we get

gr' (Wo) = hr(w,). (5)

But g5 (w,) — w, € t"'R[t™'1® W and hg(w,) € R[[t]] ® W. Thus,
from (5), we get that

hr(wo) = wo = gr(Wo). (6)
Thus, from (4), we get that (ggr,hr) € Im(ji(R)). This proves, in
view of (2),
Im (726 (R)) = G(R())\Zg (0R),
proving the lemma. O

Remark 1.3.17 Lemma 1.3.16 remains valid, more generally, for any closed
subgroup H C SLy (in lieu of G) such that H is the scheme-theoretic
stabilizer of a vector w, in a polynomial representation W of SLy.
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Proposition 1.3.18  [Realizing Z¢ as an ind-scheme] Let G be any group
H as in the above remark.

(a) The functor Zg as in Definition 1.3.5 is represented by an ind-scheme
denoted X G with C-points Xg.

In fact, X is an ind-projective variety if G is a connected, semisimple
algebraic group (cf. Corollary 1.3.19 and Theorem 1.3.23).

(b) The morphism G[t~'1~ — X¢ induced by the functor morphism
GRI™')™ — 2G(R), g+ gor. forg € GRRIt™'])",

is an open embedding, where op is the base point of G(R((t)))/G(R[[¢]]).
Moreover, {gUG[t_l]_ - 0}g,eG((r)) DProvides an open cover of the
ind-scheme X .

(c) We have a morphism
G((1) x X¢ — Xg
induced from the morphism of functors
G(R((1)) x ZG(R) — ZG(R) C ZG(R),
(8, hoR) — ghog for g.h € G(R((1))).

Proof  (a) Consider the subfunctor hélf - = Z which takes (for any C-
algebra R) g € hg-1)-(R) = G(R[t7"])” to gog € ZE(R) = G(R((1)))/
G(R[[f]) € ZG(R). Then, hgp-11- 1s an open subfunctor of 2 (cf. Exer-
cise 1.3.E.7). Thus, for any g, € G((1)),

hy -1~ = 2G> 808 > 8080k forg € G(R[t™'])~

is an open subfunctor.

We next claim that the collection of subfunctors {i, &(,-11-}g,eG () is an
open covering of Z¢. To prove this, in view of Eisenbud and Harris (2000,
Exercise VI-11), it suffices to show that for any field k O C,

Ug,eG((1) G kIt ™' "o = 26 (k) = 28 (k) = G(k(1)))/ G kL[],
(D

where the second equality in the above equation follows since k is a field (cf.
Exercise 1.3.E.7).
To prove (1), equivalently, we need to prove

Ug,eG(t) 8oG (k™')™ - GkIIt]]) = G (k((1))). 2)
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For any g, € G((t)), by Lemma 1.3.16, the functor R ~ g,G(R[t™'])~ -
G(R[[t]]) is an open subfunctor of G(R((¢))) represented by an open
ind-subscheme of G((t)) with C-points g(,G[t_l]_ - G[[t]]. Consider the
sheafification & of the functor

F%: R~ Ug,eG(()) 8GRI - G(RII1]]) € G(R((1))).

Then JF is an open subfunctor of G(R((¢))) represented by an open ind-sub-
scheme denoted V of G((r)) (cf. Lemma 1.3.2 and Definition B.5(b)) with
C-points

Ug,cG (1) &Gl 117 - GIIt1l = G((1)).

Also, G((1)) has C-points G((¢)). So, both V and G((t)) have the same set
of C-points and hence V = G ((¢)) (since any closed ind-subscheme of G ((¢))
has nonempty set of C-points, cf. Exercise 1.3.E.8). Thus, for any C-algebra R,

V(R) = G((t))(R) = G(R((1))). 3)
But, k being a field,
Gk((1) = V(k) = F(k) = F°(k) = Ug, (1)) 80G kIt~ )™ - GKI[11D),

where the first equality follows from (3) and the third equality follows since k
is a field. This proves (2) and hence (1).
Recall from Lemma 1.3.16 that there is an isomorphism

Tig: Gt '™ x Gl = V, (g,h) — gh,

where V is an open subset of (_}((t)). For any g, € G((t)) this gives rise to an
isomorphism

T6(80): (8Glt™17) x GIt1l — gV, (g808:h) > gogh.

For any d > 0, recall the closed subscheme G(t~¢C[[t]]) of G((t)) from
Definition 1.3.1. Then, there exists a closed (affine) subscheme (g,G[r ™17 )y
of g,G[t7']™ (of finite type over C) such that g (go) restricts to an
isomorphism

(TG (go)a: (oGl 1) a x Gl = (g,V) N G ICI[1])).

Consider the subfunctor %'g of Z¢ (cf. Definition 1.3.5) defined as the
sheafification of the functor R ~~ G(t_dR[[t]])/G(R[[t]]) (cf. Lemma B.2).

Then, parallel to the above proof, we get that the collection of subfunc-
tors {h(goG[t‘ll‘)d}goeG((’)) is an open covering of %g. Thus, by Eisen-
bud and Harris (2000, Theorem VI-14) (since a Zariski cover is an fppf
cover by Stacks (2019, Tag 021N)), the functor ,%”Gd is represented by a
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scheme denoted )_(‘é with C-points XdG =G (t_d(C[[t]]) / G[[t]]. Moreover,
the morphism iy: %Gd — %Gd"’l induced from the inclusion gives rise to
a morphism ig: }_(é — }_(éH. Since G(t_d(C[[t]]) is a closed subscheme
of (_;(t_d_l(C[[t]]), we get that (gOG[t_l]_)d is a closed subscheme of
(gOG[t_ 17)d+1. Moreover, {(goé[t 1) d}goeG() pr0V1des an open cover
of Xg X< (see the proof of (b) below). Thus, the morphism i, : Xd - X X4t is a
closed embedding. Now, it is easy to see that the ind-scheme

=XbcXxlcXic-)

represents the functor Z¢, once we observe that Ug>( %Gd (R) = Z¢(R) for
any C-algebra R. This proves (a).

An alternative proof of (a). Fix an embedding G C SLy. Then, by Beilinson
and Drinfeld (1994, lemma after Theorem 4.5.1), the functor 2 is a closed
subfunctor of Zsy,, (for more details of the proof, see Zhu (2017, Proposition
1.2.6)!, where the notion of a closed subfunctor is parallel to that of an
open subfunctor as in Definition B.5(b). Thus, by Theorem 1.3.8, 2 is a
representable functor represented by a closed ind-subscheme of X SLy -

(b) Since hg (1) < Z is an open subfunctor (as observed above), we
have that G[t _1] 6 C X is an open ind-subscheme from the representability
of 25 by X and Deﬁmtlon B.5(b).

To prove that {g,G Gl - 0} g{,eG((t)) is an open cover of the ind-scheme
X, observe that U := Ugoec;((t)) goG[t 1= .6isan open subset of Xg, Xg
is a closed ind-subscheme of Xs1,,, (cf. Exercise 1.3.E.9) and XSLN is of ind-
finite type (cf. Theorem 1.3.8). Thus, any closed ind-subscheme of X has
nonempty set of C-points. Moreover,

U(C) = Ug,e6(()) 8oGlt 7117 -0 = Xg(C) = G((1)) - 6

(c) To prove (c), simply observe that the sheafification of the functor
hG((t)) X ,%”G” is h(-;((t)) x Z¢, since hG((t)) is representable. ]

By the above Proposition 1.3.18 and Lemma 1.3.16, the following corollary
follows easily.

Corollary 1.3.19  Let G be any group H as in Remark 1.3.17. The projection
w: G((1)) = Xg is a locally trivial principal G[[t]]-bundle.

Further, for any faithful representation j: G — SLy, Xg <> X'SLN is
a closed embedding (cf. Exercise 1.3.E.9). Thus, by Theorem 1.3.8, X¢ is an
ind-projective scheme.

1T thank X. Zhu for these two references.
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Definition 1.3.20  An ind-scheme X = (X,;)»>0 is called reduced if there
exists an equivalent filtration (¥}, ),>0 of X (i.e., Id: X — X is an isomorphism
of ind-schemes, where the two copies of X are equipped with the two ind-
scheme structures induced from the filtrations X, and Y;,) such that each Y,, is
a reduced scheme.

Lemma 1.3.21 If X = (X,)n>0 is a reduced ind-scheme, then (Xfled)nzo
provides an equivalent filtration of X, where X fled is the corresponding reduced
scheme (cf. (Hartshorne, 1977, Chap. II, Exercise 2.3)). (Of course, as a
topological space, X,rf’d = X,.)

Proof  Since X is areduced ind-scheme, for any n > 0, there exists k(n) > 0
such that i,,: ¥, — Xy is a closed embedding. But, since Y, is reduced, i,
factors through a closed embedding i,,: ¥, — X,rf(?l). Thus, the identity map
Id: X — X' is a morphism of ind-schemes, where X™¢ denotes the ind-
scheme obtained from the filtration (X ffd) n>0-

Conversely, the closed embedding X,rfd — X, clearly shows that

Id: X™d — X is a morphism of ind-schemes. This proves the lemma. O

The following theorem’s proof was briefly outlined by G. Faltings (personal
communication dated January 26, 2017). B. Conrad provided a detailed proof
of the theorem given below (personal communication dated January 27, 2017).

Recall that the Lie algebra Lie/ of an ind-affine group scheme ¥ is, by
definition, the kernel of the group homomorphism ¥ (C(¢)) — ¥4(C) induced
by € — 0, where C(¢) := C[e]/(€?). By Corollary B.21, Lie & is a Lie algebra.

Let ¢ = (%,)n>0 be an ind-affine group scheme. Then @gred .— (%,fed)nzo
is again an ind-affine group scheme. This follows since the multiplication map
Y X Yy — 4 clearly restricts to %{ed X %{fd — %Ired and so does the
morphism induced from the inverse.

Theorem 1.3.22  Let 9 = (¥,)n>0 be an ind-affine group scheme filtered
by (affine) finite-type schemes over C and let 94 = (gnwd)nz() be the asso-
ciated reduced ind-affine group scheme. Assume that the canonical ind-group
morphism i : 9% — & induces an isomorphism i,: Lie(9"%) = Lie94 of
the associated Lie algebras. Then, i is an isomorphism of ind-groups, i.e., 4 is
a reduced ind-scheme.

Proof Let A := C[¥] be the affine coordinate ring of ¢4, i.e., A := l(ln Ay,
with inverse limit topology, where each A, := C[¥,] is given the discrete
topology. For any C-algebra B, the set of morphisms Spec(B) — ¢ coincides
exactly with the set of continuous C-algebra homomorphisms A — B, where
B has discrete topology.
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Let An denote the formal completion of A, at the identity e, so {An}nz 1
is an inverse system of complete local noetherian rings with surjective
transition maps A,,_H — A, with closed kernels for the max-adic topologies
by the Artin—Rees Lemma (cf. (Eisenbud, 1995, Lemma 7.15)). Define

A:=1lim 4, )

to be the topological inverse limit of A, equipped with their max-adic
topologies. Each A, is itself a topological inverse limit of Artinian local
C-algebras, so the same goes for A. Concretely, viewing the local Artinian
algebra quotients of each A, supported at e as local Artinian algebra quotients
of A also, we see that A is (as a topological algebra) the inverse limit of
all these local Artinian C-algebras. This makes A into a (local) pseudo-
compact C-algebra. (For an introduction to pseudo-compact rings, we refer
to Demazure and Grothendieck (1970, Exp. VIIp).) Recall that the class
of pseudo-compact C-algebras includes all the complete local noetherian
C-algebras with residue field C and is stable under arbitrary topological inverse
limits. The most basic example of a non-noetherian local pseudo-compact
C-algebra is the topological ring C[[X;]];c; of formal power series over C in
an arbitrary infinite set {X;};c; of variables, realized as the completion of the
polynomial ring C[X;] with respect to the system of ideals (X;: j € J W+
(X;:i¢J),for finite subsets J C [ and integers N > 1.

The tangent space at a C-point x of a pseudo-compact C-algebra is, by
definition, the topological C-linear dual of m/ m?2, where m is the (necessarily
open) maximal ideal at x and m? is the closure of m>. Further, any pseudo-
compact C-algebra is determined (including its topology) by its functor of
points on local Artinian C-algebras (viewed discretely). The continuous maps
from A (as in (1)) to any discrete C-algebra must factor through one of the An
(even through some local Artinian C-algebra quotient of Aj,).

Since ¢ is an ind-affine group scheme, we get that Aisa ‘Hopf algebra’
(in the weaker sense that the coproduct lands in a completed tensor product
over C), which makes A into a connected formal group. (For a discussion of
formal groups, we refer to Fontaine (1977, Chap. I, §9) and also Demazure and
Grothendieck (1970, Exp. VIIp, §3).) Now, over a field of characteristic 0, any
connected formal group is necessarily of the form C[[X;]] as an underlying
pseudo-compact C-algebra (cf. (Fontaine, 1977, Chap. I, §9.6)).

In exactly the same way

Ared . q: Ared
Ared = 1jm A

is a formal group, where A™d := C[#"*d] and A™ is the completion of A
ate.
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The Lie algebra Lie(A) of any formal group A over C is defined as the set
of points valued in C(€) based at e. It is exactly the tangent space of A at e.

Assertion I: The canonical map Lie(/i) — Lie(9) is an isomorphism and a
similar result for Lie(4"%). Thus, the canonical map

Lie(A™) — Lie(A) 2)
is an isomorphism.

This follows since the definition of Lie(A) as C(e)-points of A based at e
forces it to factor through a local Artinian algebra quotient of some A,, (based
at e). The proof for Lie(4™9) is identical. So, Assertion I follows from the
assumption Lie(¥™) 5 Lie ¥.

Assertion II: The canonical map it A— Aredg surjective.
We first recall the following general result:

Let £: R — R be a continuous homomorphism between pseudo-compact
rings such that for every open ideal J of R (thus R/J is an Artinian ring) the
map R’ — R/J is surjective. Thus, the preimage J' of J in R’ is an open ideal
with R'/J' >~ R/J. The map & : R’ — R is then identified with the map

£: R'—lim R'/J' ~1im R/J =~ R
J J
for J varying through the full family of open ideals of R. Then, & is
surjective and hence so is & (cf. (Demazure and Grothendieck, 1970, Exp. ViIp,
Cor. 0.2D(ii)(a))).

We now come to the proof of Assertion II. By the above result, it suffices to
show that for any open ideal J of Ared the map iy A— A/ ] s surjective,
where i is the map i followed by the projection Ared s Ared /7 But, J being
an open ideal, clearly

ATy ~ (C[gnred]/fn, for some n > 1 and some ideal J,, of (C[%nred].

Of course, the canonical map C[¥,] — (C[%red] /Jn 1s surjective and so is
A — (C[% ]. Hence, the canonical map A — (C[%red] /Jn is surJectlve But,
since 7 is a continuous map and J is an open ideal, we get that i is surjective,
proving Assertion II.

Assertion III: The canonical map i: A — A™4 is an isomorphism.

We first recall the following (simple) general result obtained using the
isomorphism of R below with C[[X;]] and similarly for R’.
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Let R and R’ be two connected formal groups over C and f: R — R’ a
continuous surjective homomorphism respecting augmentations to C. Then, f
is an isomorphism (necessarily a topological isomorphism) iff the induced map
between Lie algebras is a bijection.

Applying the above result to i and using Assertions I and II, we get
Assertion III.

Assertion IV: For a complete local C-algebra B with residue field C, the
canonical map i : 9" — & induces a bijection ig: 9" (B) ~ 4 (B).

Let B be any (not necessarily noetherian) C-algebra. By the definition of a
morphism to an ind-scheme, any morphism ¢: Spec B — ¢ lands inside ¥,
(for some n > 1). From this, we see that ig: 4™4(B) — %(B) is injective
(for any B). So, it suffices to prove that for any B as in Assertion IV, ip is
surjective.

Take ¢ € ¥ (B). Then, it is represented by an algebra homomorphism
gn: Ap — B, for some n > 1. Since B is a complete local C-algebra with
residue field C, g, induces a continuous homomorphism g, : An (x) = Band
hence a continuous homomorphism g: A(x) — B, where A,, (x) denotes the
completion of A,, with respect to some C-point x (not necessarily ¢) of ¢, and
A(x) is the inverse limit of {A,(x)},. But, by Assertion I, i : A — A™d is
an isomorphism (and hence so is f(x): A(x) ~ Ared(x) by translation using
4 (C) = 9"4(C)). Thus, we get a continuous homomorphism

g :=3%0G(x)"": A®x) > B.

Composing g4 with the canonical C-algebra homomorphism A™ —
A™d(x), we get a C-algebra homomorphism A™ — B. This provides the
desired lift of g in ¢4™4(B). Thus, ¥"4(B) = ¥ (B), proving Assertion IV.

Assertion V: For any local noetherian C-algebra B with residue field C, the
canonical map i : 9% — & induces a bijection ig: 9"%(B) ~ 4 (B).

As observed in the proof of Assertion IV, it suffices to prove that ¥*4(B) —
& (B) is surjective. Since B is noetherian, B — Bis injective, where B is the
completion of B with respect to its unique maximal ideal. Take g € ¢ (B) and
represent it as g, : A, — B (for some n). By Assertion 1V, there exists N > n
such that gy: Ay — B C B (obtained from the composition of g, with the
canonical map Ay — A,) descends to gy : Aﬁd — B. But, since Ay — Af,d
is surjective, we get that g (Agsd) C B. This proves Assertion V.

With these preparations, we finally come to the proof of the theorem. We
need to show that, for any C-algebra B, the canonical map i: ¥ — &
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induces a bijection ip: 4™ (B) ~ ¥ (B). As observed earlier, ip is injective.
So, we only need to prove the surjectivity of ip.

Take g € 4 (B). Then, as shown earlier, g € 4, (B) for some n > 1. Since
%, is a scheme of finite type over C (by assumption), we can assume that B is a
C-algebra of finite type over C. Let m be a maximal ideal of B (so B/m = C)
and let By, be the localization. Then, by Assertion V, we can find n(im) > 1 and

g € n(m)(Bm) = Mor ((C[g,f‘(“’ﬁ)] Bm) ~ Mor (Spec(Bm) &4 (m)>
such that

iBm (g:n) = &m; 3)

where gy, is the element of ¢, (By) corresponding to g. Since ip, is

injective, g, is unique, satisfying (3). Further, since gnr?g[) is of finite type

over C, there exists an affine open set U,, C Spec(B) containing the point m
such that g/, spreads out to

8 bm € gr‘(em) (ClUWD.
By the injectivity of ic[y,,], we get the following analogue of (3) (possibly after
suitably shrinking U, around m):

ic,1(&y,,) = &Un» “4)

where gy, is the element of ¥, (C[Un]) corresponding to g. As m runs

over the maximal ideals of B, {U,,} clearly covers Spec(B). Choose a finite

subcover {Un;}1<i<k of Spec(B) and let N := max; {n(m;)}. From the

uniqueness of g;, satisfying (4), we getthat g, = g;, on Uy, MUy, . Thus,
Wll‘ Yﬂi Tﬂj

we get the element g’ € g,r\,ed(B) such that gl/ v, = &y, ©n Un. From this

and (3), we get ig(g’) = g. This proves the surjectivity of ip and hence the
theorem is proved. O

As a consequence of the above theorem, we deduce the following result.

Theorem 1.3.23  Let G be a connected semisimple algebraic group. Then
the ind-affine group scheme Gt~ is reduced and hence so is G[t~'].
Thus, the infinite Grassmannian X G Is a reduced ind-scheme.

Proof  We first show that 4 := C_;[t_l] is reduced. By Theorem 1.3.22, it
suffices to show that

Lie(¥™) = Lie(¥). 1)

Take an embedding G — SLy C M. This gives rise to a closed embed-
ding of groups: 4 C SLu[t~'] (cf. Lemma 1.3.2).
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In particular,
Lie(4) C Lie(SLy[t ') = sly @ C[t '],

where for the last equality, see Exercise 1.3.E.12. Considering the evaluation
homomorphisms for any o € P!(C)\{0} (induced from the C-algebra homo-
morphisms R[r7!'] — R, 1 > «a), e(@): ¥ — G and €(a): SLy[t~'] —
SLy, it is easy to see (using Exercise 1.3.E.12 again) that

Lie(9) Cg® (C[t_l], where ¢:=LieG. 2)

For any root B € A of g, consider the root subgroup Ug C G with
Lie algebra the root space gg (cf. (Jantzen, 2003, Part II, §1.2)). This gives
rise to a closed embedding of ind-affine group schemes j: l_],g 1 — 9.
Since Upg =~ Al clearly, U,g[t’l] is reduced. In particular, the embedding
j: U,g[t_l] — ¢ factors through U,g[t‘l] <s @' Further, under the
differential J , similar to (2), we get

Lie(Uglt ') C ap ® C[t "], 3)
In fact, identifying the group Ug with the additive group G, ~ C, it is easy to
see that

Lie(Uglt ') =g @ C[+ 7] 4)
Thus,

Lie@™) > ) (ap @ Clr~'D.
BeA

But, since Lie(4™) is a Lie algebra which is a Lie subalgebra of sly ®
C[t~!] under the standard bracket as in Exercise 1.3.E.12 and Zﬂe A 8B
generates the Lie algebra g (this is where we have used the assumption that
G is semisimple), we get that

Lie(@™) > g® Clr™ 1. (5)

Combining (2) and (5), we get

Lie(¥™) = Lie(9) = ¢ @ C[+ ']

This proves (1) and hence ¢ is reduced by Theorem 1.3.22.
The evaluation €(c0): 4 — G admits a group splitting obtained from
the inclusion G — ¢ (which is induced from the C-algebra homomor-

phism R < R[t~!]). This gives rise to an isomorphism of ind-schemes
(cf. Corollary 1.3.3(a)):

G ~949 x G, where 9 :=G[t"']". (6)
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Now, since ¢ is reduced, so is 4.

Finally, by Proposition 1.3.18, the infinite Grassmannian X has an
open cover isomorphic with the ind-scheme %~. Thus, X is a reduced
ind-scheme. O

Recall the ind-projective variety X; (in particular, reduced) with closed
points X from Kumar (2002, §§13.2.12, 13.2.13 and 13.2.15). Also, recall
that the structure Xi; coincides with the ind-variety structure obtained via the
representation theory (cf. (Kumar, 2002, Proposition 13.2.18)).

Proposition 1.3.24  Let G be a connected, simply-connected simple alge-
braic group. Then the ind-scheme X¢ as in Proposition 1.3.18 coincides with
the ind-projective variety Xg;.

Proof  We first prove the proposition for G = SLy. In this case, following
the notation as in Theorem 1.3.8, by definition Xsp 18 the ind-scheme given
by the filtration (I:In)nzo- By Theorem 1.3.23 and Lemma 1.3.21, since XSLN
is reduced, (H,fed),,zo gives an equivalent filtration with H, (C) = I-_I,{ed((C) =
Q,I:’ . Hence, X sLy is an ind-variety. By Theorem 1.3.8 and Kumar (2002,
§13.2.13), we get that XSLN coincides with XgLN.

We now come to the general G. Fix an embedding G < SLy. This induces
closed embeddings (cf. Corollary 1.3.19 for X and Kumar (2002, §13.2.15)
for X{;):

}_(G — )_(SLN and Xe — XELN'
Now, since both Xg and X¢; are reduced, by Kumar (2002, Lemma

4.1.2), we see that the identity map Id: Xg — X ¢ 1s an isomorphism of ind-
varieties. O

Unlike noetherian group schemes over C (which are always reduced by a
result due to Cartier), ind-affine group schemes over C are, in general, not
reduced.

Example 1.3.25  The ind-affine group scheme .7 := H|[t] is not reduced
for H = C*.
Consider the embedding

(C*C—>SL2,zv—><Z 01>.
0 z

Then the set of C-points of 57 is given by

P 0\ T .
{( 0 Q(t)>.P(t),Q(t)e(C[t] and PQ_l}_(C.
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Since the set of C-points of 5 coincides with that of 7 red e see that the
ind-variety

7 ~
In particular, for any R € Alg,
Mor(Spec R, %) = C*(R)
~ set of invertible elements in R. @9)
On the other hand, by Lemma 1.3.2,
Mor(Spec R, ) =~ Homyje(Clx,x '], R[t])
~ set of invertible elements in R[¢]. 2)

If R has a nonzero nilpotent element a, then 1 — at € R[¢] is invertible.
Thus, by comparing (1) and (2), we get that

Mor(Spec R, #™%) S Mor(Spec R, 7).

This shows that 7 is not reduced. Thus, the infinite Grassmannian X C* 18
not reduced (cf. Proposition 1.3.18).

Remark 1.3.26  (a) Similar to the above example, one can see that for any
algebraic group H with a surjective algebraic group homomorphism H — C*,
H[t] is not reduced.

(b) Any (not necessarily noetherian) affine group scheme ¢ over a field
of characteristic 0 is reduced (extension of Cartier’s result to non-noetherian
group schemes). We refer to (Oort, 1966) in combination with (Waterhouse,
1979, §3.3)2 for a short proof.

In particular, for any affine algebraic group H, the affine group scheme
HI[]] (cf. Lemma 1.3.2) is reduced.

Thus, combining Theorem 1.3.23 with Lemma 1.3.16, we get that for any
connected semisimple group G, the ind-affine group scheme G ((z)) is reduced.

1.3.E Exercises

(1) Let R € Alg. For any positive integer N, let
LR = LR(N) := R[[t]] ®c V be as in Definition 1.3.6, where
V = CN. Let L% be an R[[¢]]-submodule of R((¢)) ®c V satisfying

"LRc LR c LR for some n > 0.

2 We thank B. Conrad for providing this reference.
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Then show that L¥ is an R[[¢]]-projective module if and only if
LR := LR /" LR is an R-module direct summand of the R-module
tT"LR/m LR
(2) Let R € Alg and let LR bea projective R[[¢]]-submodule of
R((1)) ®c V satisfying

t”L(If c LR ct LR for somen > 0.

[

Then show that for any C-algebra homomorphism R — R’, the above
inclusions induce the inclusions

"L c LR LR where L¥ = R'[[1]] @y LR

Show further that if LR/ z"’L(I)e is a direct summand of t_"L(If /
t”Lf as R-modules, then

R LR/

Rep 5 L
Ok L B mLE
(3) Let X be a scheme and let f be an automorphism of X. Then show that
the fixed subscheme X/ (which is defined as the scheme-theoretic
inverse image of the diagonal under the morphism 65: X — X x X,
x +— (x, f(x))) represents the functor 2~ /. Alg — Set defined by

2T (R) = X (R,

where fg is the induced automorphism of X (R) := Mor(Spec R, X).

(4) Let S be a noetherian algebra over C and let P be a finitely generated
projective S[[#]]-module. Show that there exists an affine open cover
{Spec(S;)}; of the scheme Spec(S) such that S;[[¢]] ®sy[) P is a free
S;[[#]]-module, for each i.

Hint (due to N. Mohan Kumar): Consider the projective S-module

P, := P/t P. Then show that P ~ }30, where ﬁo = P, ®s S[[t]]. To
show this, using the projectivity of P and P, as S[[¢]]-modules, get an
S[[#]]-module lift 6 : ﬁo — P of the S-module isomorphism

P, / 1Py~ P /t P. Prove that 0 is an isomorphism by observing that a
finitely generated module over S[[#]] is complete with respect to ¢ and is
zero if it is zero mod 7.

(5) Show that the special lattice functor 2 = 2V as in Definition 1.3.6 is
the sheafification (cf. Lemma B.2) of the functor R ~» SLy (R((?)))/
SLy (R[[£]1D).

Hint: Use the fact proved in Proposition 1.3.14 that for
g € SLN(R(())) and LR € 2N (R), gLR € 2N(R), i.e., gL satisfies
properties (a) and (b) of Definition 1.3.6 for some n > 0.
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(6) Let f: X - Zand g: Y — Z be two morphisms of ind-schemes.
Then their fiber product X x Y represents the functor
z

R~ X(R) x Y(R),
Z(R)

where
X(R)Z?R)Y(R) ={(x,y) e X(R) x Y(R) : fr(x)=gr(»)}

and fr: X(R) — Z(R) is the map induced from f.

(7) Show that the functor h 5,1~ as in the proof of Proposition 1.3.18 is an
open subfunctor of Z¢.

Moreover, show that 2 (k) = 25 (k) for any field k O C, where
the functors 2 and 2§ are defined in Definition 1.3.5.

(8) Let R be a C-algebra generated (as a C-algebra) by countably many
elements. Then show that for any maximal ideal m of R, R/m =~ C (as
C-algebras).

In particular, any closed ind-subscheme of G((z)) (for any affine
algebraic group G) has nonempty set of C-points.

Hint: We can assume that R = C[x,x2,x3, ... ]. Now, R/m is a field
extension k of C. In particular, C being algebraically closed, £ D C(x),
where C(x) is the quotient field of the polynomial ring C[x]. Show that
C(x) as a vector space over C is of uncountable dimension, whereas
clearly R and hence R/m is of countable dimension over C.
(9) Show that for any G as H in Remark 1.3.17, the canonical map

Xg — XsL y (induced by an embedding G — SLy) is a closed
embedding.

(10) For any integer n > 1, consider the covariant group functor .%, from
Alg to Set defined by

Z.(R) = G <R[[t]])’

()
where G is an affine algebraic group. Then show that .%, is a
representable functor represented by an affine group scheme of finite

type over C (i.e., an affine algebraic group) G (C“’”) with C-points

(") ")
Hint: Follow the proof of Lemma 1.3.2.
(11) Let G be a connected reductive group and let P C G be a parabolic
subgroup. Define the (parahoric) closed subgroup scheme P C G((1))
by P := evo_l(P), under the evaluation map evo: G[[t]] = G att =0

G (C[ ) Since it is a variety, we denote it by G ( 1] ) itself.
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equipped with the scheme-theoretic inverse image structure. Then P is
reduced (cf. Remark 1.3.26(b)). Moreover, by Exercise 6 and
Lemma 1.3.2, P represents the functor R ~~ jj(R), where jD(R) =
(evée)_l(P(R)), under the evaluation map ev(lf : G(R[[t]]) = G(R) at
t=0.

Consider the functor

Alg — Set, R ~ G(R((1)))/P(R).

Show that its sheafification (cf. Lemma B.2) is a representable functor
represented by an ind-projective scheme denoted X (P) (with C-points
G((1)/ j’((C)). Moreover, show that this ind-scheme is, in fact, an
ind-variety if G is semisimple.

Show further that for any connected reductive group G,

G((1) = XG(P)
is a locally trivial principal P-bundle and
X¢(P) — Xg

is a locally trivial G/ P-fibration, where the ind-scheme X is as in
Proposition 1.3.18.

(12) Show that the Lie algebra Lie (SLy[t~1]) of the ind-affine group
scheme SLy[r~!] is isomorphic with the Lie algebra sly ® C[t~']
under the bracket [x ® P,y ® Q] = [x,y] ® PQ, forx,y € sly and P,
QeCit~ .

Moreover, the evaluation homomorphism € () : SLnl[r~'1 — SLy,
induced from ¢ > « for any « € P'(C)\{0}, induces the Lie algebra
homomorphism (cf. Lemma B.19):

é@): sy @C[t™1 = sly, x® P > P(a)x,
for x € sly and P € C[+7'].

(13) For any algebra R € Alg, any maximal ideal of R[[¢]] contains ¢ R[[t]].

1.4 Central Extension of Loop Groups

Let g be a finite-dimensional simple Lie algebra over C and let G be the
connected, simply-connected complex algebraic group with Lie algebra g.
For A, € D, let #().) be the integrable highest-weight §-module with highest
weight A, (cf. Theorem 1.2.10). Recall the definition of C-space and C-group
functors from Definition B.1.
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14.1

Consider the C-group functor .Z;(R) := G(R((t))), which is represented
by the ind-affine group scheme G((t)) (cf. Lemma 1.3.2). In particular, it
satisfies the property (E) (cf. Exercise B.E.4). Recall that PGL sz, ) is the
projective linear group functor (cf. Example B.4(2)) with the tangent space at 1
given by Endg (JZ(A)r)/R - Idp (5> Where (M) g := F(he) @ R (cf.
Lemma B.13). By Lemma B.13, PGL satisfies the condition (E). Of course,
since G satisfies the condition (L) (cf. Exercise B.E.5), thinking of .Z (R) as
R((?))-points of G,

T\(Zc)r = 3® R((t)), forany R € Alg.

Moreover, the Lie algebra bracket in 77 (%) r coincides with the standard Lie
algebra bracket in g ® ¢ R((¢)), as can easily be seen from Definition B.17(c).
The functor % satisfies the condition (L) finitely (cf. Definition B.15(b)).
Also, by Exercise B.E.6, PGL ¢, satisfies the condition (L) finitely.

Definition 1.4.2 (Adjoint action of G((r)))  Define the R-linear adjoint
action of the group functor %5 (R) on the Lie-algebra functor §(R) :=¢ ®
R((1)) ® R.C (where the R-linear bracket in §(R) is defined by the same
formula as (4) of Definition 1.2.1) by

(Adcy)(x[P]1@ sC) = yx[Ply~" + (s + 1§gg<y—1dy,x[m>) c,

fory € ZG(R),x € g, P € R((¢)) and s € R, where {,) is the R((¢))-bilinear
extension of the normalized invariant form on g and taking an embedding
i: G — GLy weview G(R((t))) as a subgroup of N x N invertible matrices
over the ring R((#)). Observe that for the group functor GL y(R((¢))), the
adjoint action (defined in Definition B.17) is given by

(Ady) - M =yMy~', fory € GLy(R((1))) and M € My (R((t))).

From the functoriality of Ad (cf. (1) of Definition B.17), yx[Ply~! € ¢ ®
R((t)) (for y € Z5(R) and x[P] € g ® R((t))) and it does not depend upon
the choice of the embedding i. A similar remark applies to y ~!dy. Here dy
for y = (yi,j) € Mn(R((t))) denotes dy := (dy,;j/dt).

It is easy to check that for any y € Z5(R), Adcy: a(R) — G(R) is an
R-linear Lie algebra homomorphism. Moreover,

Adc(y1y2) = Adc(y1) o Adc (). 9]
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Using Lemma B.18, one easily sees that for any finite-dimensional
C-algebra R and x € g ® R((?)),

Adc(x)(y) = [x,y], foranyy € §(R). 2)

It is easy to see that the representation .77 (A.) of § extends R-linearly to a
representation pg in 7 (Ac)g := H(Ac)®R of §(R).
C

A proof of the following result due to Faltings can be found in Beauville and
Laszlo (1994, Lemma A.3) for G = SL,,. The proof for general G is identical.

Proposition 1.4.3 With the notation as above, for any R € Alg and
y € Z6(R), locally over Spec R, there exists an R-linear automorphism p(y)
of 7€ (A¢) g uniquely determined up to an invertible element of R satisfying

PIPRX)A(Y) ™ = pr(Adc(y) - x),  forany x € §(R), (D

where the adjoint representation of £G(R) on 3(R) is defined in the previous
Definition 1.4.2.

As a corollary of the above Proposition 1.4.3, we get the following.

Theorem 1.4.4  With the notation and assumptions as at the beginning of
this section, there exists a homomorphism p: £ — PGL () of group
functors such that

p=p(C): Ti(Le)c = 9@ C((1)) = Endc(H (he))/C - ldypp,) (1)

coincides with the projective representation 7€ (A.) of § @ C((t)) (c¢f. Lemmas
B.13 and B.14).

By Exercise 14.E.1, in fact, pr:aQ® R((t)) = Endr(F(k)R)/
R - Idyp(.,), coincides with the projective representation H(A:)r of
g® R((1)).

Proof Fix y € Zg(R). As guaranteed by the existence of an R-linear
automorphism p(y) of S#(A.)g locally in Spec R and its uniqueness up to
an invertible element of R, we get an fppf R-algebra S, (depending upon y)
(cf. (Stacks, 2019, Tag 02IN)) and a unique element (obtained by glueing
locally obtained p(y)) ps, (v) € PGLs, (J (Ac)s,) = Auts, (' (Ac)s, )/S; I,
where S3 denotes the set of invertible elements in S,. Consider the exact
sequence (cf. Definition B.1):

Lo(R) L L6(S,) = Ls (sy§sy) .
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Since is, (y) goes to the same element in Z(S,®S,) under the above
R
two homomorphisms £5(S),) = Z6(Sy®Sy), we get that pg, (y)e€
R

PGLj, (7 (A¢)s,) goes to the same element under the two maps

PGLs, (# (%c)s,) = PGLg gs, (A (he)s, xS, ) -
R

Hence, ps, (v) € Kr(Sy) for the functor PGL ;) (cf. proof of Lemma B.2
for the notation Kg(S))). Finally, define p(y) € PGL s, (R) as the image
of pg,(y) under the canonical map Kg(Sy) — PGL_#.,)(R). From the
uniqueness of R-linear automorphisms p(y) locally in Spec R up to an
invertible element in R, we get that p(y) is well defined (i.e., it does not depend
upon the choice of S,,).

Again using the uniqueness of 4(y) (up to invertible elements in R locally)
satisfying (1) of Proposition 1.4.3 and using (1) of Definition 1.4.2 and
Exercise 1.4.E.4, we get that p is a group homomorphism and, in fact, it is
a morphism from the group functor £ to the group functor PGL sz, ).

We now prove (1). Take x € g((¢)) and y € §. Then, by Proposition 1.4.3
applied to R = C(¢), we get

P )pr(P(e™ ) = pr(Adc(e™) - ), 2)

where for the notation e* € Z5(R) see Definition B.15(a). By Lemma B.18
applied to the representation Ad¢ of £, and identity (2) of Definition 1.4.2,

Pr(Adc(e)y) = pr(Y + €lx, y]). 3)

Similarly, fixing a lift of p(x) in Endc(sZ(A.)), for v € (), by
Lemma B.18,

P )pr(y)p(e v
= p(e)pr(Y) (v — €p(x)v — €Ayv), forsome A, € C

= p(e) (p(Y)v — €p(Y)p(x)v — €Arp(y)V)
=P —€p()PX)v — X p(YV + €p(X)p(Y)V + €Arp(Y)v.  (4)
Combining the equations (2)—(4), we get
plx, y1 = [p(x), p()],
ie.,

[p(x) = p(x), p(»)] = 0, forall x € g((r)) and y € §.
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Thus, by Exercise 1.2.E.5,
p(x) = p(x) = px Id e, forsome puy € C.
This proves the theorem. O

Definition 1.4.5 (Central extensions of loop groups)  Following the notation
and assumptions at the beginning of this section, take any A, € D. By Theorem
1.4.4, we have a homomorphism of group functors:

P gg — PGLL%H()LC).

Also, there is a canonical homomorphism of group functors (cf. Example
B.4(2)):

. GL(%()LC) d PGL%()W).

All these C-group functors .2, GLz(;,) and PGL ¢, ) satisfy the
condition (L) finitely (cf. §1.4.1 for % and Exercise B.E.6 for GL and PGL).
Thus, by Exercise B.E.7, we get the fiber product group functor fé;w, satisfying
the condition (L) finitely:

g)%. = g(; X GLJf(AC)'

By the definition, we get homomorphisms of group functors
P gﬁ)\g - DE/ﬂG and ,5: g\kc —> GL%(}»L)

making the following diagram commutative:

s b
“. — GLyq,)

|k
“c — PGL ., -

By Exercise B.E.7, the Lie algebra Lie %C(R) =T (%,;)R is identified
with the fiber product Lie algebra (cf. §1.4.1, Example B.12 and Lemma B.13)

®;,(R) = 3 ® R((1)) X Endg (J (hc)R),
Endg (J€(A:)R)/R.1d

for any finite-dimensional C-algebra R.

Lemma 1.4.6 The Lie algebra §,, = Liegar (C) can canonically be
identified with the affine Lie algebra §.
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Proof Let p: @ — Endc (2 (A.)) denote the representation. Define

V:§— 8, x[Pl+zC+ (x[P],p(x[P]) + zcId),
forx e g,P € K and z € C.

From the definition of the bracket in § and Theorem 1.4.4, v is an isomorphism
of Lie algebras. O

Combining Theorem 1.4.4, Definition 1.4.5 and Lemma 1.4.6, we get the
following.

Corollary 1.4.7  For any X € D, we have a homomorphism of group
functors

,OAl g;\c — GL%()\C)
such that its derivative for R = C
p: §, — Endc(H ()

under the identification of Lemma 1.4.6 coincides with the Lie algebra
representation

p: § — Endc(H(Ae)).
Moreover, for any C-algebra R, y € %AAC (R) and x € §(R),
PPDIPRE)AP) ! = pr(Adc(p(P))x), as operators on A (A)g. (1)
The following lemma is trivial to verify.

Lemma 1.4.8 Let V be a vector space over C and let vy € V be a nonzero
vector and V' C V a subspace such that V. = Cvy @ V'. Then the following
subgroup functors of GLy :

GLj,(R) ={T € GLr(Vg) : Tvy = vy} and
GLY (R) = {T € GLg(Vg) : Tvy — vy € Vi and T(Vg) C Vi}

are C-group functors, i.e., they satisfy the sheaf condition for the fppf topology.
Moreover, the projection homomorphism w : GLy — PGLy is an isomor-
phism of group functors restricted to either of GLY, or GL), onto their images.

Lemma 1.4.9  Let Y be a connected variety (over C). Then any morphism
f:Y — C* which is null-homotopic in the topological category with the
analytic topology Y*" on Y, is constant.
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Observe that if the singular cohomology H'(Y®,7) =0, then any
continuous map Y — C* is null-homotopic since C* is a K(Z,1)-space
(cf. (Spanier, 1966, Chap. 8, §1, Theorem 8)).

Proof  Assume, if possible, that there exists a null-homotopic nonconstant
morphism f: Y — C*. Since f is a morphism, there exists N, > 0 such that
the number of irreducible components of f -1 (z) £ N,, for any 7 € C*. Now
take the N-sheeted covering 7y : C* — C*, 7 > ZV, for any N > N,. Since
f is null-homotopic, there exists a lift as a morphism f : Y — C* (cf. (Serre,
1958, Proposition 20)) making the following diagram commutative:

C*

s

Yy —— C*.

Since f is a morphism and nonconstant, by Chevalley’s Theorem (cf.
(Hartshorne, 1977, Chap. II, Exercise 3.19)) Im f (being a constructible and
connected set) misses only finitely many points of C*. In particular, there exists
Zo € C* (in fact, an open dense set of points) such that nlgl (zo) C Im f . But
then the number of irreducible components of f “(z,) = f _1n1§ 1(z(,) >
N > N,, which is a contradiction to the choice of N. This proves the
lemma. O

1.4.10

Recall the homomorphism of group functors p: gaf — % (forany A, € D)
from Definition 1.4.5. Since

has kernel R* for any R € Alg, we get an exact sequence of group functors
(i.e., for any R, the following sequence specialized at R is exact):

1> Gw > %. 5 %, (1)

where i is given by r > (1,7 Id), for any r € R*. Of course, G, is central in
%}C (for any R € Alg). By Exercise 1.4.E.2, %A,\C(R) — %5 (R) is surjective
for any field R O C. Combining Lemma 1.4.8 and Proposition 1.4.3, we get
the following.
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Theorem 1.4.11  Take any A, € D. Then the homomorphism of group
functors p: 4, — ZL¢ splits over the subgroup functors

ZE(R) == GRI[e, Z5(R):=GRIt™')™ and 9(R) := G(R);

where G(R[[t]]). and G(R[t_l])_ are defined in Corollary 1.3.3 with
H = (e).

Thus, p also splits over the group functor #1: R ~ G(R[[t]]) (¢f. Lemma
1.3.2).

Similarly, p also splits over the group functor #3: R ~ G(R[t™1]).

Proof  We first prove the theorem for fg . Fix vy € J#()\.) a highest-
weight vector (which is unique up to a scalar multiple). We claim that for any
y € Z5(R),

plys)vy € S*uy, ()

for any fppf R-algebra S=1, such that p(ys) lifts to an element p(ys)
of Autg(57(Ac)s), where ys is the image of y in ZJ(S). By (1) of
Proposition 1.4.3,

ps()A(rs)ve = p(ys)ps(Adc(vg Hx)vy,
for any x € fig := g ® tS[[t]] ® (S Q@ w), (2)

where u is the nil-radical of b. But, by definition,
Adc(yg D (@) C fis. (3)
Moreover,
ps(lig) - vy =0, since vy is a highest-weight vector. “4)
Thus, combining (2)—(4), we get
ps(x)(p(ys)vy) =0, forall x € iis. 4)
By Exercise 1.4.E.4, we get that
o(ys)vy € Svy, andhence p(ys)vy € S*- vy

(p(ys) being represented by an invertible S-linear map). This proves (1).
Thus, by Exercise B.E.9,

P (ZER) €7 (GLSy 4, (R)),
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where 7 is the canonical morphism GL ;) — PGL (). Therefore, by
Lemma 1.4.8, we get the splitting of p over the subgroup functor Zg‘ .
We next come to the case of .Z; . We claim that for any y € £ (R),

[A(ys)vily C S¥, (6)
for any fppf R-algebra S = S, such that p(ys) lifts to an element p(ys) of
Autg (A (Ac)s), where [p(ys)v4]+ is the coefficient of vy in the component
of p(ys)v+ under the decomposition

H ) ® S = Svy @ (H'(he) ®S),

where 77(A.) is the sum of weight spaces of J#(A.) of weights < A.
Applying (1) of Proposition 1.4.3 to p(ys)v4, we get

pys) (ps(x1) ... ps(xp)vy) = ps(Adc(ys)x1) ... ps(Adc(ys)xn)p(ys) vy,
@)

forany x; € iy := (9 ® t1S[+1]) @ (S ® u™), where u~ is the nil-radical of
the opposite Borel b~. From the definition of Adc,

Adc (ys) - (ﬁg) C ﬁg
Thus, from (7) we get (since i - H (L) C (X))
A(ys) (Ps(x1) ... ps(xn)vy) € H'(Ae) ® S, foranyn > 1. 3
But, since .77 (A.) is an irreducible g-module and iig annihilates v, the span
of ps(x1)... ps(x,)v, as x; run over iig, is equal to 57’ (A.) ® S. Thus, from
(8), we get

Pys)(H'(he) ® S) C H'(he) ® S. €))

From this we immediately obtain (6) by applying o(yg 1 to (9). Thus, by (6)
and (9), and Exercise B.E.9,

p (L5 (R) Cn (GL%(M(R))
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under the decomposition 7 (1.) = Cvy @ ' (A.). Again applying Lemma
1.4.8, we get the splitting of p over the subgroup functor .Z; .

Since the action of g on J#(A.) decomposes as a direct sum of finite-
dimensional g-submodules V;:

A ) =P Vi

and G is simply connected, the action of g on any V; integrates to give an action
of G on V;. This gives a representation of G in GL¢ (57 (A.)). From this we
get a homomorphism of group functors

9 — GL:;f()L‘.),

which provides a splitting of p over 4.

We finally prove that p splits over the subgroup functor % (R) := G (R[[¢]])
(cf. Lemma 1.3.2) of %;.

First of all, from the definition of jfg (R) as the kernel of

€r(0): G(R[[t]]) > G(R), t — O (cf. Corollary 1.3.3),

and the splitting of €g(0) obtained from the embedding G(R) — G(R][[t]]),
induced from the embedding R — R[[¢]], we see that there is a semidirect
product decomposition of the group functor

P =LY (10)

Take splittings o+ and og of p over Xg‘ and ¢, respectively. Now define (for
any R € Alg and g € .%|(R) uniquely written as g = g4 go, with g4 € fg(R)
and go € Y(R))

o (g) = 01.(g+) - 0(g0)- (1)

It is clear that o is a C-space functor section of p. We now prove that o, in
fact, is a homomorphism of group functors. To prove this, since ¢4 normalizes
fg , it suffices to show

0+(208+85 ") = 00(80)0+(8+)00(g0) ", for go € 4(R) and g € L7 (R).
(12)

Consider the morphism of C-space functors

VG x LE G, (80.84) - 01(808+80 )00(80)0+ (g4)  o0(g0) L.
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Its image clearly lands in G,,; under the sequence (1) of §1.4.10. Thus, the
morphism ¥ gives rise to a morphism of C-space functors:

V: 9 x L4 — G, suchthat ¥(l,g4) =1, forany g, € .Z.

Since .i”g is a representable functor (cf. Corollary 1.3.3) represented by a
scheme denoted LJGr with C-points Lg (the kernel of G[[t]] — G, t — 0), 1/_f
is induced from a morphism of schemes:

Vo: G x l_,g — G, such that ¥,(1,g4) = 1, forany g, € ig.

But any morphism f: G — G, is a constant (cf. Lemma 1.4.9). Thus, v/, = 1
and hence so is . This proves (12) and hence we obtain a splitting of p
over 4.

The proof for .%#3 is identical to that of .#;. This proves the theorem. O

Proposition 1.4.12  For A, € D, the group functor %AAC is represented by a

reduced ind-affine group scheme denoted G . (with C-points G;LC = gAAc ©)).
This gives rise to an exact sequence of ind-group schemes:

1= Gy — Gi. > G() — 1. (1)

Moreover, p admits a regular section over N := Glr 11~ x G (cf. Lemma
1.3.16).

Thus, G A = (_}((t)) is a Zariski locally trivial principal G,,-bundle.

Proof  We first show that the group functor %AAC is represented by an ind-
scheme. Consider the open cover of G((1)):

Gn= J en. )

geG((n)

Then, the subfunctors {hgn}eeG(r)) are an open covering of hg ()
(cf. Definition B.5). To prove the above equality, observe that

G((N)(C) = G((1) = Ugeg () gN(O).

(Now, use the fact that any closed ind-subscheme of G((1)) has nonempty
set of C-points as observed in Exercise 1.3.E.8.) Thus, by Exercise B.E.8,
{p~'hgn}eeG (1)) is an open cover consisting of subfunctors of %AAC. (Observe
that p’lth indeed satisfies the sheaf condition by using condition (1) of
Exercise B.E.8 and using the fact that Spec R" — Spec R is surjective for any
faithfully flat homomorphism R — R’, cf. (Matsumura, 1989, Theorem 7.3).)
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Recall from Theorem 1.4.11 that the homomorphism of group functors
p: %AAC — % admits splittings over the subgroup functors G (R[[¢]]) and
G(R[t~'])~. Combining them we get a morphism s from the C-space functor
N(R) = G(R][[t]]) x G(R[t_l])_ to g}ﬂ such that p os = Id, i.e., a functorial
section s of p over N(R). For any g € G((t)), choosing ¢ € G;LC over g
(which is possible by the surjectivity of éxc — G((1)), cf. §1.4.10), we get
a functorial section gs of p over h,y. This gives rise to an isomorphism of
C-space functors

fihgny X G = p~' (hgn)
given by (for any R € Alg)
hon(R) x R* = (p7hon ) (R). - 0.1) 1= §5(0) -,
for6 € hgn(R) and r € R, 3)

making the following diagram commutative:

hen(R) x R* (p~'hgn)(R)

S

gN(R)-

In particular, this implies that the open subfunctor p~'h gN of %}L (for any
g € G((t))) over th is represented by the ind-scheme gN x G,, — gN. We
now show that % is a representable functor with C-points G A

Since {p~'hgn}eec(r)) is an open cover consisting of subfunctors of Sfac
and p~'h ¢ is represented by the ind-scheme gN x G, (by the isomorphism
(3)), we get that the functor {é,\y is represented by an ind-scheme denoted
G 1. (cf. the proof of Proposition 1.3.18(a) using (Eisenbud and Harris, 2000,
Theorem VI-14 and Exercise VI-11); since a Zariski cover is an fppf cover by
Stacks (2019, Tag 021N)). Since g}f is a group functor, we get that G . 1S an
ind-group scheme giving rise to the exact sequence (1) of ind-group schemes.
Moreover, the morphism p: G re = G((t)) admits regular sections over gN
(by (3)) for any g € G((7)).

We now show that G 2. 1s a reduced ind-affine group scheme. Let
{(G((t)))"}nzo be an increasing filtration of G((1)) by reduced closed affine
subschemes (cf. Remark 1.3.26(b) and Lemma 1.3.21), giving an ind-affine
group scheme structure. Then, under the inverse image ind-scheme structure,

Gr)" = 5 ((G())")
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is a closed subset of G;\U acquiring a reduced scheme structure by virtue of
the isomorphism (3). Moreover, (GAC)” — (G ,\C)”H is a closed embedding
since closed embedding is preserved under base change (cf. (Hartshorne, 1977,

Chap. II, Exercise 3.11(a))). Thus, G 2. 18 a reduced ind group scheme.
Since a (Zariski locally trivial) principal G,,-bundle over an affine scheme
is affine (bei_ng an affine morphism), from the affineness of (G((1)))" and (2),

we get that G 1. 1 ind-affine. This completes the proof of the proposition. O

Remark 1.4.13  As proved later (cf. Corollary 8.2.3), the (group) split-
tings of p: CA};LC — G((1)) over either of G[[r]] or G[t~!]~ are unique (cf.
Theorem 1.4.11).

Moreover, for any two regular sections s1,52 of p over N = G[t_l]_ X
Gl[t1] (cf. Proposition 1.4.12 and Corollary 8.2.3),

s1 = sz, forafixed z € Gy,.

1.4.E Exercises
(1) With the notation as in Theorem 1.4.4, show that

PR: 8 ® R((t)) — Endr (A (A)r)/R.Id p )5

coincides with the projective representation of g ® R((¢)) in 5Z (A.)g, for
any R € Alg.

(2) For any C-algebra R which is a field, show that GLy (R) — PGLy (R) is
surjective for any (not necessarily finite dimensional) C-vector space V.

Hint: Let R be any noetherian C-algebra. Let S be an fppf R-algebra. In
particular, S is a noetherian C-algebra. By Stacks (2019, Tag 0311), there
is an embedding of rings

S — I—IzN=1 Spi’

where py, ..., py are the associated prime ideals of S.
(a) Show that for any injective C-algebra homomorphism 7' < T’,

PGLy (T) C PGLy(T’), where PGLy(T) := GLy(Vy)/T* - 1d.

Moreover, if R C T < T’ and Kg(T’) = PGLy (R) for the functor
PGLy (cf. proof of Lemma B.2 for the notation K g(7')), show that
Kgr(T) = PGLy (R).

(b) Let R C T, where T is a local ring such that R is an R-module
direct summand of 7 and T is R-flat. Show that Kg(T) = PGLy (R).
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(c)Let R C Ty and R C T5 be two C-algebras such that 75 is flat
over R. Assume further that

Kgr(T1) = Kr(T) = PGLy (R).

Show that Kg (77 x T2) = PGLy (R). Combining (a)—(c), the exercise
follows.
(3) Show that, for any A, € D, there is an isomorphism of ind-group schemes

G b G,

making the following diagram commutative:

G((1)).

Hint: To prove this, show first that the G,,-bundles G 2. and Goc are
isomorphic. Then show that a G,,-bundle isomorphism which takes 1 to 1
over 1 € G((t)) is automatically a group homomorphism.

(4) Forany A, € D and any C-algebra R, show that Rvy C JZ(A.)g is the
unique line annihilated by i(R) := (g ® tR[[t]]) ® (R ® u), where u is
the nil-radical of b.

Hence, show that any g(R)-module endomorphism of J# (A.)g is the

identity map up to a scalar multiple.

Hint: Use Exercise 1.2.E.5.

1.C Comments

The content of Section 1.2 is fairly standard (cf. (Kac, 1990, Chaps. 7 and 12
and Lemma 9.10) and (Kumar, 2002, Chaps. 1 and 13)).

The content of Section 1.3 is also fairly standard by now. Lemma 1.3.2,
Theorem 1.3.8, Corollary 1.3.15 for G = SL,, GLy; Corollary 1.3.19 for
G = SLy; and Lemma 1.3.21 are proved in Beauville and Laszlo (1994).
The proof of Theorem 1.3.8 is an elaboration of Beauville and Laszlo (1994,
Proof of Proposition 2.4) (with some help from P. Belkale). The approach
we have taken in this section is largely derived from Faltings (2003) (though
we have supplied here significantly more details). For example, Proposition
1.3.14, Corollary 1.3.15 and Lemma 1.3.16 are taken from Faltings (2003, §2).
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1.C Comments 67

As mentioned before, the detailed proof of Theorem 1.3.22 given here was
provided by B. Conrad (and a brief outline was given earlier by G. Faltings
in a private communication). Theorem 1.3.23 and Proposition 1.3.24 are given
in Laszlo and Sorger (1997, Propositions 4.6 and 4.7). However, the proof
of Theorem 1.3.23 outlined in Laszlo and Sorger (1997, Proposition 4.6)
is incorrect (since it wrongly uses an incorrect theorm of Shafarevich). For
a different representation-theoretic approach to many of the results in this
Section 1.3 and the next, see Kumar (2002, Chap. 13.2).

Lemma 1.4.9 is taken from Kumar, Narasimhan and Ramanathan (1994,
Lemma 2.5). Theorem 1.4.11 is taken from Laszlo and Sorger (1997). There
is an alternative construction of the central extension of SLy((¢)) via the
Fredholm group in Beauville and Laszlo (1994, §4) (also see Kumar (2002,
Theorem 13.2.8)).
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