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An Introduction to Affine Lie Algebras

and the Associated Groups

The aim of this chapter is first to set some basic notation and preliminaries
(to be used throughout the book) and then recall the definition of affine Kac–
Moody Lie algebras and their basic representation theory and to study the
associated groups and their flag varieties.

In Section 1.1 we recall the basic notation and preliminaries centered around
schemes, varieties, ind-schemes, ind-group schemes, representable functors,
quasi-coherent sheaves and vector bundles over ind-schemes. We also recall
the Yoneda Lemma (cf. Lemma 1.1.1). The notation set here will implicitly be
used throughout the book.

Let g be a finite-dimensional simple Lie algebra over C and let G be the
connected, simply-connected complex algebraic group with Lie algebra g.

In Section 1.2 we recall the definition of the associated affine Kac–Moody
Lie algebra g̃ and its completion ĝ and their various subalgebras, including the
standard Cartan ĥ, standard Borel b̂ and standard maximal parabolic subalgebra
p̂. Our g̃ and ĝ do not include the degree derivation. Then we define their Verma
and generalized Verma modules and give an explicit construction of integrable
highest-weight modules H (λc) (cf. Definition 1.2.6). Further, we show that
this explicit construction exhausts all the integrable highest-weight modules of
ĝ and, moreover, these modules are irreducible (cf. Theorem 1.2.10). We also
define the affine Weyl group and its action on the Cartan subalgebra of g (by
affine transformations).

In Section 1.3 we define the loop group G((t)) (without the central exten-
sion) associated to the Lie algebra ĝ and its various subgroups, e.g., G[[t]],
G[t−1]. We define the affine group scheme Ḡ[[t]] which is a non-noetherian
scheme and ind-affine group schemes Ḡ((t)) and Ḡ[t−1] (cf. Definition 1.3.1).
They respectively represent the functors G(R[[t]]),G(R((t))) and G(R[t−1])
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2 An Introduction to Affine Lie Algebras

from the category Alg of C-algebras to the category of groups (cf. Lemma
1.3.2). In particular, Ḡ[[t]], Ḡ((t)) and Ḡ[t−1] have C-points G[[t]], G((t))
and G[t−1], respectively. Then we study the associated infinite Grassmannian
XG = G((t))/G[[t]]. Consider the functor X o

G : R ∈ Alg � G(R((t)))/

G(R[[t]]) and let its sheafification be denoted by XG. We first take G = SLN
and prove that XSLN is represented by an ind-projective scheme X̄SLN using
the lattice construction (cf. Theorem 1.3.8). Moreover, X̄SLN (C) = XSLN .
We further observe that the ind-group scheme SLN((t)) acts on the ind-
scheme X̄SLN (cf. Definition 1.3.10). Then we prove that the product map
SLN([t−1])− × SLN [[t]] → SLN((t)) is an isomorphism onto an open subset
of SLN((t)), where SLN([t−1])− is the ind-scheme theoretic kernel of the eval-
uation homomorphism SLN([t−1]) → SLN , t−1 �→ 0 (cf. Corollary 1.3.15).
This last result is generalized for any connected reductiveG in Lemma 1.3.16.
This allows us to realize the infinite Grassmannian XG as the C-points of an
ind-projective scheme X̄G which represents the functor XG (cf. Proposition
1.3.18). The projection π : Ḡ((t)) → X̄G is a locally trivial principal Ḡ[[t]]-
bundle and X̄G is an ind-projective scheme as proved in Corollary 1.3.19. This
result is extended to X̄G replaced by Ḡ((t))/P for any parahoric subgroup
P ⊂ Ḡ[[t]] in Exercise 1.3.E.11.

We prove the following general result (cf. Theorem 1.3.22).

Theorem Let G be an ind-affine group scheme filtered by (affine) finite
type schemes over C and let G red be the associated reduced ind-affine group
scheme. Assume that the canonical ind-group morphism i : G red → G induces
an isomorphism of the associated Lie algebras. Then i is an isomorphism of
ind-groups, i.e., G is a reduced ind-scheme.

The basic idea of the proof involves considering the completion Ĝ of G

at the identity e, which is a formal group. Further, the formal groups in
characteristic zero are determined by their Lie algebras. Moreover, the Lie
algebras of G and Ĝ are isomorphic. Thus, by assumption, we get that Ĝ is
isomorphic with the completion Ĝ red of G red at e (and hence the completions
of G and G red at any C-point are isomorphic). From the isomorphism of the
completions of G and G red at any C-point, we conclude that G and G red

themselves are isomorphic.
As a consequence of the above theorem, we get that the ind-affine group

scheme Ḡ[t−1] is reduced and hence so is Ḡ[t−1]− (cf. Theorem 1.3.23). In
particular, the infinite Grassmannian X̄G is a reduced ind-scheme. Moreover,
Ḡ[[t]] is reduced. Thus, so is Ḡ((t)) (cf. Remark 1.3.26(b)). It is shown
that the ind-scheme X̄G coincides with the ind-variety XrG defined via the
representation theory (cf. Proposition 1.3.24).
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1.1 Preliminaries and Notation 3

We show that for any algebraic group H with a surjective algebraic
group homomorphism H → C∗, H̄ [t] is not reduced (cf. Example 1.3.25 and
Remark 1.3.26(a)).

In Section 1.4 we study the central extension(s) of the ind-group scheme
Ḡ((t)). We define the adjoint representation of G(R((t))) in Definition 1.4.2.
The projective representation of g ⊗ C((t)) in any integrable highest-
weight module H (λc) integrates to a projective representation of G(R((t)))
(cf. Proposition 1.4.3 and Theorem 1.4.4). The projective representation
of the loop group G(R((t))) in any H (λc) ⊗ R gives rise to a central

extension ¯̂
Gλc → Ḡ((t)), which is a Gm-principal bundle, where ¯̂

Gλc is a
reduced ind-group scheme (cf. Definition 1.4.5 and Proposition 1.4.12). In
particular, the projective representation of G(R((t))) in H (λc) ⊗ R lifts

to an actual representation of ¯̂
Gλc in H (λc) (cf. Corollary 1.4.7). Further,

the central extension ¯̂
Gλc → Ḡ((t)) splits over Ḡ[[t]] as well as Ḡ[t−1]−

(cf. Theorem 1.4.11).

1.1 Preliminaries and Notation

Unless otherwise explicitly stated, we take the base field to be the field of
complex numbers C. Though the bulk of the content of this book generalizes
easily to any algebraically closed field of characteristic 0. The identity map of
a set X is denoted by IX , IX or IdX (or when no confusion is likely, by I , I or
Id itself).

By schemes we mean quasi-compact (i.e., finite union of open affine
subschemes) separated schemes over C but not necessarily of finite type over
C (cf. (Mumford, 1988, §II.6, Definition 3), though quasi-compactness is not
assumed here). Let S be the category of schemes and morphisms between
them. For a fixed scheme S ∈ S, let SS be the category of S-schemes whose
objects are morphisms f : T → S (with target S) and the set of morphisms
Mor (f ,f ′) (f ′ : T ′ → S) consists of morphisms h : T → T ′ making the
following triangle commutative:

T
h ��

f ���
��

��
��

T ′

f ′
����
��
��
��

S.

By a variety we mean a reduced scheme which is of finite type over C. We do
not require varieties to be irreducible. When we talk of points of a variety or
scheme X, we always mean closed points, i.e., points in X(C) (see below).

https://doi.org/10.1017/9781108997003.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108997003.003


4 An Introduction to Affine Lie Algebras

By an ind-scheme X = (Xn)n≥0 we mean a collection of schemes Xn
together with closed embeddings in : Xn ↪→ Xn+1 for all n ≥ 0. We thus
think of Xn as a closed subscheme of Xn+1. Let Y = (Yn)n≥0 be another ind-
scheme with closed embeddings jn : Yn ↪→ Yn+1. By a morphism f : X → Y

we mean a sequence of non-negative integers (m(0) ≤ m(1) ≤ m(2) ≤ · · · )
and a collection of morphisms fn : Xn → Ym(n) (for all n ≥ 0) such that the
following diagram is commutative:

Xn
fn ��

� �

in

��

Ym(n)� �

jm(n+1)−1◦···◦jm(n)

��
Xn+1

fn+1 �� Ym(n+1).

If f ′ : X → Y is another morphism with the underlying sequence (m′(0) ≤
m′(1) ≤ m′(2) ≤ · · · ), then we say that f and f ′ are equivalent if the
following diagram is commutative for all n ≥ 0 (assuming m(n) ≤ m′(n),
otherwise we reverse the arrow in the following diagram to Ym′(n) → Ym(n)):

Xn
fn ��

f ′
n ���

��
��

��
��

Ym(n)

jm′(n)−1◦···◦jm(n)�����
��
��
��

Ym′(n).

We do not distinguish between two equivalent morphisms. This allows us to
talk about isomorphisms of ind-schemes.

Let X̄ := ∪n≥0Xn endowed with the direct limit Zariski topology, where
Xn is identified as a closed subspace of Xn+1 via in. Then, a morphism
f : X → Y clearly gives rise to a continuous map f̄ : X̄ → Ȳ which only
depends upon the equivalence class of f .

A scheme X can be thought of as an ind-scheme by taking Xn = X. We
call an ind-schemeX=(Xn)n≥0 of ind-finite type if each schemeXn is of finite
type over C. If each Xn is a projective (resp. affine) scheme over C, we call
X an ind-projective scheme (resp. ind-affine scheme). If each Xn is a variety
we call X an ind-variety. If each Xn is a projective (resp. affine) variety we
call X an ind-projective variety (resp. ind-affine variety). An ind-scheme X
is called irreducible if under the (direct limit) Zariski topology on X̄, it is an
irreducible space.

A morphism f : X → Y between ind-schemes is called a closed embedding
(also called a closed immersion) if for each n ≥ 0, fn : Xn → Ym(n) is a closed
embedding, f̄ (X̄) is closed in Ȳ and f̄ : X̄ → f̄ (X̄) is a homeomorphism
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1.1 Preliminaries and Notation 5

under the subspace topology on f̄ (X̄). In this case we also say that X is a
closed ind-subscheme of Y .

Let Alg be the category of commutative algebras over C with identity
(which are not necessarily finitely generated) and all C-algebra homomor-
phisms between them. Also, let Set be the category of sets. For any ind-scheme
X, define the covariant functor

hX : Alg → Set, R � Mor(SpecR,X),

where Mor is the set of all the morphisms. The functor hX extends to a
contravariant functor

h̃X : S→ Set, Y � Mor(Y,X).

Recall the Yoneda Lemma (cf. (Mumford, 1988, §II.6, Proposition 2) for
schemes; its extension to ind-schemes is straightforward).

Lemma 1.1.1 For any ind-schemes X,Y ,

Mor(X,Y ) � Hom(hX,hY ),

where Hom denotes the set of natural transformations. Hence, h is a fully
faithful functor from the category of ind-schemes to the category of functors
from Alg to Set.

By R-points of an ind-scheme we mean

X(R) := Mor(SpecR,X). (1)

Then, X(C) are the closed points of X.
Let Var be the category of ind-varieties and morphisms between them.

Then, the functor

Var → Set, X � X(C),

is a faithful functor, i.e., for X,Y ∈ Var,

Mor(X,Y )→ Maps(X(C),Y (C)) is injective (2)

(cf. (Mumford, 1988, §II.6, p. 162)).
We sometimes abuse the notation and denote ind-scheme X by X(C).
By an affine algebraic group we mean an affine algebraic group of finite

type over C.
An ind-schemeX = (Xn)n≥0 is called an ind-group scheme if it is equipped

with morphisms

μ : X ×X → X, τ : X → X and ε : SpecC → X
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6 An Introduction to Affine Lie Algebras

playing the role of multiplication, inverse and the identity element, respec-
tively. Thus, they are required to satisfy the following three conditions:

(a) Associativity: μ ◦ (μ× IX) = μ ◦ (IX × μ) : X3 → X.
(b) Identity: The two morphisms μ ◦ (IX × ε) and μ ◦ (ε × IX) : SpecC×

X → X coincide with IX.
(c) Inverse: The morphism μ ◦ (IX,τ ) : X → X coincides with the

composite morphism X → SpecC
ε−→ X.

In this book we only consider ind-affine group schemes, i.e., ind-group
schemesX = (Xn)n≥0 such that eachXn is an affine scheme. So, by ind-group
schemes, we will always mean ind-affine group schemes.

For an ind-group scheme X and any R ∈ Alg, X(R) is clearly an abstract
group given by the multiplication μR , inverse τR and the identity εR . If an
ind-group scheme X is an ind-variety, then we call X an ind-group variety.

Let X = (Xn)n≥0 be an ind-scheme. By a quasi-coherent sheaf F over X,
we mean a collection of quasi-coherent sheaves Fn over Xn together with an
isomorphism of OXn -modules:

θn : Fn � i∗n(Fn+1),

for all n ≥ 0, where in : Xn → Xn+1 is the closed embedding.

If each Fn is a locally free OXn -module of rank r , then we call F a rank-r
vector bundle over X. If r = 1, then, of course, F is called a line bundle.

For a quasi-coherent sheaf F over X, define

Hp(X,F) = lim←−
n

Hp(Xn,Fn),

where the map Hp(Xn+1,Fn+1)→ Hp(Xn,Fn) is defined as the composite

Hp(Xn+1,Fn+1)→ Hp(Xn+1,in∗Fn) � Hp(Xn,Fn),

where the first map is obtained from the OXn+1 -module map Fn+1 → in∗(Fn)
via the adjoint of the isomorphism θn (cf. (Hartshorne, 1977, Chap. II, §5))
and the second isomorphism is obtained from the closed embedding in (cf.
(Hartshorne, 1977, Chap. III, Lemma 2.10)).

If an ind-group scheme � acts on ind-scheme X, then by a �-equivariant
vector bundle V over X we mean a vector bundle V over X with an
isomorphism of vector bundles φ : μ∗(V) � π∗

X(V) over � × X satisfying
the standard cocycle condition as in Mumford, Fogarty and Kirwan (2002,
Definition 1.6), where πX : �×X → X is the projection andμ : �×X → X is
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1.2 Affine Lie Algebras 7

the action map. For a �-equivariant vector bundle V over X, there is a natural
action of �(C) on Hp(X,V) as follows (also see Definition B.22).

Take γ : SpecC → �. This gives rise to a morphism μγ : X → X by
restricting μ to SpecC × X via γ and identifying SpecC × X with X. Thus,
we get a canonical map

Hp(X,V) → Hp(X,μ∗
γV) � Hp(X,V),

where the second isomorphism is obtained by restricting the isomorphism φ to
SpecC ×X � X. This is the required action of �(C) on Hp(X,V).

A covariant functor F from Alg → Set is called a representable functor if
there exists an ind-schemeX such that there is a natural equivalence of functors
between F and hX. By Lemma 1.1.1, if such anX exists, then it is unique up to
an isomorphism. Of course, we can extend this definition for any contravariant
functor S→ Set.

For any S ∈ S and any ind-schemeX → S, define the contravariant functor

h̃X/S : SS → Set, (Y → S)� MorS(Y,X).

Then, a contravariant functor F : SS → Set is called representable by an
ind-scheme X over S if there is a natural equivalence of functors between F

and h̃X/S .
For a projective variety X and an affine algebraic group G, any C-analytic

G-bundle over X has a unique algebraic G-bundle structure and any analytic
morphism between G-bundles is an algebraic morphism (cf. (Serre, 1958,
§6.3)). The same is true for vector bundles.

1.2 Affine Lie Algebras

For a more exhaustive treatment of the theory, we refer to the standard text
(Kac, 1990).

Let g be a finite-dimensional simple Lie algebra over C. Choose a Cartan
subalgebra h and a Borel subalgebra b ⊃ h. Let �+ ⊂ h∗ be the set of positive
roots (i.e., the roots for the subalgebra b) and let � = �+ � �− be the set of
all the roots of g, where �− := −�+. Let {α1, . . . ,α�} ⊂ �+ be the set
of simple roots and let {α∨

1 , . . . ,α
∨
� } ⊂ h be the set of corresponding simple

coroots, where � := dim h is the rank of g. Let 〈·,·〉 be the invariant (symmetric,
nondegenerate) bilinear form on g normalized so that the induced form on the
dual space h∗ satisfies 〈θ,θ〉 = 2 for the highest root θ of g. Unless otherwise
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8 An Introduction to Affine Lie Algebras

stated, we will always take the invariant form on g to be normalized as above.
For any α ∈ �, let gα ⊂ g denote the root space corresponding to the root α.

Definition 1.2.1 Let g be (as above) a finite-dimensional simple Lie algebra
over C and let A := C[t,t−1], resp. K = C((t)) := C[[t]][t−1] be the algebra
of Laurent polynomials, resp. the field of Laurent power series. Define the
affine Kac–Moody Lie algebra (for short affine Lie algebra)

g̃ := (g⊗C A
)⊕ CC, (1)

under the bracket

[x[tm] + zC,x′[tm
′
] + z′C] = [x,x′][tm+m′

] +mδm,−m′ 〈x,x′〉C, (2)

for z,z′ ∈ C,m,m′ ∈ Z and x,x′ ∈ g, where x[P ] denotes x ⊗ P .
We will be particularly interested in the following ‘completion’ ĝ of g̃

defined by

ĝ := g⊗C K ⊕ CC, (3)

under the bracket

[x[P ] + zC,x′[P ′] + z′C] = [x,x′][PP ′] + Res
t=0

(
(dP )P ′)〈x,x′〉C, (4)

for P,P ′ ∈ K , z,z′ ∈ C and x,x′ ∈ g, where Res
t=0

denotes the coefficient of

t−1dt .
Clearly, g̃ is a Lie subalgebra of ĝ.
The Lie algebra ĝ admits a derivation d defined by

d(x[P ]) = x

[
t

(
dP

dt

)]
, d(C) = 0, for P ∈ K and x ∈ g. (5)

Clearly, d keeps g̃ stable. Thus, we have semidirect product Lie algebras
Cd � ĝ and Cd � g̃.

Define the (formal) loop algebra

g((t)) := g⊗C K, (6)

under the bracket

[x[P ],x′[P ′]] = [x,x′][PP ′], for P,P ′ ∈ K, and x,x′ ∈ g. (7)

Then, ĝ can be viewed as a 1-dimensional central extension of g((t)):

0 → CC → ĝ
π−→ g((t))→ 0, (8)

where the Lie algebra homomorphism π is defined by π(x[P ]) = x[P ], for
P ∈ K and x ∈ g, and π(C) = 0. As proved by Garland (1980, Theorem 3.14)
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1.2 Affine Lie Algebras 9

and also independently by V. Chari (unpublished), the above is a universal
central extension of g((t)) (see also Kac (1990, Exercises 3.14 and 7.8)). (For
a geometric proof, see Kumar (1985, Corollary 1.9(c)).)

Definition 1.2.2 (Some subalgebras of ĝ) The Lie algebra g is embedded in
ĝ as the subalgebra g⊗ t0. Define the (standard) Cartan subalgebra of ĝ:

ĥ := h⊗ t0 ⊕ CC, (1)

the (standard) Borel subalgebra:

b̂ := g⊗ (tC[[t]])⊕ b⊗ t0 ⊕ CC, (2)

and the (standard) maximal parabolic subalgebra

p̂ := g⊗ C[[t]] ⊕ CC. (3)

Also, define the following subalgebras of ĝ:

ĝ+ := g⊗ (tC[[t]]), ĝ− := g⊗ (t−1C[t−1]), l̂ := g⊗ t0 ⊕ CC. (4)

Then, ĝ+ is an ideal of p̂ and we have the Levi decomposition (as vector
spaces):

p̂ = l̂⊕ ĝ+. (5)

Also, as vector spaces:

ĝ = p̂⊕ ĝ−. (6)

We can similarly define b̃,g̃+,g̃−,p̃.
Finally, define the 3-dimensional subalgebra of ĝ:

r := gθ ⊗ t−1 ⊕ g−θ ⊗ t ⊕ C(C − θ∨), (7)

where gθ is the root space corresponding to the highest root θ and θ∨ ∈ h is
the coroot corresponding to θ .

Let X = (
0 1
0 0

)
, Y = (

0 0
1 0

)
, H = (

1 0
0 −1

)
be the standard basis of s�2. Take

any xθ ∈ gθ and yθ ∈ g−θ satisfying 〈xθ,yθ 〉 = 1.
The following lemma is trivial to verify using the commutation relations

in s�2.

Lemma 1.2.3 The Lie algebra r defined above is isomorphic with the Lie
algebra s�2 under an isomorphism γ : s�2 → r taking X �→ yθ ⊗ t , Y �→
xθ ⊗ t−1 and H �→ C − θ∨.
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10 An Introduction to Affine Lie Algebras

Definition 1.2.4 (a) Let s be a Lie algebra and let V be an s-module. Then
V is called a locally finite s-module if, for any v ∈ V , there exists a finite-
dimensional s-submodule Vv ⊂ V containing v.

In particular, a linear transformation T : V → V (for a vector space V ) is
called locally finite if, for any v ∈ V , there exists a finite-dimensional T -stable
subspace Vv containing v. Similarly, T is called locally nilpotent if, for any
v ∈ V , there exists nv ∈ Z≥1 such that T nv (v) = 0.

(b) A representation V of ĝ (or g̃) is called integrable if V is a locally finite
g-module as well as a locally finite r-module.

Clearly, any submodule of an integrable module is integrable and so is any
quotient.

(c) A representation V of ĝ is called a highest-weight module if V contains
a nonzero vector v+ ∈ V satisfying the following two properties:

(c1) The line Cv+ is stable under the action of b̂.
(c2) v+ generates the ĝ-module V , i.e., the only ĝ-submodule of V

containing v+ is the whole of V .

For a Lie algebra s, let U(s) denote its enveloping algebra.
Any highest-weight ĝ-module V decomposes into homogeneous compo-

nents:

V = ⊕d∈Z+ Vd, where Vd := Ud

(
g⊗ C[t−1]

)
· v+, Z+ := Z≥0,

x[n] denotes x[tn] andUd
(
g⊗ C[t−1]

)
is the span of x1[n1] . . . xk[nk] ∈ U(ĝ)

with ni ≤ 0 and
∑k
i=1 ni = −d .

In exactly the same way we can define the highest-weight modules for the
Lie algebra g̃, where we replace the Borel subalgebra b̂ of ĝ by the standard
Borel subalgebra

b̃ := g⊗ (tC[t])⊕ b⊗ t0 ⊕ CC. (1)

Since ĝ = p̂ ⊕ ĝ− (cf. identity (6) of Definition 1.2.2) and g̃ = p̃ ⊕ ĝ−, it
is easy to see that any highest-weight module of ĝ is also a highest-weight
module for g̃, where

p̃ := (g⊗ C[t])⊕ CC. (2)

Any quotient module of a highest-weight module is clearly a highest-weight
module.

(d) (Verma modules) For any λ̂ ∈ ĥ∗, define the Verma module

M̂(λ̂) := U(ĝ)⊗
U(b̂)

C
λ̂
, (3)
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1.2 Affine Lie Algebras 11

where U(b̂) acts on U(ĝ) via right multiplication and C
λ̂

is the 1-dimensional

b̂-module so that the commutator [b̂,b̂] of course acts trivially on C
λ̂

and ĥ acts

via the character λ̂. (Observe that b̂ = ĥ⊕ [b̂,b̂].) The action of U(ĝ) on M̂(λ̂)
is via left multiplication on the first factor.

Clearly, M̂(λ̂) is a highest-weight ĝ-module. Further, any highest-weight
ĝ-module is a quotient of M̂(λ̂) for some λ̂ ∈ ĥ∗.

In exactly the same way, for any λ̂ ∈ ĥ∗, we can define the Verma module
M̃(λ̂) of g̃. Then, the canonical map i : M̃(λ̂) → M̂(λ̂) (induced from the
inclusion g̃ ↪→ ĝ) is an isomorphism. In particular, the g̃-module structure on
M̃(λ) extends to a ĝ-module structure.

Similarly, we define the generalized Verma module M̂(V ,c) for any
g-module V and any c ∈ C as follows:

M̂(V ,c) := U(ĝ)⊗U(p̂) Ic(V ) = U(g̃)⊗U(p̃) Ic(V ), (4)

where p̂ (resp. p̃) is defined by identity (3) of Definition 1.2.2 (resp. identity (2)
of Definition 1.2.4), U(p̂) acts on U(ĝ) via right multiplication and Ic(V ) is
the vector space V on which p̂ acts via (x[P ] + zC) · v = P(0)x · v+ zcv, for
P ∈ C[[t]], x ∈ g, v ∈ V , z ∈ C. Here P(0) denotes the constant term of P .
To prove the second equality in (4), use identity (6) of Definition 1.2.2 and the
analogous identity for g̃.

Let V be a highest-weight g-module generated by a highest-weight vector
v+� 0 ∈ V of weight λ ∈ h∗ (i.e., the line Cv+ is stable under b, v+ generates
V as a g-module and the action of b on v+ is via the weight λ). Then, for any
c ∈ C, there is a unique ĝ-module map

π : M̂(λc) −→ M̂(V ,c),

taking 1⊗1λc �→ 1⊗v+, where λc ∈ ĥ∗ is defined by λc |h = λ and λc(C) = c.
Since V is a highest-weight g-module (by assumption), U(g) · v+ = Ic(V ).
Thus, π is surjective. In particular, in this case M̂(V ,c) is a highest-weight
ĝ-module.

Lemma 1.2.5 For any locally finite g-module V and any c ∈ C, M̂(V ,c) is
locally finite as a g-module.

Proof Recall the decomposition ĝ = p̂⊕ ĝ− from identity (6) of Definition
1.2.2. Then, by the Poincaré–Birkhoff–Witt (PBW) theorem,

U(ĝ) = U(p̂)⊗C U(ĝ−)

as vector spaces, and hence the inclusion

ι : U(ĝ−)⊗C Ic(V ) −→ U(ĝ)⊗U(p̂) Ic(V )
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12 An Introduction to Affine Lie Algebras

is an isomorphism of vector spaces. We next claim that ι is an isomorphism of
g-modules, where g acts on U(ĝ−) via the adjoint action: (ad x)a = xa − ax,
for x ∈ g, a ∈ U(ĝ−), and g acts on U(ĝ−) ⊗C Ic(V ) via the standard tensor
product action. (Of course, g acts on the range of ι via its standard embedding
g ↪→ ĝ.) To prove the claim, for x ∈ g, a ∈ U(ĝ−) and v ∈ Ic(V ), we have

ι(x · (a ⊗ v)) = ι
(
(ad x)a ⊗ v)+ ι(a ⊗ x · v)

= (ad x)a ⊗ v + a ⊗ x · v
= (xa − ax)⊗ v + ax ⊗ v
= xa ⊗ v
= x · ι(a ⊗ v).

This proves that ι is a g-module isomorphism. Now, by assumption, the
action of g on Ic(V ) is locally finite and it is easy to see that the adjoint action
of g on U(ĝ−) is locally finite. This proves the lemma. �

Definition 1.2.6 Let D ⊂ h∗ be the set of dominant integral weights
for g, i.e.,

D := {λ ∈ h∗ : λ(α∨
i ) ∈ Z+ for all the simple coroots α∨

i

}
.

For any λ ∈ D, let V (λ) be the finite-dimensional irreducible g-module with
highest weight λ.

Define the set of dominant integral weights D̂ for ĝ as follows:

D̂ = {λ̂ ∈ ĥ∗ : λ̂|h ∈ D and λ̂(C)− λ̂(θ∨) ∈ Z+
}
.

We will denote λ̂ ∈ ĥ∗ by λc, where λ := λ̂|h and c = λ̂(C).

For any λ̂ = λc ∈ D̂, define the ĝ-module

H (λc) := M̂(V (λ),c)

U
(
ĝ
) ·
(
(xθ [t−1])c−λ(θ∨)+1 ⊗ v+

),
where xθ is a nonzero element of gθ and v+ is a nonzero vector in the unique
line Cv+ ⊂ V (λ) stabilized by b.

We prove that H (λc) is ĝ-integrable, for which we need the following
general result.

Lemma 1.2.7 (a) Let s be any Lie algebra and let x ∈ s. Define

sx := {y ∈ s : (ad x)ny y = 0, for some ny ∈ N},
where N := Z≥1. Then, sx is a Lie subalgebra of s.
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1.2 Affine Lie Algebras 13

(b) For any representation (V ,π) of s and x ∈ s, define Vx = {v ∈ V :
π(x)nvv = 0, for some nv ∈ N}. Then Vx is a sx-submodule of V .

(c) Let (V ,π) be a representation of s such that s is generated (as a Lie
algebra) by the set FV = {x ∈ s : ad x acting on s is locally finite and π(x) is
locally finite}. Then

(c1) s is spanned over C by FV . In particular, if s is generated by the set F
of its ad locally finite vectors, then F spans s.

(c2) If dim s < ∞, then any v ∈ V lies in a finite-dimensional
s-submodule of V .

Proof (a) follows immediately from the Leibnitz formula (i.e., ad x is a
derivation)

(ad x)n[y,z] =
n∑
j=0

(
n

j

) [
(ad x)j y,(ad x)n−j z

]
.

For a locally finite T : V → V , we can define an automorphism
exp T : V → V in the usual manner:

exp T = I +
∞∑
n=1

T n

n!
. (1)

Then,

exp(kT ) = (exp T )k, for any k ∈ Z. (2)

In an associative algebra R, we have the identity (for any a,b ∈ R and
k ∈ N)

(ad a)k b =
k∑
r=0

(−1)r
(
k

r

)
ak−rbar, (3)

where ad a : R → R is defined by

(ad a)b = ab − ba.

To obtain (3), apply the Binomial Theorem to (La − Ra)
k for the two

commuting operators La and Ra given respectively by Lab = ab, Rab = ba.
From (3) it is easy to see that for two linear maps T ,S : V → V such that

T is locally finite and {(ad T )n S,n ∈ N} spans a finite-dimensional subspace
of EndV , we have

(exp T )S exp(−T ) =
∑
n≥0

(ad T )n

n!
(S) (4)
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14 An Introduction to Affine Lie Algebras

as operators on V , where ad T on the right-hand side is to be thought of as an
operator on the associative algebra EndV (of all the linear operators of V ).

Similar to identity (3), considering the Binomial Theorem for the operator
Lnx = (ad x + Rx)n, we obtain in any associative algebra R and any elements
x,a ∈ R,

xna =
n∑
j=0

(
n

j

) (
(ad x)j a

)
xn−j .

Applying the above identity to v, the (b)-part follows.
We first show that for a,x ∈ FV and t ∈ C, (exp(t ad a)) x ∈ FV : Since π

is a Lie algebra representation, for any y,z ∈ s and n ∈ Z+,

π
(
(ad y)n z

) = (adπ(y)
)n
π(z), (5)

as elements of End(V ). In particular, for a,x ∈ FV ,

π
(
(exp(ad a))x

) = (exp(adπ(a))
)
π(x)

= exp(πa) π(x) exp(−πa), by (4). (6)

(Observe that, since a ∈FV , π(a) is locally finite and, by (5), {(adπ(a))nπ(x) :
n∈N} is finite dimensional.) This shows that π

(
(exp(t ad a))x

)
is locally finite.

Taking V to be the adjoint representation, we see that
(
exp(t ad a)

)
x ∈ FV .

Let sV ⊂ s be the C-span of FV . Since

limit
t→0

(
exp(t ad a)

)
x − x

t
= [a,x],

we see that [a,x] ∈ sV (for a,x ∈ FV ). In particular, sV is a Lie subalgebra
of s. This proves (c1). Now (c2) follows from (c1) by the PBW theorem. �

Proposition 1.2.8 For any λc ∈ D̂, the ĝ-module H (λc) is an integrable
highest-weight ĝ-module.

By Exercise 1.1.E.4, H (λc) is nonzero.

Proof We have already seen in Definition 1.2.4(d) that H (λc) is a highest-
weight ĝ-module. By Lemma 1.2.5, it is locally finite as a g-module. So, to
prove that it is integrable, it suffices to show that it is locally finite as an
r-module.

Apply Lemma 1.2.7(b) in the case s = g̃, x = xθ [t−1] and V = H (λc).
By Exercise 1.1.E.1, sx = s. Moreover, clearly 1 ⊗ v+ ∈ Vx and, by
Lemma 1.2.7(b), Vx is an sx = s submodule of V . Further, the s-submodule
of V generated by 1 ⊗ v+ is the whole of V . To prove this, observe that the
canonical map j : M̃(λc) → M̂(λc) is an isomorphism and, moreover, the
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1.2 Affine Lie Algebras 15

canonical map π : M̂(λc)→ M̂(V (λ),c) is surjective (cf. Definition 1.2.4(d)).
Thus, Vx =V , i.e., xθ [t−1] acts locally nilpotently on H (λc). By the
same argument we see that x−θ [t] acts locally nilpotently on V . Now,
any s�2-module L such that X and Y act locally nilpotently on L is a locally
finite s�2-module. This follows, e.g., by Lemma 1.2.7(c2). Thus, in view of
Lemma 1.2.3, the proposition is proved. �

A (Cd � ĝ)-module V is called integrable if it is integrable as a ĝ-module.
It is called a highest-weight (Cd � ĝ)-module if there exists a line Cv+ ⊂ V

which is stable under Cd� b̂ and v+ generates V as a (Cd� ĝ)-module, where
b̂ is defined by identity (2) of Definition 1.2.2. (The notion of a highest-weight
(Cd � g̃)-module can, of course, be defined similarly.) With this definition we
recall the following important theorem from Kumar (2002, Corollaries 2.2.6,
3.2.10 and Theorem 13.1.3).

Theorem 1.2.9 Any integrable highest-weight (Cd � g̃)-module is
irreducible.

Theorem 1.2.10 Any integrable highest-weight ĝ-module is isomorphic
with a unique H (λc), λc ∈ D̂.

Thus, λc �→ H (λc) sets up a bijective correspondence between D̂ and the
set of isomorphism classes of integrable highest-weight ĝ-modules.

Moreover, H (λc) is an irreducible ĝ-module.

Proof Take an integrable highest-weight ĝ-module V . Let Cv+ ⊂ V be a
line stable under b̂ such that the ĝ-submodule generated by v+ is the whole
of V . Let λc ∈ ĥ∗ be the character by which b̂ acts on the line Cv+. Since V
is integrable, the g-submodule V o generated by v+ is finite dimensional and
so is the r-submodule V ′ generated by v+. Since the Borel subalgebra b ⊂ g
keeps the line Cv+ stable, from the representation theory of g applied to V o,
we get λ ∈ D and V o � V (λ) as g-modules (cf. (Serre, 1966, Théorème 1 and
Proposition 3(d), Chapitre VII)). Moreover, from the s�2-representation theory
(cf. (Serre, 1966, Corollaire 1, Chapitre IV)) and Lemma 1.2.3, λc(C − θ∨) ∈
Z+, i.e., λc ∈ D̂.

Since ĝ+ annihilates v+ and hence V o, we get a surjective ĝ-module map

φ : M̂
(
V (λ),c

)→ V,

taking Ic(V (λ))
∼−→ V o isomorphically as a l̂ = (g⊕ CC)-module.

Again, using the s�2-representation theory (cf. (Serre, 1966, Corollaire 1,
Chapitre IV)) and Lemma 1.2.3,

(xθ [t−1])c−λ(θ
∨)+1 · v+ = 0 in V ′.
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16 An Introduction to Affine Lie Algebras

Thus, φ factors through (as a surjective ĝ-module map)

φ̄ : H (λc)→ V .

For any g-module L and any c ∈ C, define the action of d on

M̂(L,c) � U(ĝ−)⊗C Ic(L)

via its standard derivation action on U(ĝ−) induced from the action on ĝ−
given in identity (5) of Definition 1.2.1 (d acts trivially on Ic(L)). This
action of d turns the ĝ-module M̂(L,c) into a (Cd � ĝ)-module. Clearly, this
(Cd � ĝ)-module structure on M̂(V (λ),c) descends to a (Cd � ĝ)-module
structure on the quotient H (λc), making it an integrable and a highest-weight
(Cd � ĝ)-module (cf. Definition 1.2.4(d) and Proposition 1.2.8); in particular,
an integrable and highest-weight (Cd� g̃)-module. Thus, by Theorem 1.2.9, it
is an irreducible (Cd� g̃)-module, and hence an irreducible (Cd� ĝ)-module.
We next show that it is irreducible as a ĝ-module.

Let N ⊂ H (λc) be a nonzero ĝ-submodule. Consider the decomposition

H (λc) = ⊕i∈Z+H (λc)i,

where

H (λc)i := {v ∈ H (λc) : d · v = −iv}. (1)

Observe that for any n ∈ Z and x ∈ g,
x[tn] · H (λc)i ⊂ H (λc)i−n. (2)

For any nonzero v ∈ H (λc), v =∑ vi with vi ∈ H (λc)i , set |v| = ∑
i :

vi � 0. Choose a nonzero vo ∈ N such that |vo| ≤ |v| for all nonzero v ∈ N .
Then,

x[tn] · vo = 0 for all n ≥ 1 and x ∈ g. (3)

For, otherwise, |x[tn]·vo|< |vo|, which contradicts the choice of vo. If |vo|> 0,
take a nonzero component voio with io > 0. By (1) and (2),

x[tn] · voio = 0 for all n ≥ 1 and x ∈ g.
In particular, by the PBW theorem, the (Cd � ĝ)-submodule of H (λc)

generated by voio is proper, which contradicts the irreducibility of H (λc) as
a (Cd� ĝ)-module. Thus, |vo| = 0, i.e., vo ∈ H (λc)0 and hence, by the PBW
theorem, the (Cd � ĝ)-submodule of H (λc) generated by vo is the same as
the ĝ-submodule of H (λc) generated by vo. Hence, N = H (λc), proving the
irreducibility of H (λc) as a ĝ-module.

https://doi.org/10.1017/9781108997003.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108997003.003


1.2 Affine Lie Algebras 17

From the irreducibility of H (λc) as a ĝ-module, we get that φ̄ is an
isomorphism.

So, to complete the proof of the theorem, it suffices to show that for λc �
μc′ ∈ D̂, H (λc) and H (μc′) are nonisomorphic as ĝ-modules.

Define the g-submodule

H (λc)
o = {v ∈ H (λc) : ĝ+ · v = 0

}
.

Then, clearly, as a g-submodule of H (λc),

1 ⊗ V (λ) = H (λc)
o
0 and H (λc)

o =
⊕
i≥0

H (λc)
o
i . (4)

We claim that, for any i > 0,

H (λc)
o
i = 0. (5)

For, if not, the ĝ-submodule of H (λc) generated by H (λc)
o
i would be proper

(again use the PBW theorem), contradicting the irreducibility of the ĝ-module
H (λc). Thus,

H (λc)
o = 1 ⊗ V (λ).

So, if H (λc) and H (μc′) are isomorphic as ĝ-modules, then the g-modules
V (λ) and V (μ) are isomorphic, i.e., λ = μ. Moreover, the action of C on
H (λc) and H (μc′) is by the same scalar, i.e., c = c′. Thus λc = μc′ , proving
the theorem completely. �

Definition 1.2.11 Recall from the beginning of this section that 〈·,·〉 is the
invariant normalized form on g. Extend this to an invariant symmetric bilinear
form on ĝ, still denoted by 〈·,·〉, as follows:

〈x[P ],y[Q]〉 = Res
t=0
(t−1PQ)〈x,y〉, for x,y ∈ g and P,Q ∈ K, 〈C,ĝ〉 = 0.

This form clearly descends to a bilinear form on the loop algebra g((t))=
g⊗K . It is easy to see that this form on g((t)) is nondegenerate.

Definition 1.2.12 LetW be the Weyl group of g. ThenW can be realized as
the subgroup of Aut(h) generated by the simple reflections {s1, . . . ,s�}, where

si(h) := h− αi(h) α∨
i , for h ∈ h. (1)

ThenW is a Coxeter group with Coxeter generators {s1, . . . ,s�}.
The dual representation ofW in h∗ is explicitly given by

si(λ) = λ− λ(α∨
i ) αi, for λ ∈ h∗. (2)
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18 An Introduction to Affine Lie Algebras

LetQ
∨ ∈ h be the coroot lattice of g:

Q
∨

:=
�⊕
i=1

Zα∨
i . (3)

Since αi(α∨
j ) ∈ Z (cf. (Serre, 1966, Chap. V, §11)), siQ

∨ ⊂ Q
∨

. Thus, W

keepsQ
∨

stable.
Define the affine Weyl group to be the semidirect product

Ŵ := W �Q
∨

. (4)

For q ∈ Q∨
, we denote the corresponding element of Ŵ by τq . By definition,

Ŵ acts on h via affine transformations, where W acts linearly on h via the
standard action (1) and τq acts on h via translation:

τq(h) = q + h. (5)

Consider the element s0 ∈ Ŵ defined by

s0 = τθ∨γθ, (6)

where (as in Definition 1.2.2) θ∨ is the coroot corresponding to the highest root
θ and γθ ∈ W is the reflection through the root plane θ , i.e., γθh = h−θ(h)θ∨.

The following well-known result can be found, e.g., in (Kumar, 2002,
Propositions 13.1.7, 1.3.21 and the identity (13.1.1.7)).

Lemma 1.2.13 The affine Weyl group Ŵ is a Coxeter group with Coxeter
generators {s0,s1, . . . ,s�}. In particular, for any ŵ ∈ Ŵ , we have the notion of
its length �(ŵ).

The Coxeter relations among {si}1≤i≤� together with the following relations
provide a complete set of relations for Ŵ :

(a) s2
0 = 1,

(b) (s0si)mi = 1, for all 1 ≤ i ≤ �,
where mi = 2,3,4,6 or ∞ according as αi(θ∨) θ(α∨

i ) = 0,1,2,3 or ≥ 4,
respectively.

1.2.E Exercises

(1) For any root vector xβ ∈ gβ and n ∈ Z, show that ad(xβ [tn]) : g̃→ g̃ is a
locally nilpotent transformation.

(2) Show that for any highest-weight g̃-module V , its g̃-module structure
extends to a ĝ-module structure.
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1.3 Loop Groups and Infinite Grassmannians 19

(3) For any λc ∈ D̂, show that the line C
(
xθ [t−1]c−λ(θ∨)+1 ⊗ v+

)
inside

M̂(V (λ),c) is stable under the action of b and is annihilated by ĝ+. Thus,
the line is stable under b̂.

(4) Show that, for any λc ∈ D̂, H (λc) is nonzero. Hint: Use Exercise 3.
(5) Show that, for any λc ∈ D̂, the line Cv+ ⊂ H (λc) is the unique line

stable under b̂. Hence, any ĝ-module endomorphism of H (λc) is the
identity map up to a scalar multiple. Moreover, Cv+ ⊂ H (λc) is
the unique line annihilated by û := (g⊗ tC[[t]])⊕ u, where u is the
nil-radical of b.

(6) Show that, for any λc ∈ D̂, M̂(λc) has a unique proper maximal
ĝ-submodule. Hence, H (λc) is the unique irreducible quotient of M̂(λc).

(7) For any f ∈ K = C((t)), any root vector xβ ∈ gβ , and any λc ∈ D̂, show
that xβ [f ] acts locally nilpotently on H (λc).

1.3 Loop Groups and Infinite Grassmannians

We follow the convention from Section 1.1.
As in Definition 1.2.1, letK = C((t)) = C[[t]][t−1] be the field of Laurent

power series.
For any commutative C-algebra R with identity and affine scheme X over

C, let X(R) denote the R-points of X. Then, X(R) can be identified with the
set of all the C-algebra homomorphisms f : C[X] → R, where C[X] is the
affine coordinate ring of X (cf. (Mumford, 1988, §II.6, Definition 1 and §II.2,
Theorem 1)). We want to realize G(K), G(C[t−1]) as C-points of ind-affine
group schemes and G(C[[t]]) as C-points of an affine group scheme.

Recall first that Spec(C[y1,y2, . . . ])(C) = C[[t]], where an element∑
n≥0 ant

n ∈ C[[t]] corresponds to the unique algebra homomorphism
C[y1,y2, . . . ] → C taking yn to an.

Definition 1.3.1 LetG be any affine algebraic group (of finite type over C).
Take a faithful representation i : G ↪→ SLN ⊂ MN , where MN is the vector
space ofN×N matrices over C, and let IG ⊂ S(M∗

N) be the radical ideal ofG
insideMN . For any 1 ≤ i, j ≤ N and an integer n, define the linear function

y
i,j
n : MN((t)) := MN ⊗C C((t))→ C, E ⊗

(∑
n∈Z

ant
n

)
�→ yi,j (E)an,

for E ∈ MN and
∑
n ant

n ∈ C((t)), where yi,j : MN → C is the linear
function taking any E ∈ MN to its (i,j)th entry.
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20 An Introduction to Affine Lie Algebras

For any P ∈ C[MN ] = S(M∗
N), let P̂ : MN((t)) → C((t)) be the (polyno-

mial) function obtained from extending the scalars from C to C((t)). Express
P̂ = ∑

m∈Z P̂mtm. For any d ≥ 0, restrict P̂ to MN ⊗ t−dC[[t]] and denote

this restriction by P̂ (d). Then, P̂ (d)m = 0 for m << 0 and P̂ (d)m are polynomial
functions onMN ⊗ t−dC[[t]].

Let R(d)N be the polynomial ring in the variables {yi,jn }n≥−d;1≤i,j≤N and let

I
(d)
G be the ideal of R(d)N generated by {P̂ (d)m : m ∈ Z and P ∈ IG}.

Consider the affine (though non-noetherian) scheme Ḡ(t−dC[[t]]) associ-
ated to the ring R(d)N /I

(d)
G , i.e.,

Ḡ(t−dC[[t]]) := Spec
(
R
(d)
N /I

(d)
G

)
.

In particular, taking d = 0, we get the affine scheme

Ḡ[[t]] = Ḡ(C[[t]]) := Spec
(
R
(0)
N /I

(0)
G

)
.

Exactly similarly, we can define the scheme

Ḡ

⎛⎝ d∑
p=0

Ct−p
⎞⎠ := Spec

⎛⎜⎝(C[yi,jn ]−d≤n≤0;1≤i,j≤N
)/〈(

P̂ (d)m

)
|MN⊗

d∑
p=0

Ct−p
:

m ∈ Z andP ∈ IG
〉⎞⎟⎠ .

Clearly, the inclusions (for any d ≥ 0)

Ḡ
(
t−dC[[t]]

)
⊂ Ḡ

(
t−d−1C[[t]]

)
and Ḡ

⎛⎝ d∑
p=0

Ct−p
⎞⎠ ⊂ Ḡ

⎛⎝d+1∑
p=0

Ct−p
⎞⎠ ,

under the above scheme structures, are closed embeddings. This gives rise to
ind-schemes

Ḡ((t)) :=
{
Ḡ(t−dC[[t]])

}
d≥0

and

Ḡ[t−1] := Ḡ
(
C[t−1]

)
=
⎧⎨⎩Ḡ

⎛⎝ d∑
p=0

Ct−p
⎞⎠⎫⎬⎭

d≥0

.

Observe that Ḡ((t)) is an inductive limit of non-noetherian affine schemes
with closed embedding in SLN((t)), whereas Ḡ[t−1] is an inductive limit of
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1.3 Loop Groups and Infinite Grassmannians 21

noetherian affine schemes (in fact, affine schemes of finite type over C) with
closed embedding in SLN [t−1].

By virtue of the following Lemma 1.3.2, the (ind)-scheme structures on
Ḡ[[t]], Ḡ((t)) and Ḡ[t−1] do not depend upon the choice of a faithful
representation G ↪→ SLN .

Lemma 1.3.2 Let G be any affine algebraic group. Consider the covariant
functors F1, F2, F3 from Alg to Set by

F1(R) = G(R[[t]]),

F2(R) = G(R((t))),

F3(R) = G(R[t−1]).

Then all these are representable functors represented respectively by the
scheme Ḡ[[t]] and ind-schemes Ḡ((t)) and Ḡ[t−1] (with the scheme structure
given in Definition 1.3.1).

In particular, the (ind)-scheme structures on these do not depend upon the
choice of a faithful representation i : G ↪→ SLN . Moreover, the C-points of
Ḡ[[t]], Ḡ((t)) and Ḡ[t−1] coincide with G[[t]] := G(C[[t]]), G((t)) :=
G(C((t))) and G[t−1] := G(C[t−1]), respectively.

Further, Ḡ[[t]] is an affine group scheme, which is a closed subgroup
scheme of SLN [[t]]. Similarly, Ḡ((t)) and Ḡ[t−1] are ind-affine group
schemes which are closed ind-subgroup schemes of SLN((t)) and SLN [t−1],
respectively.

Proof We prove the lemma for F1; the proof for F2 and F3 is similar. Let
R be a C-algebra. We need to prove that there is a functorial identification

Mor(SpecR,Ḡ[[t]]) � G(R[[t]]). (1)

As at the beginning of the section, since G is an affine variety, there is a
canonical bijection

G(R[[t]]) � Homalg(C[G],R[[t]]), (2)

where Homalg(−,−) denotes the set of C-algebra homomorphisms. Further,
since Ḡ[[t]] is an affine scheme, there is a canonical bijection

Mor(SpecR,Ḡ[[t]]) � Homalg(C[Ḡ[[t]]],R). (3)

https://doi.org/10.1017/9781108997003.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108997003.003


22 An Introduction to Affine Lie Algebras

Combining (1)–(3), it suffices to prove that there is a canonical bijection

Homalg(C[G],R[[t]]) � Homalg(C[Ḡ[[t]]],R). (4)

The closed embedding i : G ↪→ MN gives rise to the closed embedding

it : Ḡ[[t]] ↪→ M̄N [[t]],

where M̄N [[t]] is the scheme Spec
(
C[yi,jn ]n≥0;1≤i,j≤N

)
.

Clearly, the analogue of (4) for G replaced by MN is true under the map
(following the notation in Definition 1.3.1)

ϕMN : Homalg(C[MN ],R[[t]])→ Homalg(C[M̄N [[t]]],R), f �→ f̄ ,

where f (yi,j ) = ∑n≥0 f̄ (y
i,j
n )t

n, for any 1 ≤ i,j ≤ N . For any P ∈ C[MN ]
and any f ∈ Homalg(C[MN ],R[[t]]), it is easy to see that

f (P ) =
∑
m≥0

f̄ (P̂ (0)m )tm.

From this, it follows that the above bijection ϕMN restricts to a bijection ϕG
under the canonical embeddings induced by i:

Homalg(C[G],R[[t]])
ϕG� Homalg(C[Ḡ[[t]]],R)

↪→

î

↪→

ît

Homalg(C[MN ],R[[t]]) �
ϕMN

Homalg(C[M̄N [[t]]],R).

This proves (4) and hence (1).
The ‘In particular’ part of the lemma follows since the functor F1 is

independent of the choice of an embedding G ↪→ MN (by (2)) and the
representing scheme is unique (cf. Lemma 1.1.1).

To prove that Ḡ[[t]] is an affine group scheme, since F1 is representable by
Ḡ[[t]], it suffices to observe (using (Mumford, 1988, Chapter II, §6, Proposi-
tion 2)) that the morphismG×G→ G, (g,h) �→ gh−1, induces a natural map
F1(R)×F1(R) → F1(R) for anyR ∈ Alg. It is a closed subgroup scheme of
SLN [[t]] by construction. The proofs for Ḡ((t)) and Ḡ[t−1] are identical. �

Corollary 1.3.3 Let G be any affine algebraic group.
(a) Consider the morphism ε(∞) : Ḡ[t−1] → G induced from the

C-algebra homomorphism R[t−1] → R, t−1 �→ 0.
Let Ḡ[t−1]− be the (ind)-scheme theoretic fiber of ε(∞) over 1. Then, it

represents the functor G(R[t−1])− : Alg → Set defined as the kernel of the
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homomorphism εR(∞) : G(R[t−1]) → G(R) induced from the C-algebra
homomorphism R[t−1] → R, t−1 �→ 0.

Since Ḡ[t−1] ↪→ SLN [t−1] is a closed embedding (cf. Definition 1.3.1), it
is easy to see that Ḡ[t−1]− ↪→ SLN [t−1]− is a closed embedding.

(b) Let H ⊂ G be a closed subgroup. Consider the morphism ε(0) :
Ḡ[[t]] → G induced from the C-algebra homomorphism R[[t]] → R, t �→ 0.

Let Ḡ[[t]]H be the scheme-theoretic inverse image of H . Then it represents
the functor G(R[[t]])H defined as the inverse image of H(R) under the
homomorphism εR(0) : G(R[[t]])→ G(R).

Proof (a) By Lemma 1.3.2, Ḡ[t−1] represents the functor G(R[t−1]) (and,
of course,G represents the functorG(R)). Now, by Exercise 1.3.E.6, Ḡ[t−1]−

represents the functor G(R[t−1])−. This proves (a).
The proof of (b) is identical. �

Remark 1.3.4 Even though we do not need to, for any affine scheme X of
finite type over C, as in Definition 1.3.1 and Lemma 1.3.2, we can define an
affine (non-noetherian) scheme X̄[[t]] which represents the covariant functor
FX : Alg → Set defined by

FX(R) = X(R[[t]]) � Homalg(C[X],R[[t]]).

In particular, the C-points of X̄[[t]] = X(C[[t]]).
Exactly the same remark applies to C[[t]] replaced by C[t−1] or C((t)).

Definition 1.3.5 (Infinite Grassmannian) For any affine algebraic group
G over C, define the infinite Grassmannian XG as the sheafification of the
functor X o

G : R � G(R((t)))/G(R[[t]]) (cf. Lemma B.2). Observe that X o
G

satisfies condition (1) of Lemma B.2 since for any fppf R-algebra R′, R → R′
is injective (cf. (Matsumura, 1989, Theorem 7.5)).

In the following, we show that XG is representable, represented by an ind-
projective scheme X̄G with C-points XG := G((t))/G[[t]] for any connected
reductive group G. We first consider the case G = SLN .

Definition 1.3.6 (Representing XSLN by an ind-projective scheme) Denote
V = CN . For any non-negative integer n, define the nth special lattice functor
Qn = QN

n : Alg → Set by Qn(R) = set of projective R[[t]]-submodules LR

of R((t))⊗C V satisfying the following two conditions:
(a) tnLRo ⊂ LR ⊂ t−nLRo , where LRo := R[[t]] ⊗C V .
(b) ∧NR[[t]] (L

R) → ∧NR((t)) (R((t))⊗C V ) � R((t)) has image, denoted by

detLR , precisely equal to R[[t]].
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24 An Introduction to Affine Lie Algebras

Now, define the special lattice functor Q = QN by

Q(R) = ∪n≥0 Qn(R).

By Exercise 1.3.E.5, the functor Q is the sheafificationXSLN of the functor
R � SLN(R((t)))/SLN(R[[t]]).

In particular, taking R = C, define

Qn := Qn(C) and Q := Q(C).

(In fact, any C[[t]]-submodule LC of V ((t)) := C((t))⊗C V satisfying (a) is
automatically C[[t]]-free, being a submodule of a free module over a principal
ideal domain (PID). Thus, Qn consists of C[[t]]-submodules L of V ((t))
such that

tnLo ⊂ L ⊂ t−nLo, and det(L) = C[[t]],

where Lo := C[[t]] ⊗C V . In fact, in the proof of Theorem 1.3.8, we will
see that the condition det(L) = C[[t]] can be replaced by the condition
dimC(L/t

nLo) = nN .)
Recall that for any scheme X and any automorphism f of X, the fixed-

point subset Xf acquires a canonical scheme structure as the inverse image
subscheme of the diagonal �(X) under the morphism

f : X → X ×X, x �→ (x,f (x)).

Consider the complex vector space Vn := t−nLo/tnLo of dimension 2nN .
Then multiplication by t induces a nilpotent endomorphism tn of Vn and hence
1 + tn is a unipotent automorphism of Vn. In particular, 1 + tn induces an iso-
morphism (denoted by the same symbol) of the Grassmannian Gr(nN,2nN)
of nN -dimensional subspaces of the 2nN-dimensional space Vn. Let F̄n =
F̄ Nn := Gr(nN,2nN)1+tn denote its fixed-point projective scheme and let
Fn := F̄n(C) be the C-points of F̄n. Then clearly the map in : Qn → Fn ⊂
Gr(nN,2nN) given by L �→ L/tnLo is a bijection.

It is easy to see that the inclusion θn : Gr(nN,2nN) ↪→ Gr((n + 1)N,
2(n+1)N) is a closed embedding, where (denoting tkV := tk⊗V ) the map θn
takes V ′ ⊂ t−nLo/tnLo � tn−1V ⊕ tn−2V ⊕ · · · ⊕ t−nV to tnV ⊕ V ′. More-
over, it is easy to see that θn restricts to a closed embedding θ̄n : F̄n ↪→ F̄n+1.

By virtue of the following lemma, we have a bijection β : XSLN → QN .

Extending the scalar, the group SLN((t)) clearly acts on V ((t)).

Lemma 1.3.7 The map

β : XSLN → QN, g SLN [[t]] �→ gLo, for g ∈ SLN((t)),

is a bijection.
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Proof Let g ∈ SLN((t)). It is easy to see that there exists some n (depending
upon g) such that

tnLo ⊂ gLo ⊂ t−nLo. (1)

Of course, gLo is t-stable. We next calculate the dimension of gLo/tnLo.
By the Bruhat decomposition (cf. (Kumar, 2002, Corollary 13.2.10)), we

may assume that g is an algebraic group homomorphism C∗ → D, where D
is the diagonal subgroup of SLN . Write

g(t) =

⎛⎜⎝t
n1 O

. . .

O tnN

⎞⎟⎠ , for t ∈ C∗ and ni ∈ Z.

Then, since Im g ⊂ SLN , we get �ni = 0. Now

dim
(
gLo/t

nLo
) =

N∑
i=1

(n− ni) = Nn−�ni = Nn.

This proves that gLo ∈ Qn.
Conversely, take L ∈ Qn. Since O := C[[t]] is a PID and tkLo is O-free of

rankN (for any k ∈ Z), we get that L is O-free of rankN . Further,K⊗O L→
V ((t)) is an isomorphism, whereK = C((t)). Let {e1, . . . ,eN } be the standard
C-basic of V and take a O-basis {v1, . . . ,vN } of L. Now, define the K-linear
automorphism g of V ((t)) by gei = vi (1 ≤ i ≤ N). We prove that det g is a
unit of O: write det g = tku, where k ∈ Z and u is a unit of O . Consider the
K-linear automorphism α of V ((t)) defined by

αei = ei, for 1 ≤ i < N
= t−ku−1eN, for i = N .

Then det(gα) = 1 and tn+|k|Lo ⊂ (gα)Lo ⊂ t−n−|k|Lo. Hence, by the earlier
part of the proof, we get

dim

(
gα(Lo)

tn+|k|Lo

)
= (n+ |k|)N . (2)

On the other hand,

dim

(
gα(Lo)

tn+|k|Lo

)
= dim

(
gLo

tnLo

)
+ |k|N + k

= Nn+ |k|N + k, since L ∈ Qn. (3)

Combining (2) and (3), we get k = 0. Hence, gα(Lo) = gLo = L. This proves
the surjectivity of β. The injectivity of β is clear. This proves the lemma. �
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Theorem 1.3.8 For any fixed N ≥ 1 and n ≥ 0, the nth special lattice
functor Qn = QN

n (defined in Definition 1.3.6) is representable, represented
by a projective scheme H̄n (with C-pointsQn), which is a closed subscheme of
F̄n (defined in Definition 1.3.6). Moreover, the inclusion H̄n ↪→ F̄n induces an
isomorphism of the corresponding reduced schemes H̄ red

n

∼−→ F̄ red
n .

Further, the canonical morphism H̄n → H̄n+1 (induced from the inclusion
of the functors Qn ⊂ Qn+1) is a closed embedding. Thus, we get an ind-
projective scheme H̄ = (H̄n)n≥0 representing the functor Q, with C-points
QN := ⋃

n≥0
QNn . Through the bijection β of Lemma 1.3.7, we get the C-points

of H̄ to be XSLN .
Thus, by Exercise 1.3.E.5, H̄ also represents the functor XSLN . In particu-

lar, XSLN (C) = XSLN .
We denote the ind-scheme H̄ by X̄SLN . Thus, X̄SLN represents the functor

XSLN .

Proof By Eisenbud and Harris (2000, Exercise VI-18), Gr(nN,2nN) repre-
sents the functor

R � Gr(nN,2nN;R)
:= set of R-module direct summands of R2nN of rank nN .

Thus, following the notation of Definition 1.3.6 and Exercise 1.3.E.3, the
functor represented by the scheme F̄n is given by

Fn(R) = Gr(nN,2nN;R)1+tn

= set of R-module direct summands L̃R of
t−nLRo
tnLRo

of rank nN,

which are (1 + tn)-stable.

Taking the inverse image LR of L̃R under t−nLRo → t−nLRo /tnLRo , we get that
LR satisfies (a) of Definition 1.3.6 and L̃R is (1 + tn)-stable if and only if LR

is an R[[t]]-submodule of t−nLRo . Further, LR is a projective R[[t]]-module
if and only if L̃R is an R-module direct summand of t−nLRo /tnLRo (cf.
Exercise 1.3.E.1).

We next show that when the C-algebra R is a field k ⊃ C,

Fn(k) = Qn(k), for any n ≥ 0. (1)

Take any k[[t]]-submodule Lk satisfying condition (a) of Definition
1.3.6. By the Elementary Divisor Theorem for free modules over a
PID, we get that there exists a k[[t]]-basis {v1, . . . ,vN } of Lko such that
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{t−n+d1v1, . . . ,t
−n+dN vN } is a basis of Lk , for some di ≥ 0. Now, condition

(b) of Definition 1.3.6 is equivalent to the condition

N∑
i=1

−n+ di = 0. (2)

Further,

dimk L̃
k =

N∑
i=1

(2n− di) = 2nN −
∑

di . (3)

Comparing (2) and (3), we see that condition (b) is equivalent to the
condition that dimk L̃k = nN . This proves (1).

We next show that for any R ∈ Alg,

Qn(R) ⊂ Fn(R), for any n ≥ 0. (4)

Let LR be a projective R[[t]]-submodule satisfying conditions (a) and (b)
of Definition 1.3.6. Taking C-algebra homomorphisms ϕ : R → k (where k is
a field) and considering Lk := k[[t]]⊗R[[t]]L

R and using Exercise 1.3.E.2, we
get (from the case that R is a field proved earlier) that L̃R is of rank nN over
R, proving (4).

Conversely, assume that R ∈ Alg has no nonzero nilpotents. In this case,
we prove that

Fn(R) ⊂ Qn(R). (5)

Take L̃R ∈ Fn(R). Let Rp be the localization of R at a prime ideal p
of R. Since a projective module over a local ring is free (cf. (Matsumura, 1989,
Theorem 2.5)), we get that LRp := Rp[[t]]⊗R[[t]]L

R is an Rp[[t]]-free module
of rank N (Rp[[t]] is a local ring by Exercise 1.3.E.13). Thus, det(LRp) ⊂
Rp((t)) is given by t−nNP (t) · Rp[[t]], where P(t) ∈ Rp[[t]]. Now, take any
C-algebra homomorphism ϕ : Rp → k to a field k. From the case when R is
a field proved above as in (1), we get that the image P k(t) of P(t) in k[[t]]
(via ϕ) is tnN times a unit of k[[t]]. Since this is true for any ϕ and R has no
nonzero nilpotents, we get by using Atiyah and Macdonald (1969, Proposition
1.8) that P(t) is tnN times a unit of Rp[[t]]. (In general, if we allow R to have
nilpotents, P(t) would be of the form

P(t) = a0 + a1t + · · · + anN−1t
nN−1 + anN tnN + · · · , (6)

where a0,a1, . . . ,anN−1 are nilpotents inRp and anN is a unit ofRp.) Reverting
to the case when R has no nonzero nilpotents, from the above, we get that

det(LRp) = Rp[[t]]. (7)
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Let M := det(LR) ⊂ R((t)). Then, from condition (a) of Definition 1.3.6,
we get

M = t−nNMo, whereMo is a finitely generated ideal of R[[t]]. (8)

TakeQ(t) =∑i≥0 bit
i ∈ Mo. ThenQ(t), considered as an element ofRp[[t]],

belongs to tnN det(LRp) = tnNRp[[t]] for any prime ideal p of R (by (7)).
Thus, b1 = · · · = bnN−1 = 0 as elements of Rp (for any p). Thus, b1 = · · · =
bnN−1 = 0 as elements of R (since R has no nonzero nilpotents). Hence,
Mo ⊂ tnNR[[t]]. Since tnLRo ⊂ LR , we have t2nNR[[t]] ⊂ Mo. Consider the
quotient R-module

A := tnNR[[t]]

Mo
� tnNR[[t]]/t2nNR[[t]]

Mo/t2nNR[[t]]
.

Applying Atiyah and Macdonald (1969, Proposition 3.8) to the R-module A
and using (7), we get A = 0, i.e., det(LR) = R[[t]]. Thus, LR satisfies con-
dition (b) of Definition 1.3.6, proving LR ∈ Qn(R) by Exercise 1.3.E.1. This
proves (5).

Now, we analyze the failure of (5) for generalR ∈ Alg. Take any affine open
subset Spec(S) ⊂ F̄n, for a finitely generated C-algebra S. The inclusion gives
rise to the element L̃So ∈ Mor(Spec(S),F̄n) = Fn(S) and hence a projective
S[[t]]-module LSo satisfying (a) of Definition 1.3.6. Take an affine open cover
{Spec(Si)}i of Spec(S) so that the Si[[t]]-module

LSio := Si[[t]] ⊗S[[t]] L
S
o is free. (9)

This is possible by Exercise 1.3.E.4. Thus we get, from the proof of (5) given
above (see specifically (6)), that

det(LSio ) = t−nNPi(t)Si[[t]] ⊂ Si((t)), (10)

where Pi(t) is of the form

Pi(t) = ai0 + ai1t + · · · + ainN−1t
nN−1 + ainN tnN + · · · ,

for some nilpotents ai0, ai1, . . . ,a
i
nN−1 in Si . (11)

The nilpotent ideal

JSi = 〈ai0,ai1, . . . ,ainN−1〉 ⊂ Si

clearly does not depend upon the choice of the representative Pi(t). In partic-
ular, these ideals descend to give a nilpotent ideal JS ⊂ S. Taking an affine
open cover of F̄n by Spec S, we get a nilpotent ideal sheaf J ⊂ OF̄n . Now,
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define the closed subscheme H̄n of F̄n given by the ideal sheaf J . Thus, their
reduced subschemes are isomorphic:

H̄ red
n � F̄ red

n . (12)

We next prove that the scheme H̄n represents the functor Qn, i.e., for any
R ∈ Alg, there is a natural isomorphism

Qn(R)
∼−→ Mor(Spec(R),H̄n) ↪→ Mor(SpecR,F̄n) =: F̄n(R). (13)

By (4), we have an inclusion Qn(R) ⊂ Fn(R). We claim that the image
lands inside Mor(Spec(R),H̄n).

Take LR ∈ Qn(R). Then, by definition,

det(LR) = R[[t]]. (14)

The element LR gives rise to a morphism L̃R : Spec(R) → F̄n. Since F̄n is
a scheme of finite type over C, we can assume that R is a finitely generated
C-algebra. Take ‘small enough’ affine open covers {Spec(Ri)}i of SpecR and
{Spec(Si)}i of F̄n such that L̃R restricts to Spec(Ri) → Spec Si (i.e., gives
a C-algebra homomorphism fi : Si → Ri) and the Si[[t]]-module LSio is free,
whereLSio is defined by (9). Thus, by (10), det(LSio ) = t−nNPi(t)Si[[t]], where
Pi(t) = ∑

d≥0
aid t

d is of the form (11). In particular,

det
(
LRi := Ri[[t]] ⊗Si [[t]] LSio

)
= t−nNfi(Pi(t))Ri[[t]], (15)

where fi(Pi(t)) is obtained from Pi(t) by applying fi to all the coefficients.
But LRi = Ri[[t]] ⊗R[[t]] L

R . Hence, by (14),

det(LRi ) = Ri[[t]]. (16)

Comparing (15) and (16), we get

fi(a
i
d) = 0, for all 0 ≤ d < nN, (17)

i.e., the homomorphism fi factors through Si/〈ai0,ai1, . . . ,ainN−1〉. This shows

that, from the definition of H̄n, L̃R : Spec(R) → H̄n. Hence, the image of
Qn(R) (inside F̄n(R)) lands inside H̄n(R).

Conversely, take L̃R ∈ Mor(SpecR,H̄n) and let LR be the corresponding
projective R[[t]]-submodule of R((t)) ⊗C V (which satisfies condition (a) of
Definition 1.3.6). Then, by the above calculation (see (15) and (17)), for a
‘small enough’ open cover {Spec(Ri)}i of Spec(R) (since L̃R has image inside
H̄n), det(LRi ) = bi(t)Ri[[t]], for some bi(t) = ∑

d≥0 α
i
d t
d ∈ Ri[[t]], where

LRi := Ri[[t]]⊗R[[t]]L
R . Considering C-algebra homomorphisms ϕ : Ri → k
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(for a field k), from the case when R is a field proved earlier, we get that
ϕ(αi0) � 0. Since this is true for any ϕ, we get that αi0 is a unit of Ri , i.e.,

det(LRi ) = Ri[[t]]. (18)

By (8), det(LR) = t−nNMo, for some finitely generated ideal Mo of R[[t]].
Since the image ofMo in Ri[[t]] equals tnNRi[[t]] by (18) (for an affine open
cover {Spec(Ri)}i of SpecR), we first conclude that Mo ⊂ tnNR[[t]] (and, of
course, from the definition of LR , Mo ⊃ t2nNR[[t]]). Moreover, considering
the quotient R-module

A := tnNR[[t]]

Mo
� tnNR[[t]]/t2nNR[[t]]

Mo/t2nNR[[t]]

and using Atiyah and Macdonald (1969, Proposition 3.8) together with
the equation (18), we get det(LR) = R[[t]]. Thus, LR satisfies condition
(b) of Definition 1.3.6 as well, i.e., LR ∈ Qn(R), proving Mor(SpecR,H̄n)⊂
Qn(R). Thus, Qn(R) � H̄n(R) and hence Qn(R) is a representable functor
represented by the scheme H̄n for all n ≥ 0.

Finally, we have the following commutative diagram of schemes and
morphisms between them:

H̄n
� � in ��

jn

��

F̄n� �

θn

��
H̄n+1

� � in+1 �� F̄n+1,

(D)

where the morphism jn : H̄n → H̄n+1 is induced from the canonical inclusion
of functors Qn(R) ↪→ Qn+1(R). Since in, in+1 are closed embeddings (by
definition, H̄n ⊂ F̄n is a closed subscheme) and θn is a closed embedding as
seen in Definition 1.3.6, we get that jn is a closed embedding. This completes
the proof of the theorem. �

The following example shows that the inclusion Qn(R) ⊂ Fn(R) (cf. (4)
of the proof of Theorem 1.3.8) is proper for some R ∈ Alg already for n = 1,
N = 2. In particular, by Theorem 1.3.8, the scheme F̄ 2

1 is not reduced.

Example 1.3.9 Let R = C[ε]/〈ε2〉. Consider the element g ∈ GL2(R((t)))

given by

g =
(
εt−1 + 1 0

0 1

)
.
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Its inverse is
(

−εt−1+1 0
0 1

)
. Clearly, tLRo ⊂ gLRo ⊂ t−1LRo . Now

�2
R[[t]](gL

R
o ) = (εt−1 + 1)R[[t]] � R[[t]].

But

gLRo

tLRo
� (εt−1 + 1)R[[t]]

tR[[t]]
⊕ R[[t]]

tR[[t]]

is a free R-module of rank 2. To show this, observe that, as an R-module,

(εt−1 + 1)R[[t]]

tR[[t]]
� (ε + t)R[[t]]

(ε + t)(ε − t)R[[t]]
� R[[t]]

(ε − t)R[[t]]
,

where the last isomorphism follows since ε + t is not a zero divisor in R[[t]]
as can be seen by multiplying it by ε − t .

Define an R-module map

θ : R → R[[t]]/(t − ε)R[[t]] by r �→ r + (t − ε)R[[t]].

It is clearly surjective. Moreover, it is injective since if r+ (t−ε)P (t) = 0,
for some P(t) ∈ R[[t]], then (t+ε)r+t2P(t) = 0. But t2P(t) has no ‘t-term,’
thus r = 0.

Further, it is easy to see that gLRo /tL
R
o is an R-module direct summand of

t−1LRo /tL
R
o .

Definition 1.3.10 Recall that SLN((t)) represents the functor SLN(R((t)))
(cf. Lemma 1.3.2) and X̄SLN represents the functor XSLN (cf. Theorem 1.3.8).
Also, it is easy to see that the sheafification of the functor SLN(R((t))) ×
X o

SLN
is SLN(R((t))) × XSLN (since SLN(R((t))) is representable), where

X o
SLN
(R) := SLN(R((t)))/SLN(R[[t]]). Thus, the multiplication

SLN(R((t)))× X o
SLN (R) → X o

SLN (R), (g,hōR) �→ ghōR,

gives rise to a C-space functor morphism

SLN(R((t)))× XSLN → XSLN,

where ōR is the base point of SLN(R((t)))/SLN(R[[t]]). This, in turn, gives
rise to a morphism of ind-schemes

μ : SLN((t))× X̄SLN → X̄SLN .

We define the ‘basic’ line bundle L on X̄SLN as follows.

Definition 1.3.11 For any n ≥ 0, let L̂n be the dual of the tautologi-
cal line bundle over Gr(nN,2nN). Recall that the fiber of L̂n over any V ′ ∈
Gr(nN,2nN) is the dual �nN(V ′)∗. Let Ln be the pull-back line bundle over
H̄n via the embedding īn : H̄n → Gr(nN,2nN), which is the composite of
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in : H̄n → F̄n ↪→ Gr(nN,2nN) (cf. Definition 1.3.6 and the proof of Theorem
1.3.8). It is easy to see that L̂n+1 restricts to L̂n under the embedding θn
(cf. Definition 1.3.6). Thus, from the commutative diagram D in the proof of
Theorem 1.3.8, Ln+1 restricts to Ln under the embedding jn : H̄n ↪→ H̄n+1.
Hence, we get the ‘basic’ line bundle L on X̄SLN .

It is easy to see that the action of SLN [[t]] on X̄SLN (cf. Definition 1.3.10)
canonically lifts to its action on L .

Definition 1.3.12 Let V −
n ⊂ Vn := t−nLo

tnLo
be the subspace t−1V ⊕ · · · ⊕

t−nV under the identification

Vn � tn−1V ⊕ · · · ⊕ t0V ⊕ t−1V ⊕ · · · ⊕ t−nV .

Define a section σ̂n of L̂n over Gr(nN,2nN) by defining σ̂n(L) as the
linear form

σ̂n(L) : �
nN(L)→ �nN

(
Lo

tnLo

)
, for any L ∈ Gr(nN,2nN),

induced from the linear map (obtained from the inclusion L ⊂ Vn):

L→ Vn

V −
n

� Lo

tnLo
.

We identify �nN (Lo/tnLo) with C under the basis(
(tn−1e1) ∧ . . . ∧ (tn−1eN)

)
∧
(
(tn−2e1) ∧ . . . ∧ (tn−2eN)

)
∧ . . . ∧ (e1 ∧ . . . ∧ eN) ,

where {e1, . . . ,eN } is the standard basis of V = CN .

It is easy to see that σ̂n+1 restricts to σ̂n under the embedding
θn : Gr(nN,2nN) ↪→ Gr((n+ 1)N,2(n+ 1)N).

Pulling back the sections σ̂n via the embeddings īn : H̄n ↪→ F̄n⊂
Gr(nN,2nN), we get a section σ of the line bundle L over X̄SLN (cf. diagram
(D) in the proof of Theorem 1.3.8).

Let Z(σ) ⊂ X̄SLN be the zero set of the section σ .

Lemma 1.3.13 The open ind-subscheme X̄SLN \Z(σ) represents the functor

R � Q(R)\Z(σR),
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where

Q(R)\Z(σR) :=
{
LR ∈ Q(R) : iLR :

LR →(
R((t))⊗C V

)
/
(
t−1R[t−1] ⊗V ) is an isomorphism

}
,

and iLR is induced from the inclusion LR ⊂ R((t))⊗C V .

Proof We need to prove that for any R ∈ Alg,

Mor
(
SpecR,X̄SLN \Z(σ)) � Q(R)\Z(σR). (1)

Take f ∈ Mor(SpecR,X̄SLN ) � Q(R) (by Theorem 1.3.8) and let LR =
LR(f ) ∈ Qn(R) be the corresponding lattice (for some n ≥ 0). To prove (1),
we need to prove that LR ∈ Q(R)\Z(σR) if and only if

Im f ⊂ X̄SLN \Z(σ).

Since X̄SLN is an ind-scheme filtered by schemes of finite type over C, and
for any maximal ideal m of a finitely generated algebra S over C, S/m � C
(cf. (Atiyah and Macdonald, 1969, Corollary 7.10)), to show (1), it suffices to
show that for any LR ∈ Qn(R), where R is a finitely generated C-algebra,

LR ∈ Qn(R)\Z(σR) ⇐⇒(R/m)⊗R LR ∈ Qn\Z(σC)
for all the maximal ideals m of R. (2)

Now

LR ∈ Qn(R)\Z(σR)
⇔ iLR : LR → R((t))⊗ V

t−1R[t−1] ⊗ V
is an isomorphism by definition

⇔ iLR :
LR

tnLRo
→ R((t))⊗ V
(tnLRo )⊕ (t−1R[t−1] ⊗ V )

is an isomorphism

⇔ iLRm :
LRm

(Rm ⊗R tnLRo )
→ Rm((t))⊗ V
(tnL

Rm
o )⊕ (t−1Rm[t−1] ⊗ V )

is an isomorphism for all the maximal ideals m ⊂ R

by Atiyah and Macdonald (1969, Proposition 3.9)
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⇔ iLR/m :
LR/m

tnL
R/m
o

→ (R/m)((t))⊗ V
(tnL

R/m
o )⊕ ((t−1(R/m)[t−1])⊗ V )

is an isomorphism by the Nakayama lemma

⇔ iLR/m : LR/m → (R/m)((t))⊗ V
(t−1(R/m)[t−1])⊗ V is an isomorphism, (3)

whereLRm := Rm⊗RLR andLR/m := (Rm/mRm)⊗RmLRm � (R/m)⊗RLR .
(Observe that since LR/tnLRo is a finitely generated projective R-module by
Exercise 1.3.E.1, (

Rm

mRm

)
⊗Rm

LRm

Rm ⊗R tnLRo
� LR/m

tnL
R/m
o

.

Moreover, since m is a finitely generated ideal, (R/m) ⊗R tnLRo �
tnL

R/m
o := tn(R/m)[[t]] ⊗C V .)

The equivalence (3) is of course the same as the equivalence (2). This proves
the lemma. �

Proposition 1.3.14 The morphism μ1 : SLN [t−1]− → X̄SLN , induced from
the functor morphism g �→ g · ōR for g ∈ SLN(R[t−1])−, has its image
in X̄SLN \Z(σ), where SLN [t−1]− is defined in Corollary 1.3.3(a) and ōR is
the base point of SLN(R((t)))/SLN(R[[t]]). Moreover, μ1 : SLN [t−1]− →
X̄SLN \Z(σ) is an isomorphism of ind-schemes.

Proof By Corollary 1.3.3(a) and Lemma 1.3.13, it suffices to prove that for
any R ∈ Alg, the map

μ1(R) : SLN(R[t−1])− → Q(R), g �→ gLRo ,

gives a bijection onto Q(R)\Z(σR). We first show that

Im (μ1(R)) ⊂ Q(R)\Z(σR). (1)

We show that gLRo ∈ Q(R) for any g ∈ SLN(R((t))). In fact, we show that for
g ∈ SLN(R((t))) and LR ∈ QN(R), gLR ∈ QN(R), i.e., gLR satisfies prop-
erties (a) and (b) of Definition 1.3.6 for some n≥ 0. Let g ∈ SLN(t−dR[[t]])
(cf. Definition 1.3.1) and let LR ∈ QN

m(R), for some d , m ≥ 0. Then it is easy
to see that

gLR ⊂ t−m−dLRo . (2)

Choosing d ′ ≥ 0 such that g−1 ∈ SLN(t−d
′
R[[t]]), we get from (2)

(replacing g by g−1): g−1LR ⊂ t−m−d ′
LRo , which gives (since tmLRo ⊂ LR

by assumption)
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t3m+d ′
LRo ⊂ gLR . (3)

Combining (3) and (2), we get that gLR satisfies property (a).
Let βL

R
: �NR[[t]](L

R) → R((t)) be the map as in (b) of Definition 1.3.6 and

let e1, . . . ,eN be the standard basis of V = CN . Taking vj = ∑N
i=1 pij ei ∈

LR , for pij ∈ R((t)), it is easy to see that

βgL
R

(gv1 ∧ . . . ∧ gvN) = det g · βLR(v1 ∧ . . . ∧ vN)
= βL

R

(v1 ∧ . . . ∧ vN), since g ∈ SLN(R((t))).

Thus, det(gLR) = det(LR) = R[[t]], proving property (b).
Take g ∈ SLN(R[t−1])−. Then (1) is equivalent to showing that igLRo :

gLRo → R((t))⊗V
t−1R[t−1]⊗V is an isomorphism. Since g ∈ SLN(R[t−1]),

g−1(R[t−1] ⊗ V ) = R[t−1] ⊗ V . (4)

Thus

g−1(t−1R[t−1] ⊗ V ) = t−1R[t−1] ⊗ V . (5)

Hence, igLRo is an isomorphism if and only if iLRo : LRo → R((t))⊗V
g−1·(t−1R[t−1]⊗V ) is

an isomorphism, which follows from (5).
The injectivity of μ1(R) is easy to see.
Finally, take LR ∈ Q(R)\Z(σR). We first show that the map (induced

from the inclusion) k : LR ∩ (R[t−1] ⊗ V )→ LR/tLR is an isomorphism of
R-modules.

From the definition of Q(R)\Z(σR),
R((t))⊗ V = LR ⊕ (t−1R[t−1] ⊗ V ), (6)

which gives R((t))⊗ V = tLR ⊕ (R[t−1] ⊗ V ). Hence,

LR = LR ∩ (tLR ⊕ (R[t−1] ⊗ V ))
= tLR ⊕ (LR ∩ (R[t−1] ⊗ V )), since tLR ⊂ LR . (7)

From (7), we get that k is an isomorphism.
We further claim that the map (induced from the inclusion) � : LR ∩

(R[t−1] ⊗ V )→ R[t−1]⊗V
t−1R[t−1]⊗V is an isomorphism (of R-modules).

From (6), since t−1R[t−1] ⊗ V ⊂ R[t−1] ⊗ V , we get

R[t−1] ⊗ V =
(
LR ∩ (R[t−1] ⊗ V )

)
⊕
(
t−1R[t−1] ⊗ V

)
.

This proves that � is an isomorphism.
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Since R[t−1]⊗V
t−1R[t−1]⊗V is a free R-module of rank N , by virtue of the isomor-

phism �, we get an R-module basis {v1, . . . ,vN } of LR ∩ (R[t−1] ⊗V ), where

vi = 1 ⊗ ei (mod t−1R[t−1] ⊗ V ). (8)

Since LR ∈ Q(R), by the definition of Q, det(LR) = R[[t]]. From this and
the choice of vi satisfying (8), we easily get that

βL
R

(v1 ∧ . . . ∧ vN) = 1, (9)

where βL
R

: �NR[[t]](L
R) → R((t)) is the map as in (b) of Definition 1.3.6.

Define go ∈ SLN(R[t−1])− as follows:

goei = vi, for all 1 ≤ i ≤ N . (10)

For any u1, . . . ,uN ∈ R((t))⊗ V and g ∈ MN(R((t))), we have

gu1 ∧ . . . ∧ guN = det g · (u1 ∧ . . . ∧ uN). (11)

Thus, from (9)–(11), we get that det(go) = 1 and hence, from (8), we get that
indeed go ∈ SLN(R[t−1])−. From the definition of μ1(R) and go, we get that

μ1(R)(go) =
N∑
i=1

R[[t]]vi ⊂ LR .

By the isomorphism k,

LR = tLR +
N∑
i=1

R[[t]]vi .

Hence, by the Nakayama lemma (Atiyah and Macdonald, 1969, Corollary 2.7),
we get that

∑N
i=1 R[[t]]vi = LR . (We have used here that any maximal ideal

of R[[t]] contains tR[[t]], cf. Exercise 1.3.E.13.) Thus, μ1(R)(go)=LR .
This proves the surjectivity of μ1(R) onto Q(R)\Z(σR), proving the
proposition. �

Following Definition 1.3.10, consider the morphism of ind-schemes:

π : SLN((t))→ X̄SLN, induced from g �→ gōR for g ∈ SLN(R((t))),

where ōR is the base point of SLN(R((t)))/SLN(R[[t]]). Let Z̃(σ ) be the
inverse image of the zero set Z(σ) under the above morphism, where σ is the
section of the line bundle L over X̄SLN as in Definition 1.3.12.

Corollary 1.3.15 The morphism

μ : SLN [t−1]− × SLN [[t]] → SLN((t)), induced from (g,h) �→ gh
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for g ∈ SLN(R[t−1])− and h ∈ SLN(R[[t]]), is an isomorphism onto its
image SLN((t))\Z̃(σ )

(
which is an open subset of SLN((t))

)
.

In particular, π is a locally trivial principal SLN [[t]]-bundle.

Proof From the representability of the functor Q(R)\Z(σR) by
X̄SLN \Z(σ) (cf. Lemma 1.3.13), representability of SLN(R((t))) by SLN((t))
(cf. Lemma 1.3.2) and Exercise 1.3.E.6, we get that SLN((t))\Z̃(σ ) represents
the functor

R � SLN(R((t)))\Z̃(σR)

:=
{
g ∈ SLN(R((t))) : igLRo : gLRo → R((t))⊗ V

t−1R[t−1] ⊗ V is an isomorphism

}
.

(1)

So, to prove the corollary, it suffices to show (by Lemma 1.3.2 and
Corollary 1.3.3(a)) that the map

μ(R) : SLN(R[t−1])− × SLN(R[[t]])→ SLN(R((t))), (g,h) �→ gh,

gives a bijection onto SLN(R((t)))\Z̃(σR).
From (1) and (5) of the proof of Proposition 1.3.14,

Im (μ(R)) ⊂ SLN(R((t)))\Z̃(σR).
Conversely, take g′ ∈ SLN(R((t)))\Z̃(σR). By Proposition 1.3.14, there
exists g ∈ SLN(R[t−1])− such that gLRo = g′LRo . But the isotropy of LRo in
SLN(R((t))) is precisely equal to SLN(R[[t]]). Thus, g′ = g ·h, for some h ∈
SLN(R[[t]]). Hence, μ(R) has image precisely equal to SLN(R((t)))\Z̃(σR).
It is easy to see that μ(R) is injective. This proves the first part of the corollary.

Of course, the assertion that π is a locally trivial principal SLN [[t]]-
bundle follows from the first part and Proposition 1.3.14 once we prove that
V = X̄SLN , where V := ∪g∈SLN((t)) g

(
X̄SLN \ Z(σ)). But clearly V (C) =

X̄SLN (C) = SLN((t))/SLN [[t]]. Since V and X̄SLN have the same C-points
and V is open in X̄SLN , we get that V = X̄SLN (since any ind-scheme of
ind-finite type has nonempty set of C-points). �

Now, we are ready to show that XG is represented by an ind-scheme
(cf. Definition 1.3.5). We first prove the following lemma.

Lemma 1.3.16 For any connected reductive group G, the morphism

μG : Ḡ[t−1]− × Ḡ[[t]] → Ḡ((t)), induced from the morphism (g,h) �→ gh,

for g ∈ G(R[t−1])− and h ∈ G(R[[t]]), is an isomorphism onto an open
subset of Ḡ((t)).
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Proof Take a faithful representation j : G ↪→ SLN . This gives rise to the
commutative diagram

Ḡ[t−1]− × Ḡ[[t]]
μG ��

� �

j1

��

Ḡ((t))� �

j2

��
SLN [t−1]− × SLN [[t]]

μ
�� SLN((t)),

(D)

where μ is as in Corollary 1.3.15 and the vertical maps are induced from the
inclusion j . Let SLN((t))\Z̃(σ ) be the open subset of SLN((t)) as in Corollary
1.3.15. Then we assert that

Im (μG) = j−1
2 (SLN((t))\Z̃(σ )); (1)

in particular, j−1
2

(
SLN((t))\Z̃(σ )

)
does not depend upon the choice of j .

Moreover, we show that μ̄G is an isomorphism onto Im (μG).
By (1) of Corollary 1.3.15 and Exercise 1.3.E.6 applied to

Ḡ((t)) ×
SLN ((t))

(
SLN((t))\Z̃(σ )

)
, the functor

R � G(R((t)))\Z̃G(σR)

:=
{
g ∈ G(R((t))) : ij2(g)LRo :

j2(g)L
R
o → R((t))⊗ V

t−1R[t−1] ⊗ V is an isomorphism

}

represents the open subscheme j−1
2 (SLN((t))\Z̃(σ )) of the ind-scheme

Ḡ((t)).
Moreover,G(R[t−1])− (resp.G(R[[t]])) represents Ḡ[t−1]− (resp. Ḡ[[t]])

by Corollary 1.3.3(a) (resp. Lemma 1.3.2). Thus, to prove the lemma, it suffices
to show that for any R ∈ Alg,

μG(R) : G(R[t−1])− ×G(R[[t]])→ G(R((t))), (gR,hR) �→ gR · hR

is a bijection onto G(R((t)))\Z̃G(σR).
We have the following commutative diagram (DR) (analogue of the dia-

gram D for any R):
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G(R[t−1])− ×G(R[[t]])
μG(R) ��

� �

j1(R)

��

G(R((t)))� �

j2(R)

��
SLN(R[t−1])− × SLN(R[[t]])

μ(R)
�� SLN(R((t))),

(DR)

where μ(R) is bijective onto its image SLN(R((t)))\Z̃(σR) (cf. Proof of
Corollary 1.3.15). From this, the injectivity of μG(R) follows as well as

Im (μG(R)) ⊂ G(R((t)))\Z̃G(σR). (2)

To prove the converse, take xR ∈ G(R((t)))\Z̃G(σR). Then, by the proof of
Corollary 1.3.15, there exists gR ∈ SLN(R[t−1])−, hR ∈ SLN(R[[t]]) such
that

gR · hR = j2(R)(xR). (3)

Choose a polynomial representationW over C of SLN with a vectorwo ∈W
such that the scheme-theoretic isotropy subgroup (SLN)wo ofwo in SLN is pre-
cisely equal toG (cf. (Borel, 1991, Chap. II, Theorem 5.1 and §5.5)). Then, for
any S ∈ Alg, by Exercise 1.3.E.6 applied to SLN×

W
wo (for the map SLN →W ,

g �→ gwo), we get that

G(S) is precisely the isotropy of wo in SLN(S). (4)

Evaluating identity (3) atwo ∈ R((t))⊗W and applying (4) for S = R((t)),
we get

g−1
R (wo) = hR(wo). (5)

But g−1
R (wo) − wo ∈ t−1R[t−1] ⊗ W and hR(wo) ∈ R[[t]] ⊗ W . Thus,

from (5), we get that

hR(wo) = wo = gR(wo). (6)

Thus, from (4), we get that (gR,hR) ∈ Im (j1(R)). This proves, in
view of (2),

Im (μG(R)) = G(R((t)))\Z̃G(σR),
proving the lemma. �

Remark 1.3.17 Lemma 1.3.16 remains valid, more generally, for any closed
subgroup H ⊂ SLN (in lieu of G) such that H is the scheme-theoretic
stabilizer of a vector wo in a polynomial representationW of SLN .
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Proposition 1.3.18 [Realizing XG as an ind-scheme] Let G be any group
H as in the above remark.

(a) The functor XG as in Definition 1.3.5 is represented by an ind-scheme
denoted X̄G with C-points XG.

In fact, X̄G is an ind-projective variety if G is a connected, semisimple
algebraic group (cf. Corollary 1.3.19 and Theorem 1.3.23).

(b) The morphism Ḡ[t−1]− → X̄G induced by the functor morphism

G(R[t−1])− → XG(R), g �→ gōR, for g ∈ G(R[t−1])−,

is an open embedding, where ōR is the base point of G(R((t)))/G(R[[t]]).
Moreover, {goḠ[t−1]− · ō}go∈G((t)) provides an open cover of the
ind-scheme X̄G.

(c) We have a morphism

Ḡ((t))× X̄G → X̄G

induced from the morphism of functors

G(R((t)))× X o
G(R)→ X o

G(R) ⊂ XG(R),

(g,hōR) �→ ghōR for g,h ∈ G(R((t))).
Proof (a) Consider the subfunctor hḠ[t−1]− ↪→ XG which takes (for any C-
algebra R) g ∈ hḠ[t−1]−(R) = G(R[t−1])− to gōR ∈ X o

G(R) = G(R((t)))/

G(R[[t]])⊂XG(R). Then, hḠ[t−1]− is an open subfunctor of XG (cf. Exer-
cise 1.3.E.7). Thus, for any go ∈ G((t)),

hgoḠ[t−1]− ↪→ XG, gog �→ gogōR for g ∈ G(R[t−1])−

is an open subfunctor.
We next claim that the collection of subfunctors {hgoḠ[t−1]−}go∈G((t)) is an

open covering of XG. To prove this, in view of Eisenbud and Harris (2000,
Exercise VI-11), it suffices to show that for any field k ⊃ C,

∪go∈G((t)) goG(k[t−1])−ōk = XG(k) = X o
G(k) = G(k((t)))/G(k[[t]]),

(1)

where the second equality in the above equation follows since k is a field (cf.
Exercise 1.3.E.7).

To prove (1), equivalently, we need to prove

∪go∈G((t)) goG(k[t−1])− ·G(k[[t]]) = G(k((t))). (2)
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For any go ∈ G((t)), by Lemma 1.3.16, the functor R� goG(R[t−1])− ·
G(R[[t]]) is an open subfunctor of G(R((t))) represented by an open
ind-subscheme of Ḡ((t)) with C-points goG[t−1]− ·G[[t]]. Consider the
sheafification F of the functor

Fo : R � ∪go∈G((t)) goG(R[t−1])− ·G(R[[t]]) ⊂ G(R((t))).

Then F is an open subfunctor of G(R((t))) represented by an open ind-sub-
scheme denoted V of Ḡ((t)) (cf. Lemma 1.3.2 and Definition B.5(b)) with
C-points

∪go∈G((t)) goG[t−1]− ·G[[t]] = G((t)).

Also, Ḡ((t)) has C-points G((t)). So, both V and Ḡ((t)) have the same set
of C-points and hence V = Ḡ((t)) (since any closed ind-subscheme of Ḡ((t))
has nonempty set of C-points, cf. Exercise 1.3.E.8). Thus, for any C-algebraR,

V (R) = Ḡ((t))(R) = G(R((t))). (3)

But, k being a field,

G(k((t))) = V (k) = F(k) = Fo(k) = ∪go∈G((t)) goG(k[t−1])− ·G(k[[t]]),
where the first equality follows from (3) and the third equality follows since k
is a field. This proves (2) and hence (1).

Recall from Lemma 1.3.16 that there is an isomorphism

μG : Ḡ[t−1]− × Ḡ[[t]] → V̊ , (g,h) �→ gh,

where V̊ is an open subset of Ḡ((t)). For any go ∈ G((t)) this gives rise to an
isomorphism

μG(go) : (goḠ[t−1]−)× Ḡ[[t]] → goV̊ , (gog,h) �→ gogh.

For any d ≥ 0, recall the closed subscheme Ḡ(t−dC[[t]]) of Ḡ((t)) from
Definition 1.3.1. Then, there exists a closed (affine) subscheme (goḠ[t−1]−)d
of goḠ[t−1]− (of finite type over C) such that μG(go) restricts to an
isomorphism

(μG(go))d : (goḠ[t−1]−)d × Ḡ[[t]] → (goV̊ ) ∩ Ḡ(t−dC[[t]]).

Consider the subfunctor X d
G of XG (cf. Definition 1.3.5) defined as the

sheafification of the functor R � G(t−dR[[t]])/G(R[[t]]) (cf. Lemma B.2).
Then, parallel to the above proof, we get that the collection of subfunc-

tors {h(goḠ[t−1]−)d }go∈G((t)) is an open covering of X d
G . Thus, by Eisen-

bud and Harris (2000, Theorem VI-14) (since a Zariski cover is an fppf
cover by Stacks (2019, Tag 021N)), the functor X d

G is represented by a

https://doi.org/10.1017/9781108997003.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108997003.003


42 An Introduction to Affine Lie Algebras

scheme denoted X̄dG with C-points XdG = G(t−dC[[t]])/G[[t]]. Moreover,
the morphism id : X d

G → X d+1
G induced from the inclusion gives rise to

a morphism īd : X̄dG → X̄d+1
G . Since Ḡ(t−dC[[t]]) is a closed subscheme

of Ḡ(t−d−1C[[t]]), we get that (goḠ[t−1]−)d is a closed subscheme of
(goḠ[t−1]−)d+1. Moreover, {(goḠ[t−1]−)d}go∈G((t)) provides an open cover
of X̄dG (see the proof of (b) below). Thus, the morphism īd : X̄dG → X̄d+1

G is a
closed embedding. Now, it is easy to see that the ind-scheme

X̄G := (X̄0
G ⊂ X̄1

G ⊂ X̄2
G ⊂ · · · )

represents the functor XG, once we observe that ∪d≥0 X d
G (R) = XG(R) for

any C-algebra R. This proves (a).

An alternative proof of (a). Fix an embedding G ⊂ SLN . Then, by Beilinson
and Drinfeld (1994, lemma after Theorem 4.5.1), the functor XG is a closed
subfunctor of XSLN (for more details of the proof, see Zhu (2017, Proposition
1.2.6)1, where the notion of a closed subfunctor is parallel to that of an
open subfunctor as in Definition B.5(b). Thus, by Theorem 1.3.8, XG is a
representable functor represented by a closed ind-subscheme of X̄SLN .

(b) Since hḠ[t−1]− ↪→ XG is an open subfunctor (as observed above), we
have that Ḡ[t−1]−ō ⊂ X̄G is an open ind-subscheme from the representability
of XG by X̄G and Definition B.5(b).

To prove that {goḠ[t−1]− · ō}go∈G((t)) is an open cover of the ind-scheme
X̄G, observe that U := ∪go∈G((t)) goḠ[t−1]− · ō is an open subset of X̄G, X̄G
is a closed ind-subscheme of X̄SLN (cf. Exercise 1.3.E.9) and X̄SLN is of ind-
finite type (cf. Theorem 1.3.8). Thus, any closed ind-subscheme of X̄G has
nonempty set of C-points. Moreover,

U(C) = ∪go∈G((t)) goG[t−1]− · ō = X̄G(C) = G((t)) · ō.

(c) To prove (c), simply observe that the sheafification of the functor
hḠ((t)) × X o

G is hḠ((t)) × XG, since hḠ((t)) is representable. �

By the above Proposition 1.3.18 and Lemma 1.3.16, the following corollary
follows easily.

Corollary 1.3.19 LetG be any groupH as in Remark 1.3.17. The projection
π : Ḡ((t))→ X̄G is a locally trivial principal Ḡ[[t]]-bundle.

Further, for any faithful representation j : G ↪→ SLN , X̄G ↪→ X̄SLN is
a closed embedding (cf. Exercise 1.3.E.9). Thus, by Theorem 1.3.8, X̄G is an
ind-projective scheme.

1 I thank X. Zhu for these two references.
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Definition 1.3.20 An ind-scheme X = (Xn)n≥0 is called reduced if there
exists an equivalent filtration (Yn)n≥0 ofX (i.e., Id : X → X is an isomorphism
of ind-schemes, where the two copies of X are equipped with the two ind-
scheme structures induced from the filtrations Xn and Yn) such that each Yn is
a reduced scheme.

Lemma 1.3.21 If X = (Xn)n≥0 is a reduced ind-scheme, then (Xred
n )n≥0

provides an equivalent filtration ofX, whereXred
n is the corresponding reduced

scheme (cf. (Hartshorne, 1977, Chap. II, Exercise 2.3)). (Of course, as a
topological space, Xred

n = Xn.)

Proof SinceX is a reduced ind-scheme, for any n ≥ 0, there exists k(n) ≥ 0
such that in : Yn → Xk(n) is a closed embedding. But, since Yn is reduced, in
factors through a closed embedding in : Yn → Xred

k(n). Thus, the identity map

Id: X → Xred is a morphism of ind-schemes, where Xred denotes the ind-
scheme obtained from the filtration (Xred

n )n≥0.
Conversely, the closed embedding Xred

n → Xn clearly shows that
Id : Xred → X is a morphism of ind-schemes. This proves the lemma. �

The following theorem’s proof was briefly outlined by G. Faltings (personal
communication dated January 26, 2017). B. Conrad provided a detailed proof
of the theorem given below (personal communication dated January 27, 2017).

Recall that the Lie algebra Lie G of an ind-affine group scheme G is, by
definition, the kernel of the group homomorphism G (C(ε)) → G (C) induced
by ε �→ 0, where C(ε) := C[ε]/〈ε2〉. By Corollary B.21, Lie G is a Lie algebra.

Let G = (Gn)n≥0 be an ind-affine group scheme. Then G red := (G red
n )n≥0

is again an ind-affine group scheme. This follows since the multiplication map
Gn × Gm → Gl clearly restricts to G red

n × G red
m → G red

l and so does the
morphism induced from the inverse.

Theorem 1.3.22 Let G = (Gn)n≥0 be an ind-affine group scheme filtered
by (affine) finite-type schemes over C and let G red = (G red

n )n≥0 be the asso-
ciated reduced ind-affine group scheme. Assume that the canonical ind-group
morphism i : G red → G induces an isomorphism i̇e : Lie(G red)

∼−→ Lie G of
the associated Lie algebras. Then, i is an isomorphism of ind-groups, i.e., G is
a reduced ind-scheme.

Proof Let A := C[G ] be the affine coordinate ring of G , i.e., A := lim←− An

with inverse limit topology, where each An := C[Gn] is given the discrete
topology. For any C-algebra B, the set of morphisms Spec(B) → G coincides
exactly with the set of continuous C-algebra homomorphisms A → B, where
B has discrete topology.
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Let Ân denote the formal completion of An at the identity e, so {Ân}n≥1

is an inverse system of complete local noetherian rings with surjective
transition maps Ân+1 → Ân with closed kernels for the max-adic topologies
by the Artin–Rees Lemma (cf. (Eisenbud, 1995, Lemma 7.15)). Define

Â := lim←− Ân (1)

to be the topological inverse limit of Ân equipped with their max-adic
topologies. Each Ân is itself a topological inverse limit of Artinian local
C-algebras, so the same goes for Â. Concretely, viewing the local Artinian
algebra quotients of each An supported at e as local Artinian algebra quotients
of A also, we see that Â is (as a topological algebra) the inverse limit of
all these local Artinian C-algebras. This makes Â into a (local) pseudo-
compact C-algebra. (For an introduction to pseudo-compact rings, we refer
to Demazure and Grothendieck (1970, Exp. VIIB ).) Recall that the class
of pseudo-compact C-algebras includes all the complete local noetherian
C-algebras with residue field C and is stable under arbitrary topological inverse
limits. The most basic example of a non-noetherian local pseudo-compact
C-algebra is the topological ring C[[Xi]]i∈I of formal power series over C in
an arbitrary infinite set {Xi}i∈I of variables, realized as the completion of the
polynomial ring C[Xi] with respect to the system of ideals (Xj : j ∈ J )N +
(Xi : i � J ), for finite subsets J ⊂ I and integers N ≥ 1.

The tangent space at a C-point x of a pseudo-compact C-algebra is, by
definition, the topological C-linear dual of m/m2, where m is the (necessarily
open) maximal ideal at x and m2 is the closure of m2. Further, any pseudo-
compact C-algebra is determined (including its topology) by its functor of
points on local Artinian C-algebras (viewed discretely). The continuous maps
from Â (as in (1)) to any discrete C-algebra must factor through one of the Ân
(even through some local Artinian C-algebra quotient of An).

Since G is an ind-affine group scheme, we get that Â is a ‘Hopf algebra’
(in the weaker sense that the coproduct lands in a completed tensor product
over C), which makes Â into a connected formal group. (For a discussion of
formal groups, we refer to Fontaine (1977, Chap. I, §9) and also Demazure and
Grothendieck (1970, Exp. VIIB , §3).) Now, over a field of characteristic 0, any
connected formal group is necessarily of the form C[[Xi]] as an underlying
pseudo-compact C-algebra (cf. (Fontaine, 1977, Chap. I, §9.6)).

In exactly the same way

Âred := lim←− Âred
n

is a formal group, where Ared
n := C[G red

n ] and Âred
n is the completion of Ared

n

at e.
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The Lie algebra Lie(Â) of any formal group Â over C is defined as the set
of points valued in C(ε) based at e. It is exactly the tangent space of Â at e.

Assertion I: The canonical map Lie(Â)→ Lie(G ) is an isomorphism and a
similar result for Lie(G red). Thus, the canonical map

Lie(Âred) → Lie(Â) (2)

is an isomorphism.

This follows since the definition of Lie(Â) as C(ε)-points of Â based at e
forces it to factor through a local Artinian algebra quotient of some An (based
at e). The proof for Lie(G red) is identical. So, Assertion I follows from the
assumption Lie(G red)

∼−→ Lie G .

Assertion II: The canonical map î : Â → Âred is surjective.

We first recall the following general result:

Let ξ : R′ → R be a continuous homomorphism between pseudo-compact
rings such that for every open ideal J of R (thus R/J is an Artinian ring) the
map R′ → R/J is surjective. Thus, the preimage J ′ of J in R′ is an open ideal
with R′/J ′ � R/J . The map ξ : R′ → R is then identified with the map

ξ̄ : R′ → lim←−
J

R′/J ′ � lim←−
J

R/J � R,

for J varying through the full family of open ideals of R. Then, ξ̄ is
surjective and hence so is ξ (cf. (Demazure and Grothendieck, 1970, Exp. VIIB ,
Cor. 0.2D(ii)(a))).

We now come to the proof of Assertion II. By the above result, it suffices to
show that for any open ideal J of Âred, the map îJ : Â→ Âred/J is surjective,
where îJ is the map î followed by the projection Âred → Âred/J . But, J being
an open ideal, clearly

Âred/J � C[G red
n ]/Jn, for some n ≥ 1 and some ideal Jn of C[G red

n ].

Of course, the canonical map C[Gn] → C[G red
n ]/Jn is surjective and so is

A → C[Gn]. Hence, the canonical map A → C[G red
n ]/Jn is surjective. But,

since î is a continuous map and J is an open ideal, we get that îj is surjective,
proving Assertion II.

Assertion III: The canonical map î : Â→ Âred is an isomorphism.

We first recall the following (simple) general result obtained using the
isomorphism of R below with C[[Xi]] and similarly for R′.

https://doi.org/10.1017/9781108997003.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108997003.003


46 An Introduction to Affine Lie Algebras

Let R and R′ be two connected formal groups over C and f : R → R′ a
continuous surjective homomorphism respecting augmentations to C. Then, f
is an isomorphism (necessarily a topological isomorphism) iff the induced map
between Lie algebras is a bijection.

Applying the above result to î and using Assertions I and II, we get
Assertion III.

Assertion IV: For a complete local C-algebra B with residue field C, the
canonical map i : G red → G induces a bijection iB : G red(B) � G (B).

Let B be any (not necessarily noetherian) C-algebra. By the definition of a
morphism to an ind-scheme, any morphism ϕ : SpecB → G lands inside Gn
(for some n ≥ 1). From this, we see that iB : G red(B) → G (B) is injective
(for any B). So, it suffices to prove that for any B as in Assertion IV, iB is
surjective.

Take g ∈ G (B). Then, it is represented by an algebra homomorphism
ḡn : An → B, for some n ≥ 1. Since B is a complete local C-algebra with
residue field C, ḡn induces a continuous homomorphism ĝn : Ân(x) → B and
hence a continuous homomorphism ĝ : Â(x) → B, where Ân(x) denotes the
completion of An with respect to some C-point x (not necessarily e) of Gn and
Â(x) is the inverse limit of {Ân(x)}n. But, by Assertion III, î : Â → Âred is
an isomorphism (and hence so is î(x) : Â(x) � Âred(x) by translation using
G (C) = G red(C)). Thus, we get a continuous homomorphism

ĝred := ĝ ◦ (î(x))−1 : Âred(x) → B.

Composing ĝred with the canonical C-algebra homomorphism Ared →
Âred(x), we get a C-algebra homomorphism Ared → B. This provides the
desired lift of g in G red(B). Thus, G red(B) = G (B), proving Assertion IV.

Assertion V: For any local noetherian C-algebra B with residue field C, the
canonical map i : G red → G induces a bijection iB : G red(B) � G (B).

As observed in the proof of Assertion IV, it suffices to prove that G red(B)→
G (B) is surjective. Since B is noetherian, B → B̂ is injective, where B̂ is the
completion of B with respect to its unique maximal ideal. Take g ∈ G (B) and
represent it as ḡn : An → B (for some n). By Assertion IV, there exists N ≥ n
such that ḡN : AN → B ⊂ B̂ (obtained from the composition of ḡn with the
canonical mapAN → An) descends to ĝN : Ared

N → B̂. But, sinceAN → Ared
N

is surjective, we get that ĝN (Ared
N ) ⊂ B. This proves Assertion V.

With these preparations, we finally come to the proof of the theorem. We
need to show that, for any C-algebra B, the canonical map i : G red → G
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induces a bijection iB : G red(B) � G (B). As observed earlier, iB is injective.
So, we only need to prove the surjectivity of iB .

Take g ∈ G (B). Then, as shown earlier, g ∈ Gn(B) for some n ≥ 1. Since
Gn is a scheme of finite type over C (by assumption), we can assume that B is a
C-algebra of finite type over C. Let m be a maximal ideal of B (so B/m = C)
and let Bm be the localization. Then, by Assertion V, we can find n(m) ≥ 1 and

g′
m ∈ G red

n(m)(Bm) = Mor
(
C[G red

n(m)],Bm
)

� Mor
(

Spec(Bm),G
red
n(m)

)
such that

iBm(g
′
m) = gm, (3)

where gm is the element of Gn(m)(Bm) corresponding to g. Since iBm is
injective, g′

m is unique, satisfying (3). Further, since G red
n(m) is of finite type

over C, there exists an affine open set Um ⊂ Spec(B) containing the point m
such that g′

m spreads out to

g′
Um

∈ G red
n(m)(C[Um]).

By the injectivity of iC[Um], we get the following analogue of (3) (possibly after
suitably shrinking Um around m):

iC[Um](g
′
Um
) = gUm, (4)

where gUm is the element of Gn(m)(C[Um]) corresponding to g. As m runs
over the maximal ideals of B, {Um} clearly covers Spec(B). Choose a finite
subcover {Umi }1≤i≤k of Spec(B) and let N := maxi {n(mi )}. From the
uniqueness of g′

Umi
satisfying (4), we get that g′

Umi
= g′

Umj
onUmi∩Umj . Thus,

we get the element g′ ∈ G red
N (B) such that g′

|Umi = g′
Umi

on Umi . From this

and (3), we get iB(g′) = g. This proves the surjectivity of iB and hence the
theorem is proved. �

As a consequence of the above theorem, we deduce the following result.

Theorem 1.3.23 Let G be a connected semisimple algebraic group. Then
the ind-affine group scheme Ḡ[t−1] is reduced and hence so is Ḡ[t−1]−.

Thus, the infinite Grassmannian X̄G is a reduced ind-scheme.

Proof We first show that G := Ḡ[t−1] is reduced. By Theorem 1.3.22, it
suffices to show that

Lie(G red) = Lie(G ). (1)

Take an embedding G ↪→ SLN ⊂ MN . This gives rise to a closed embed-
ding of groups: G ⊂ SLN [t−1] (cf. Lemma 1.3.2).
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In particular,

Lie(G ) ⊂ Lie(SLN [t−1]) = slN ⊗ C[t−1],

where for the last equality, see Exercise 1.3.E.12. Considering the evaluation
homomorphisms for any α ∈ P1(C)\{0} (induced from the C-algebra homo-
morphisms R[t−1] → R, t �→ α), ε(α) : G → G and ε(α) : SLN [t−1] →
SLN , it is easy to see (using Exercise 1.3.E.12 again) that

Lie(G ) ⊂ g⊗ C[t−1], where g := LieG. (2)

For any root β ∈ � of g, consider the root subgroup Uβ ⊂ G with
Lie algebra the root space gβ (cf. (Jantzen, 2003, Part II, §1.2)). This gives
rise to a closed embedding of ind-affine group schemes j : Ūβ [t−1] ↪→ G .
Since Uβ � A1, clearly, Ūβ [t−1] is reduced. In particular, the embedding
j : Ūβ [t−1] ↪→ G factors through Ūβ [t−1] ↪→ G red. Further, under the
differential j̇ , similar to (2), we get

Lie(Ūβ [t−1]) ⊂ gβ ⊗ C[t−1]. (3)

In fact, identifying the group Uβ with the additive group Ga � C, it is easy to
see that

Lie(Ūβ [t−1]) = gβ ⊗ C[t−1]. (4)

Thus,

Lie(G red) ⊃
∑
β∈�

(gβ ⊗ C[t−1]).

But, since Lie(G red) is a Lie algebra which is a Lie subalgebra of slN ⊗
C[t−1] under the standard bracket as in Exercise 1.3.E.12 and

∑
β∈� gβ

generates the Lie algebra g (this is where we have used the assumption that
G is semisimple), we get that

Lie(G red) ⊃ g⊗ C[t−1]. (5)

Combining (2) and (5), we get

Lie(G red) = Lie(G ) = g⊗ C[t−1].

This proves (1) and hence G is reduced by Theorem 1.3.22.
The evaluation ε(∞) : G → G admits a group splitting obtained from

the inclusion G → G (which is induced from the C-algebra homomor-
phism R ↪→ R[t−1]). This gives rise to an isomorphism of ind-schemes
(cf. Corollary 1.3.3(a)):

G � G − ×G, where G − := Ḡ[t−1]−. (6)
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Now, since G is reduced, so is G −.
Finally, by Proposition 1.3.18, the infinite Grassmannian X̄G has an

open cover isomorphic with the ind-scheme G −. Thus, X̄G is a reduced
ind-scheme. �

Recall the ind-projective variety XrG (in particular, reduced) with closed
points XG from Kumar (2002, §§13.2.12, 13.2.13 and 13.2.15). Also, recall
that the structure XrG coincides with the ind-variety structure obtained via the
representation theory (cf. (Kumar, 2002, Proposition 13.2.18)).

Proposition 1.3.24 Let G be a connected, simply-connected simple alge-
braic group. Then the ind-scheme X̄G as in Proposition 1.3.18 coincides with
the ind-projective variety XrG.

Proof We first prove the proposition for G = SLN . In this case, following
the notation as in Theorem 1.3.8, by definition X̄SLN is the ind-scheme given
by the filtration (H̄n)n≥0. By Theorem 1.3.23 and Lemma 1.3.21, since X̄SLN
is reduced, (H̄ red

n )n≥0 gives an equivalent filtration with H̄n(C) = H̄ red
n (C) =

QNn . Hence, X̄SLN is an ind-variety. By Theorem 1.3.8 and Kumar (2002,
§13.2.13), we get that X̄SLN coincides with XrSLN

.
We now come to the generalG. Fix an embeddingG ↪→ SLN . This induces

closed embeddings (cf. Corollary 1.3.19 for X̄G and Kumar (2002, §13.2.15)
for XrG):

X̄G ↪→ X̄SLN and XrG ↪→ XrSLN .

Now, since both X̄G and XrG are reduced, by Kumar (2002, Lemma
4.1.2), we see that the identity map Id : X̄G → XrG is an isomorphism of ind-
varieties. �

Unlike noetherian group schemes over C (which are always reduced by a
result due to Cartier), ind-affine group schemes over C are, in general, not
reduced.

Example 1.3.25 The ind-affine group scheme H := H̄ [t] is not reduced
for H = C∗.

Consider the embedding

C∗ ↪→ SL2 , z �→
(
z 0
0 z−1

)
.

Then the set of C-points of H is given by{(
P(t) 0

0 Q(t)

)
: P(t),Q(t) ∈ C[t] and PQ = 1

}
� C∗.
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Since the set of C-points of H coincides with that of H red, we see that the
ind-variety

H red � C∗.

In particular, for any R ∈ Alg,

Mor(SpecR,H red) = C∗(R)

� set of invertible elements in R. (1)

On the other hand, by Lemma 1.3.2,

Mor(SpecR,H ) � Homalg(C[x,x−1],R[t])

� set of invertible elements in R[t]. (2)

If R has a nonzero nilpotent element a, then 1 − at ∈ R[t] is invertible.
Thus, by comparing (1) and (2), we get that

Mor(SpecR,H red) � Mor(SpecR,H ).

This shows that H is not reduced. Thus, the infinite Grassmannian X̄C∗ is
not reduced (cf. Proposition 1.3.18).

Remark 1.3.26 (a) Similar to the above example, one can see that for any
algebraic groupH with a surjective algebraic group homomorphismH → C∗,
H̄ [t] is not reduced.

(b) Any (not necessarily noetherian) affine group scheme G over a field
of characteristic 0 is reduced (extension of Cartier’s result to non-noetherian
group schemes). We refer to (Oort, 1966) in combination with (Waterhouse,
1979, §3.3)2 for a short proof.

In particular, for any affine algebraic group H , the affine group scheme
H̄ [[t]] (cf. Lemma 1.3.2) is reduced.

Thus, combining Theorem 1.3.23 with Lemma 1.3.16, we get that for any
connected semisimple groupG, the ind-affine group scheme Ḡ((t)) is reduced.

1.3.E Exercises

(1) Let R ∈ Alg. For any positive integer N , let
LRo = LRo (N) := R[[t]] ⊗C V be as in Definition 1.3.6, where
V = CN . Let LR be an R[[t]]-submodule of R((t))⊗C V satisfying

tnLRo ⊂ LR ⊂ t−nLRo , for some n ≥ 0.

2 We thank B. Conrad for providing this reference.
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1.3.E Exercises 51

Then show that LR is an R[[t]]-projective module if and only if
L̃R := LR/tnLRo is an R-module direct summand of the R-module
t−nLRo /tnLRo .

(2) Let R ∈ Alg and let LR be a projective R[[t]]-submodule of
R((t))⊗C V satisfying

tnLRo ⊂ LR ⊂ t−nLRo , for some n ≥ 0.

Then show that for any C-algebra homomorphism R → R′, the above
inclusions induce the inclusions

tnLR
′
o ⊂ LR

′ ⊂ t−nLR
′
o , where LR

′
:= R′[[t]] ⊗R[[t]] L

R .

Show further that if LR/tnLRo is a direct summand of t−nLRo /
tnLRo as R-modules, then

R′ ⊗R LR

tnLRo

∼−→ LR
′

tnLR
′
o

.

(3) Let X be a scheme and let f be an automorphism of X. Then show that
the fixed subscheme Xf (which is defined as the scheme-theoretic
inverse image of the diagonal under the morphism θf : X → X ×X,
x �→ (x,f (x))) represents the functor X f : Alg → Set defined by

X f (R) = X(R)fR,

where fR is the induced automorphism of X(R) := Mor(SpecR,X).
(4) Let S be a noetherian algebra over C and let P be a finitely generated

projective S[[t]]-module. Show that there exists an affine open cover
{Spec(Si)}i of the scheme Spec(S) such that Si[[t]] ⊗S[[t]] P is a free
Si[[t]]-module, for each i.

Hint (due to N. Mohan Kumar): Consider the projective S-module
Po := P/tP . Then show that P � P̂o, where P̂o := Po ⊗S S[[t]]. To
show this, using the projectivity of P and P̂o as S[[t]]-modules, get an
S[[t]]-module lift θ : P̂o → P of the S-module isomorphism
P̂o/tP̂o � P/tP . Prove that θ is an isomorphism by observing that a
finitely generated module over S[[t]] is complete with respect to t and is
zero if it is zero mod t .

(5) Show that the special lattice functor Q = QN as in Definition 1.3.6 is
the sheafification (cf. Lemma B.2) of the functor R � SLN(R((t)))/
SLN(R[[t]]).

Hint: Use the fact proved in Proposition 1.3.14 that for
g ∈ SLN(R((t))) and LR ∈ QN(R), gLR ∈ QN(R), i.e., gLR satisfies
properties (a) and (b) of Definition 1.3.6 for some n ≥ 0.
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52 An Introduction to Affine Lie Algebras

(6) Let f : X → Z and g : Y → Z be two morphisms of ind-schemes.
Then their fiber product X×

Z
Y represents the functor

R � X(R) ×
Z(R)

Y (R),

where

X(R) ×
Z(R)

Y (R) := {(x,y) ∈ X(R)× Y (R) : fR(x) = gR(y)}

and fR : X(R) → Z(R) is the map induced from f .
(7) Show that the functor hḠ[t−1]− as in the proof of Proposition 1.3.18 is an

open subfunctor of XG.
Moreover, show that XG(k) = X o

G(k) for any field k ⊃ C, where
the functors XG and X o

G are defined in Definition 1.3.5.
(8) Let R be a C-algebra generated (as a C-algebra) by countably many

elements. Then show that for any maximal ideal m of R, R/m � C (as
C-algebras).

In particular, any closed ind-subscheme of Ḡ((t)) (for any affine
algebraic group G) has nonempty set of C-points.

Hint: We can assume that R = C[x1,x2,x3, . . . ]. Now, R/m is a field
extension k of C. In particular, C being algebraically closed, k ⊃ C(x),
where C(x) is the quotient field of the polynomial ring C[x]. Show that
C(x) as a vector space over C is of uncountable dimension, whereas
clearly R and hence R/m is of countable dimension over C.

(9) Show that for any G as H in Remark 1.3.17, the canonical map
X̄G ↪→ X̄SLN (induced by an embedding G ↪→ SLN ) is a closed
embedding.

(10) For any integer n ≥ 1, consider the covariant group functor Fn from
Alg to Set defined by

Fn(R) = G

(
R[[t]]

〈tn〉
)
,

where G is an affine algebraic group. Then show that Fn is a
representable functor represented by an affine group scheme of finite

type over C (i.e., an affine algebraic group) Ḡ
(
C[[t]]
〈tn〉

)
with C-points

G
(
C[[t]]
〈tn〉

)
. Since it is a variety, we denote it by G

(
C[[t]]
〈tn〉

)
itself.

Hint: Follow the proof of Lemma 1.3.2.
(11) Let G be a connected reductive group and let P ⊂ G be a parabolic

subgroup. Define the (parahoric) closed subgroup scheme P ⊂ Ḡ((t))

by P := ev−1
0 (P ), under the evaluation map ev0 : Ḡ[[t]] → G at t = 0
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1.4 Central Extension of Loop Groups 53

equipped with the scheme-theoretic inverse image structure. Then P is
reduced (cf. Remark 1.3.26(b)). Moreover, by Exercise 6 and
Lemma 1.3.2, P represents the functor R � P̃(R), where P̃(R) :=
(evR0 )

−1(P (R)), under the evaluation map evR0 : G(R[[t]])→ G(R) at
t = 0.

Consider the functor

Alg → Set, R � G(R((t)))/P̃(R).

Show that its sheafification (cf. Lemma B.2) is a representable functor
represented by an ind-projective scheme denoted X̄G(P ) (with C-points
G((t))/P̃(C)). Moreover, show that this ind-scheme is, in fact, an
ind-variety if G is semisimple.

Show further that for any connected reductive group G,

Ḡ((t))→ X̄G(P )

is a locally trivial principal P-bundle and

X̄G(P ) → X̄G

is a locally trivial G/P -fibration, where the ind-scheme X̄G is as in
Proposition 1.3.18.

(12) Show that the Lie algebra Lie (SLN [t−1]) of the ind-affine group
scheme SLN [t−1] is isomorphic with the Lie algebra slN ⊗ C[t−1]
under the bracket [x ⊗ P,y ⊗Q] = [x,y] ⊗ PQ, for x,y ∈ slN and P ,
Q ∈ C[t−1].

Moreover, the evaluation homomorphism ε(α) : SLN [t−1] → SLN ,
induced from t �→ α for any α ∈ P1(C)\{0}, induces the Lie algebra
homomorphism (cf. Lemma B.19):

ε̇(α)1 : slN ⊗ C[t−1] → slN, x ⊗ P �→ P(α)x,

for x ∈ slN and P ∈ C[t−1].

(13) For any algebra R ∈ Alg, any maximal ideal of R[[t]] contains t R[[t]].

1.4 Central Extension of Loop Groups

Let g be a finite-dimensional simple Lie algebra over C and let G be the
connected, simply-connected complex algebraic group with Lie algebra g.
For λc ∈ D̂, let H (λc) be the integrable highest-weight ĝ-module with highest
weight λc (cf. Theorem 1.2.10). Recall the definition of C-space and C-group
functors from Definition B.1.
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54 An Introduction to Affine Lie Algebras

1.4.1

Consider the C-group functor LG(R) := G(R((t))), which is represented
by the ind-affine group scheme Ḡ((t)) (cf. Lemma 1.3.2). In particular, it
satisfies the property (E) (cf. Exercise B.E.4). Recall that PGLH (λc) is the
projective linear group functor (cf. Example B.4(2)) with the tangent space at 1
given by EndR(H (λc)R)/R · IdH (λc)R , where H (λc)R := H (λc) ⊗ R (cf.
Lemma B.13). By Lemma B.13, PGL satisfies the condition (E). Of course,
since G satisfies the condition (L) (cf. Exercise B.E.5), thinking of LG(R) as
R((t))-points of G,

T1(LG)R = g⊗ R((t)), for any R ∈ Alg.

Moreover, the Lie algebra bracket in T1(LG)R coincides with the standard Lie
algebra bracket in g⊗C R((t)), as can easily be seen from Definition B.17(c).
The functor LG satisfies the condition (L) finitely (cf. Definition B.15(b)).
Also, by Exercise B.E.6, PGLH (λc) satisfies the condition (L) finitely.

Definition 1.4.2 (Adjoint action of Ḡ((t))) Define the R-linear adjoint
action of the group functor LG(R) on the Lie-algebra functor ĝ(R) := g ⊗
R((t)) ⊕ R.C (where the R-linear bracket in ĝ(R) is defined by the same
formula as (4) of Definition 1.2.1) by

(AdCγ )(x[P ] ⊕ sC) = γ x[P ]γ−1 +
(
s + Res

t=0
〈γ−1dγ,x[P ]〉

)
C,

for γ ∈ LG(R), x ∈ g, P ∈ R((t)) and s ∈ R, where 〈,〉 is the R((t))-bilinear
extension of the normalized invariant form on g and taking an embedding
i : G ↪→ GLN we viewG(R((t))) as a subgroup of N ×N invertible matrices
over the ring R((t)). Observe that for the group functor GLN(R((t))), the
adjoint action (defined in Definition B.17) is given by

(Adγ ) ·M = γMγ−1, for γ ∈ GLN(R((t))) andM ∈ MN(R((t))).

From the functoriality of Ad (cf. (1) of Definition B.17), γ x[P ]γ−1 ∈ g ⊗
R((t)) (for γ ∈ LG(R) and x[P ] ∈ g ⊗ R((t))) and it does not depend upon
the choice of the embedding i. A similar remark applies to γ−1dγ . Here dγ
for γ = (γi,j ) ∈ MN(R((t))) denotes dγ := (dγi,j /dt).

It is easy to check that for any γ ∈ LG(R), AdCγ : ĝ(R) → ĝ(R) is an
R-linear Lie algebra homomorphism. Moreover,

AdC(γ1γ2) = AdC(γ1) ◦ AdC(γ2). (1)
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1.4 Central Extension of Loop Groups 55

Using Lemma B.18, one easily sees that for any finite-dimensional
C-algebra R and x ∈ g⊗ R((t)),

ȦdC(x)(y) = [x,y], for any y ∈ ĝ(R). (2)

It is easy to see that the representation H (λc) of ĝ extends R-linearly to a
representation ρ̄R in H (λc)R := H (λc)⊗

C

R of ĝ(R).

A proof of the following result due to Faltings can be found in Beauville and
Laszlo (1994, Lemma A.3) for G = SLn. The proof for general G is identical.

Proposition 1.4.3 With the notation as above, for any R ∈ Alg and
γ ∈ LG(R), locally over SpecR, there exists an R-linear automorphism ρ̂(γ )
of H (λc)R uniquely determined up to an invertible element of R satisfying

ρ̂(γ )ρ̄R(x)ρ̂(γ )
−1 = ρ̄R(AdC(γ ) · x), for any x ∈ ĝ(R), (1)

where the adjoint representation of LG(R) on ĝ(R) is defined in the previous
Definition 1.4.2.

As a corollary of the above Proposition 1.4.3, we get the following.

Theorem 1.4.4 With the notation and assumptions as at the beginning of
this section, there exists a homomorphism ρ : LG → PGLH (λc) of group
functors such that

ρ̇ = ρ̇(C) : T1(LG)C = g⊗ C((t))→ EndC(H (λc))/C · IdH (λc) (1)

coincides with the projective representation H (λc) of g⊗C((t)) (cf. Lemmas
B.13 and B.14).

By Exercise 1.4.E.1, in fact, ρ̇R : g⊗R((t))→ EndR(H (λc)R)/

R · IdH (λc)R coincides with the projective representation H (λc)R of
g⊗R((t)).
Proof Fix γ ∈ LG(R). As guaranteed by the existence of an R-linear
automorphism ρ̂(γ ) of H (λc)R locally in SpecR and its uniqueness up to
an invertible element of R, we get an fppf R-algebra Sγ (depending upon γ )
(cf. (Stacks, 2019, Tag 021N)) and a unique element (obtained by glueing
locally obtained ρ̂(γ )) ρ̄Sγ (γ ) ∈ PGLSγ (H (λc)Sγ ) := AutSγ (H (λc)Sγ )/S

∗
γ I ,

where S∗
γ denotes the set of invertible elements in Sγ . Consider the exact

sequence (cf. Definition B.1):

LG(R)
iSγ−→ LG(Sγ )⇒ LG

(
Sγ⊗

R
Sγ

)
.
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Since iSγ (γ ) goes to the same element in LG(Sγ⊗
R
Sγ ) under the above

two homomorphisms LG(Sγ )⇒ LG(Sγ⊗
R
Sγ ), we get that ρ̄Sγ (γ )∈

PGLSγ (H (λc)Sγ ) goes to the same element under the two maps

PGLSγ (H (λc)Sγ )⇒ PGLSγ⊗
R
Sγ

(
H (λc)Sγ⊗RSγ

)
.

Hence, ρ̄Sγ (γ )∈KR(Sγ ) for the functor PGLH (λc) (cf. proof of Lemma B.2
for the notation KR(Sγ )). Finally, define ρ(γ ) ∈ PGLH (λc)(R) as the image
of ρ̄Sγ (γ ) under the canonical map KR(Sγ ) → PGLH (λc)(R). From the
uniqueness of R-linear automorphisms ρ̂(γ ) locally in SpecR up to an
invertible element inR, we get that ρ(γ ) is well defined (i.e., it does not depend
upon the choice of Sγ ).

Again using the uniqueness of ρ̂(γ ) (up to invertible elements in R locally)
satisfying (1) of Proposition 1.4.3 and using (1) of Definition 1.4.2 and
Exercise 1.4.E.4, we get that ρ is a group homomorphism and, in fact, it is
a morphism from the group functor LG to the group functor PGLH (λc).

We now prove (1). Take x ∈ g((t)) and y ∈ ĝ. Then, by Proposition 1.4.3
applied to R = C(ε), we get

ρ̂(eεx)ρ̄R(y)ρ̂(e
−εx) = ρ̄R(AdC(eεx) · y), (2)

where for the notation eεx ∈ LG(R) see Definition B.15(a). By Lemma B.18
applied to the representation AdC of LG, and identity (2) of Definition 1.4.2,

ρ̄R(AdC(eεx)y) = ρ̄R(y + ε[x,y]). (3)

Similarly, fixing a lift of ρ̇(x) in EndC(H (λc)), for v ∈ H (λc), by
Lemma B.18,

ρ̂(eεx)ρ̄R(y)ρ̂(e
−εx)v

= ρ̂(eεx)ρ̄R(y) (v − ερ̇(x)v − ελxv) , for some λx ∈ C

= ρ̂(eεx) (ρ̄(y)v − ερ̄(y)ρ̇(x)v − ελxρ̄(y)v)
= ρ̄(y)v − ερ̄(y)ρ̇(x)v − ελxρ̄(y)v + ερ̇(x)ρ̄(y)v + ελxρ̄(y)v. (4)

Combining the equations (2)–(4), we get

ρ̄[x,y] = [ρ̇(x),ρ̄(y)] ,
i.e., [

ρ̄(x)− ρ̇(x),ρ̄(y)] = 0, for all x ∈ g((t)) and y ∈ ĝ.
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Thus, by Exercise 1.2.E.5,

ρ̄(x)− ρ̇(x) = μx IdH (λc) , for some μx ∈ C.

This proves the theorem. �

Definition 1.4.5 (Central extensions of loop groups) Following the notation
and assumptions at the beginning of this section, take any λc ∈ D̂. By Theorem
1.4.4, we have a homomorphism of group functors:

ρ : LG → PGLH (λc).

Also, there is a canonical homomorphism of group functors (cf. Example
B.4(2)):

π : GLH (λc) → PGLH (λc).

All these C-group functors LG, GLH (λc) and PGLH (λc) satisfy the
condition (L) finitely (cf. §1.4.1 for LG and Exercise B.E.6 for GL and PGL).
Thus, by Exercise B.E.7, we get the fiber product group functor Ĝλc satisfying
the condition (L) finitely:

Ĝλc := LG ×
PGLH (λc)

GLH (λc).

By the definition, we get homomorphisms of group functors

p : Ĝλc → LG and ρ̂ : Ĝλc → GLH (λc)

making the following diagram commutative:

Ĝλc

p

��

ρ̂ �� GLH (λc)

π

��
LG ρ

�� PGLH (λc) .

By Exercise B.E.7, the Lie algebra Lie Ĝλc (R) := T1(Ĝλc )R is identified
with the fiber product Lie algebra (cf. §1.4.1, Example B.12 and Lemma B.13)

Ĝλc (R) = g⊗ R((t)) ×
EndR(H (λc)R)/R. Id

EndR(H (λc)R),

for any finite-dimensional C-algebra R.

Lemma 1.4.6 The Lie algebra ĝλc := Lie Ĝλc (C) can canonically be
identified with the affine Lie algebra ĝ.
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58 An Introduction to Affine Lie Algebras

Proof Let ρ̄ : ĝ→ EndC(H (λc)) denote the representation. Define

ψ : ĝ→ ĝλc, x[P ] + zC �→ (x[P ],ρ̄(x[P ])+ zc Id),

for x ∈ g,P ∈ K and z ∈ C.

From the definition of the bracket in ĝ and Theorem 1.4.4,ψ is an isomorphism
of Lie algebras. �

Combining Theorem 1.4.4, Definition 1.4.5 and Lemma 1.4.6, we get the
following.

Corollary 1.4.7 For any λc ∈ D̂, we have a homomorphism of group
functors

ρ̂ : Ĝλc → GLH (λc)

such that its derivative for R = C

˙̂ρ : ĝλc → EndC(H (λc))

under the identification of Lemma 1.4.6 coincides with the Lie algebra
representation

ρ̄ : ĝ→ EndC(H (λc)).

Moreover, for any C-algebra R, γ̂ ∈ Ĝλc (R) and x ∈ ĝ(R),
ρ̂(γ̂ )ρ̄R(x)ρ̂(γ̂ )

−1 = ρ̄R(AdC(p(γ̂ ))x), as operators on H (λc)R . (1)

The following lemma is trivial to verify.

Lemma 1.4.8 Let V be a vector space over C and let v+ ∈ V be a nonzero
vector and V ′ ⊂ V a subspace such that V = Cv+ ⊕ V ′. Then the following
subgroup functors of GLV :

GL◦
V (R) = {T ∈ GLR(VR) : T v+ = v+} and

GL′
V (R) = {T ∈ GLR(VR) : T v+ − v+ ∈ V ′

R and T (V ′
R) ⊂ V ′

R

}
are C-group functors, i.e., they satisfy the sheaf condition for the fppf topology.

Moreover, the projection homomorphism π : GLV → PGLV is an isomor-
phism of group functors restricted to either of GL◦

V or GL′
V onto their images.

Lemma 1.4.9 Let Y be a connected variety (over C). Then any morphism
f : Y → C∗, which is null-homotopic in the topological category with the
analytic topology Y an on Y , is constant.
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1.4 Central Extension of Loop Groups 59

Observe that if the singular cohomology H 1(Y an,Z) = 0, then any
continuous map Y an → C∗ is null-homotopic since C∗ is a K(Z,1)-space
(cf. (Spanier, 1966, Chap. 8, §1, Theorem 8)).

Proof Assume, if possible, that there exists a null-homotopic nonconstant
morphism f : Y → C∗. Since f is a morphism, there exists No > 0 such that
the number of irreducible components of f−1(z) ≤ No, for any z ∈ C∗. Now
take the N -sheeted covering πN : C∗ → C∗, z �→ zN , for any N > No. Since
f is null-homotopic, there exists a lift as a morphism f̃ : Y → C∗ (cf. (Serre,
1958, Proposition 20)) making the following diagram commutative:

C∗

πN

��
Y

f̃

����������

f
�� C∗ .

Since f̃ is a morphism and nonconstant, by Chevalley’s Theorem (cf.
(Hartshorne, 1977, Chap. II, Exercise 3.19)) Im f̃ (being a constructible and
connected set) misses only finitely many points of C∗. In particular, there exists
zo ∈ C∗ (in fact, an open dense set of points) such that π−1

N (zo)⊂ Im f̃ . But
then the number of irreducible components of f−1(zo) = f̃−1π−1

N (zo) ≥
N >No, which is a contradiction to the choice of N . This proves the
lemma. �

1.4.10

Recall the homomorphism of group functors p : Ĝλc → LG (for any λc ∈ D̂)
from Definition 1.4.5. Since

GLH (λc)(R) → PGLH (λc)(R)

has kernel R∗ for any R ∈ Alg, we get an exact sequence of group functors
(i.e., for any R, the following sequence specialized at R is exact):

1 → Gm
i−→ Ĝλc

p−→ LG, (1)

where i is given by r �→ (1,r Id), for any r ∈ R∗. Of course, Gm is central in
Ĝλc (for any R ∈ Alg). By Exercise 1.4.E.2, Ĝλc (R) → LG(R) is surjective
for any field R ⊃ C. Combining Lemma 1.4.8 and Proposition 1.4.3, we get
the following.
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Theorem 1.4.11 Take any λc ∈ D̂. Then the homomorphism of group
functors p : Ĝλc → LG splits over the subgroup functors

L +
G (R) := G(R[[t]])e, L −

G (R) := G(R[t−1])− and G (R) := G(R);
where G(R[[t]])e and G(R[t−1])− are defined in Corollary 1.3.3 with
H = (e).

Thus, p also splits over the group functor F1 : R � G(R[[t]]) (cf. Lemma
1.3.2).

Similarly, p also splits over the group functor F3 : R � G(R[t−1]).

Proof We first prove the theorem for L +
G . Fix v+ ∈ H (λc) a highest-

weight vector (which is unique up to a scalar multiple). We claim that for any
γ ∈ L +

G (R),

ρ̂(γS)v+ ∈ S∗v+, (1)

for any fppf R-algebra S= Sγ such that ρ(γS) lifts to an element ρ̂(γS)
of AutS(H (λc)S), where γS is the image of γ in L +

G (S). By (1) of
Proposition 1.4.3,

ρ̄S(x)ρ̂(γS)v+ = ρ̂(γS)ρ̄S(AdC(γ
−1
S )x)v+,

for any x ∈ ûS := g⊗ tS[[t]] ⊕ (S ⊗ u), (2)

where u is the nil-radical of b. But, by definition,

AdC(γ
−1
S )(ûS) ⊂ ûS . (3)

Moreover,

ρ̄S(ûS) · v+ = 0, since v+ is a highest-weight vector. (4)

Thus, combining (2)–(4), we get

ρ̄S(x)(ρ̂(γS)v+) = 0, for all x ∈ ûS . (5)

By Exercise 1.4.E.4, we get that

ρ̂(γS)v+ ∈ Sv+, and hence ρ̂(γS)v+ ∈ S∗ · v+
(ρ̂(γS) being represented by an invertible S-linear map). This proves (1).

Thus, by Exercise B.E.9,

ρ
(
L +
G (R)

) ⊂ π
(

GL0
H (λc)

(R)
)
,
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where π is the canonical morphism GLH (λc) → PGLH (λc). Therefore, by
Lemma 1.4.8, we get the splitting of p over the subgroup functor L +

G .
We next come to the case of L −

G . We claim that for any γ ∈ L −
G (R),

[ρ̂(γS)v+]+ ⊂ S∗, (6)

for any fppf R-algebra S = Sγ such that ρ(γS) lifts to an element ρ̂(γS) of
AutS(H (λc)S), where [ρ̂(γS)v+]+ is the coefficient of v+ in the component
of ρ̂(γS)v+ under the decomposition

H (λc)⊗ S = Sv+ ⊕ (H ′(λc)⊗ S),

where H ′(λc) is the sum of weight spaces of H (λc) of weights < λc.
Applying (1) of Proposition 1.4.3 to ρ̂(γS)v+, we get

ρ̂(γS) (ρ̄S(x1) . . . ρ̄S(xn)v+) = ρ̄S(AdC(γS)x1) . . . ρ̄S(AdC(γS)xn)ρ̂(γS)v+,
(7)

for any xi ∈ û−S := (g⊗ t−1S[t−1])⊕ (S ⊗ u−), where u− is the nil-radical of
the opposite Borel b−. From the definition of AdC ,

AdC(γS) ·
(
û
−
S

) ⊂ û−S .

Thus, from (7) we get (since û−
C

· H (λc) ⊂ H ′(λc))

ρ̂(γS) (ρ̄S(x1) . . . ρ̄S(xn)v+) ∈ H ′(λc)⊗ S, for any n ≥ 1. (8)

But, since H (λc) is an irreducible ĝ-module and ûS annihilates v+, the span
of ρ̄S(x1) . . . ρ̄S(xn)v+, as xi run over û−S , is equal to H ′(λc)⊗ S. Thus, from
(8), we get

ρ̂(γS)(H
′(λc)⊗ S) ⊂ H ′(λc)⊗ S. (9)

From this we immediately obtain (6) by applying ρ̂(γ−1
S ) to (9). Thus, by (6)

and (9), and Exercise B.E.9,

ρ
(
L −
G (R)

) ⊂ π
(

GL′
H (λc)

(R)
)
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under the decomposition H (λc) = Cv+ ⊕ H ′(λc). Again applying Lemma
1.4.8, we get the splitting of p over the subgroup functor L −

G .
Since the action of g on H (λc) decomposes as a direct sum of finite-

dimensional g-submodules Vi :

H (λc) =
⊕
i

Vi

andG is simply connected, the action of g on any Vi integrates to give an action
of G on Vi . This gives a representation of G in GLC(H (λc)). From this we
get a homomorphism of group functors

G → GLH (λc),

which provides a splitting of p over G .
We finally prove that p splits over the subgroup functor F1(R) :=G(R[[t]])

(cf. Lemma 1.3.2) of LG.
First of all, from the definition of L +

G (R) as the kernel of

εR(0) : G(R[[t]])→ G(R), t �→ 0 (cf. Corollary 1.3.3),

and the splitting of εR(0) obtained from the embedding G(R) ↪→ G(R[[t]]),
induced from the embedding R ↪→ R[[t]], we see that there is a semidirect
product decomposition of the group functor

F1 = L +
G � G . (10)

Take splittings σ+ and σ0 of p over L +
G and G , respectively. Now define (for

anyR ∈ Alg and g ∈ F1(R) uniquely written as g = g+g0, with g+ ∈ L +
G (R)

and g0 ∈ G (R))

σ(g) = σ+(g+) · σ0(g0). (11)

It is clear that σ is a C-space functor section of p. We now prove that σ , in
fact, is a homomorphism of group functors. To prove this, since G normalizes
L +
G , it suffices to show

σ+(g0g+g−1
0 ) = σ0(g0)σ+(g+)σ0(g0)

−1, for g0 ∈ G (R) and g+ ∈ L +
G (R).

(12)

Consider the morphism of C-space functors

ψ : G × L +
G → Ĝλc, (g0,g+) �→ σ+(g0g+g−1

0 )σ0(g0)σ+(g+)−1σ0(g0)
−1.
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Its image clearly lands in Gm under the sequence (1) of §1.4.10. Thus, the
morphism ψ gives rise to a morphism of C-space functors:

ψ̄ : G × L̄ +
G → Gm such that ψ̄(1,g+) = 1, for any g+ ∈ L̄ +

G .

Since L +
G is a representable functor (cf. Corollary 1.3.3) represented by a

scheme denoted L̄+
G with C-points L+

G (the kernel of G[[t]] → G, t �→ 0), ψ̄
is induced from a morphism of schemes:

ψ̄o : G× L̄+
G → Gm, such that ψ̄o(1,g+) = 1, for any g+ ∈ L̄+

G.

But any morphism f : G→ Gm is a constant (cf. Lemma 1.4.9). Thus, ψ̄o ≡ 1
and hence so is ψ . This proves (12) and hence we obtain a splitting of p
over F1.

The proof for F3 is identical to that of F1. This proves the theorem. �

Proposition 1.4.12 For λc ∈ D̂, the group functor Ĝλc is represented by a

reduced ind-affine group scheme denoted ¯̂
Gλc (with C-points Ĝλc = Ĝλc (C)).

This gives rise to an exact sequence of ind-group schemes:

1 → Gm → ¯̂
Gλc

p̄−→ Ḡ((t))→ 1. (1)

Moreover, p̄ admits a regular section over N := Ḡ[t−1]− × Ḡ[[t]] (cf. Lemma
1.3.16).

Thus, ¯̂
Gλc → Ḡ((t)) is a Zariski locally trivial principal Gm-bundle.

Proof We first show that the group functor Ĝλc is represented by an ind-
scheme. Consider the open cover of Ḡ((t)):

Ḡ((t)) =
⋃

g∈G((t))
gN . (2)

Then, the subfunctors {hgN }g∈G((t)) are an open covering of hḠ((t))
(cf. Definition B.5). To prove the above equality, observe that

Ḡ((t))(C) = G((t)) = ∪g∈G((t)) gN(C).
(Now, use the fact that any closed ind-subscheme of Ḡ((t)) has nonempty
set of C-points as observed in Exercise 1.3.E.8.) Thus, by Exercise B.E.8,
{p−1hgN }g∈G((t)) is an open cover consisting of subfunctors of Ĝλc . (Observe
that p−1hgN indeed satisfies the sheaf condition by using condition (1) of
Exercise B.E.8 and using the fact that SpecR′ → SpecR is surjective for any
faithfully flat homomorphism R → R′, cf. (Matsumura, 1989, Theorem 7.3).)
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Recall from Theorem 1.4.11 that the homomorphism of group functors
p : Ĝλc → LG admits splittings over the subgroup functors G(R[[t]]) and
G(R[t−1])−. Combining them we get a morphism s from the C-space functor
N(R) = G(R[[t]])×G(R[t−1])− to Ĝλc such that p ◦ s = Id, i.e., a functorial
section s of p over N(R). For any g ∈ G((t)), choosing ĝ ∈ Ĝλc over g
(which is possible by the surjectivity of Ĝλc → G((t)), cf. §1.4.10), we get
a functorial section ĝs of p over hgN . This gives rise to an isomorphism of
C-space functors

f : hgN × Gm � p−1(hgN)

given by (for any R ∈ Alg)

hgN(R)× R∗ ∼−→
(
p−1hgN

)
(R), (θ,r) �→ ĝs(θ) · r,

for θ ∈ hgN(R) and r ∈ R∗, (3)

making the following diagram commutative:

hgN(R)× R∗

π1
		��

���
���

���
∼ �� (p−1hgN)(R)

p


���

���
���

��

hgN(R).

In particular, this implies that the open subfunctor p−1hgN of Ĝλc (for any
g ∈ G((t))) over hgN is represented by the ind-scheme gN × Gm → gN . We
now show that Ĝλc is a representable functor with C-points Ĝλc .

Since {p−1hgN }g∈G((t)) is an open cover consisting of subfunctors of Ĝλc
and p−1hgN is represented by the ind-scheme gN × Gm (by the isomorphism
(3)), we get that the functor Ĝλc is represented by an ind-scheme denoted
¯̂
Gλc (cf. the proof of Proposition 1.3.18(a) using (Eisenbud and Harris, 2000,
Theorem VI-14 and Exercise VI-11); since a Zariski cover is an fppf cover by

Stacks (2019, Tag 021N)). Since Ĝλc is a group functor, we get that ¯̂
Gλc is an

ind-group scheme giving rise to the exact sequence (1) of ind-group schemes.

Moreover, the morphism p̄ : ¯̂
Gλc → Ḡ((t)) admits regular sections over gN

(by (3)) for any g ∈ G((t)).
We now show that ¯̂

Gλc is a reduced ind-affine group scheme. Let
{(Ḡ((t)))n}n≥0 be an increasing filtration of Ḡ((t)) by reduced closed affine
subschemes (cf. Remark 1.3.26(b) and Lemma 1.3.21), giving an ind-affine
group scheme structure. Then, under the inverse image ind-scheme structure,

(
¯̃
Gλc)

n := p̄−1 ((Ḡ((t)))n)
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is a closed subset of ¯̂
Gλc acquiring a reduced scheme structure by virtue of

the isomorphism (3). Moreover, ( ¯̃
Gλc)

n ↪→ (
¯̃
Gλc)

n+1 is a closed embedding
since closed embedding is preserved under base change (cf. (Hartshorne, 1977,

Chap. II, Exercise 3.11(a))). Thus, ¯̂
Gλc is a reduced ind group scheme.

Since a (Zariski locally trivial) principal Gm-bundle over an affine scheme
is affine (being an affine morphism), from the affineness of (Ḡ((t)))n and (2),

we get that ¯̂
Gλc is ind-affine. This completes the proof of the proposition. �

Remark 1.4.13 As proved later (cf. Corollary 8.2.3), the (group) split-

tings of p̄ : ¯̂
Gλc → Ḡ((t)) over either of Ḡ[[t]] or Ḡ[t−1]− are unique (cf.

Theorem 1.4.11).
Moreover, for any two regular sections s1,s2 of p̄ over N = Ḡ[t−1]− ×

Ḡ[[t]] (cf. Proposition 1.4.12 and Corollary 8.2.3),

s1 = s2z, for a fixed z ∈ Gm.

1.4.E Exercises

(1) With the notation as in Theorem 1.4.4, show that

ρ̇R : g⊗ R((t))→ EndR(H (λc)R)/R. IdH (λc)R

coincides with the projective representation of g⊗R((t)) in H (λc)R , for
any R ∈ Alg.

(2) For any C-algebra R which is a field, show that GLV (R) → PGLV (R) is
surjective for any (not necessarily finite dimensional) C-vector space V .

Hint: Let R be any noetherian C-algebra. Let S be an fppf R-algebra. In
particular, S is a noetherian C-algebra. By Stacks (2019, Tag 0311), there
is an embedding of rings

S ↪→ �Ni=1 Spi ,

where p1, . . . ,pN are the associated prime ideals of S.
(a) Show that for any injective C-algebra homomorphism T ↪→ T ′,

PGLV (T ) ⊂ PGLV (T
′), where PGLV (T ) := GLT (VT )/T

∗ · Id.

Moreover, if R ⊂ T ↪→ T ′ and KR(T ′) = PGLV (R) for the functor
PGLV (cf. proof of Lemma B.2 for the notation KR(T )), show that
KR(T ) = PGLV (R).

(b) Let R ⊂ T , where T is a local ring such that R is an R-module
direct summand of T and T is R-flat. Show that KR(T ) = PGLV (R).
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(c) Let R ⊂ T1 and R ⊂ T2 be two C-algebras such that T2 is flat
over R. Assume further that

KR(T1) = KR(T2) = PGLV (R).

Show that KR(T1 × T2) = PGLV (R). Combining (a)–(c), the exercise
follows.

(3) Show that, for any λc ∈ D̂, there is an isomorphism of ind-group schemes

¯̂
Gλc

ψ−→ ¯̂
G0c

making the following diagram commutative:

¯̂
Gλc

p̄ ���
��

��
��

�
ψ �� ¯̂

G0C

p̄��		
		
		
		
	

Ḡ((t)).

Hint: To prove this, show first that the Gm-bundles ¯̂
Gλc and ¯̂

G0C are
isomorphic. Then show that a Gm-bundle isomorphism which takes 1 to 1
over 1 ∈ Ḡ((t)) is automatically a group homomorphism.

(4) For any λc ∈ D̂ and any C-algebra R, show that Rv+ ⊂ H (λc)R is the
unique line annihilated by û(R) := (g⊗ tR[[t]])⊕ (R ⊗ u), where u is
the nil-radical of b.

Hence, show that any ĝ(R)-module endomorphism of H (λc)R is the
identity map up to a scalar multiple.

Hint: Use Exercise 1.2.E.5.

1.C Comments

The content of Section 1.2 is fairly standard (cf. (Kac, 1990, Chaps. 7 and 12
and Lemma 9.10) and (Kumar, 2002, Chaps. 1 and 13)).

The content of Section 1.3 is also fairly standard by now. Lemma 1.3.2,
Theorem 1.3.8, Corollary 1.3.15 for G = SLn , GLN ; Corollary 1.3.19 for
G = SLN ; and Lemma 1.3.21 are proved in Beauville and Laszlo (1994).
The proof of Theorem 1.3.8 is an elaboration of Beauville and Laszlo (1994,
Proof of Proposition 2.4) (with some help from P. Belkale). The approach
we have taken in this section is largely derived from Faltings (2003) (though
we have supplied here significantly more details). For example, Proposition
1.3.14, Corollary 1.3.15 and Lemma 1.3.16 are taken from Faltings (2003, §2).
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1.C Comments 67

As mentioned before, the detailed proof of Theorem 1.3.22 given here was
provided by B. Conrad (and a brief outline was given earlier by G. Faltings
in a private communication). Theorem 1.3.23 and Proposition 1.3.24 are given
in Laszlo and Sorger (1997, Propositions 4.6 and 4.7). However, the proof
of Theorem 1.3.23 outlined in Laszlo and Sorger (1997, Proposition 4.6)
is incorrect (since it wrongly uses an incorrect theorm of Shafarevich). For
a different representation-theoretic approach to many of the results in this
Section 1.3 and the next, see Kumar (2002, Chap. 13.2).

Lemma 1.4.9 is taken from Kumar, Narasimhan and Ramanathan (1994,
Lemma 2.5). Theorem 1.4.11 is taken from Laszlo and Sorger (1997). There
is an alternative construction of the central extension of SLN((t)) via the
Fredholm group in Beauville and Laszlo (1994, §4) (also see Kumar (2002,
Theorem 13.2.8)).
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