
8

Microlocal Aspects, Surjectivity of I ∗
0

This chapter provides the key microlocal input of the monograph. We will
prove that on a simple manifold M the normal operator I ∗

0 I0 is an elliptic
pseudodifferential operator of order −1 in the interior of M , thus establishing
an analogue of Theorem 1.3.16 for the Radon transform in the plane. Combin-
ing this result with the injectivity of I0, we will prove a surjectivity result for
the adjoint I ∗

0 . This surjectivity result may be rephrased as an existence result
for first integrals of the geodesic flow with prescribed zero Fourier modes, and
it will play a prominent role in subsequent chapters. At the end of this chapter
we shall extend these properties to include matrix weights and attenuations.

8.1 The Normal Operator

Let (M,g) be a compact non-trapping manifold with strictly convex boundary,
and let I0 be the geodesic X-ray transform acting on C∞(M). By (4.1), I0 is
a bounded operator L2(M) → L2

μ(∂+SM), and Lemma 4.1.4 states that the
adjoint of this operator is given by

(I∗
0 h)(x) =

∫
SxM

h�(x,v) dSx(v).

We will consider the normal operator

N := I ∗
0 I0 : L2(M) → L2(M).

The following result is an analogue of the fact proved in Theorem 1.3.16
that the normal operator of the Radon transform in the plane is an elliptic
pseudodifferential operator (�DO) of order −1. For our geometric setting
this can be traced back to Guillemin and Sternberg (1977, section 6.3) and
Stefanov and Uhlmann (2004). The references Guillemin and Sternberg (1977)
and Guillemin (1985) state the property under the so-called Bolker condition,
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which is seen to be equivalent in our case to the absence of conjugate points.
The references Stefanov and Uhlmann (2004) and Pestov and Uhlmann (2005,
Lemma 3.1) provide a more recent version of this result fitting with our
presentational aims.

Theorem 8.1.1 (The normal operator is elliptic) Let (M,g) be a simple
manifold. Then N = I ∗

0 I0 is a classical elliptic �DO on M int of order −1
with principal symbol

σpr(N ) = cn|ξ |−1
g .

We discussed �DOs in R
n in Section 1.3. �DOs on manifolds can be

defined in terms of local coordinates. See Hörmander (1983–1985, Section
18.1) for the following facts.

Definition 8.1.2 (�DOs on manifolds) Let Z be a smooth manifold without
boundary and let A : C∞

c (Z) → C∞(Z) be a linear operator. We say that A

is a �DO of order m, written A ∈ �m(Z), if for any local coordinate chart
κ : U → Ũ , where U ⊂ Z and Ũ ⊂ R

n are open sets, the operator

Aκ : S (Rn) → S (Rn), Aκf = (ψA(φ(f ◦ κ))) ◦ κ−1

is in �m(Rn) whenever φ,ψ ∈ C∞
c (U). We say that A is a classical �DO,

denoted by A ∈ �m
cl (Z), if each Aκ is in �m

cl (R
n).

We also need the notion of ellipticity. For the case of �m(Rn) we gave a
definition involving the full symbol. On manifolds we need to deal with the fact
that the full symbol is not invariant under changes of coordinates. However, for
classical �DOs the principal symbol can be invariantly defined as a smooth
function on T ∗Z that is homogeneous in ξ .

Proposition 8.1.3 (Principal symbol) For any m ∈ R, there is a linear map

σpr : �m
cl (Z) → C∞(T ∗Z \ {0})

such that σpr(A) is homogeneous of degree m in ξ and σpr(A) = 0 if and
only if A ∈ �m−1

cl (Z). Moreover, if A ∈ �m
cl (Z) and B ∈ �m′

cl (Z), then

AB ∈ �m+m′
cl (Z) and

σpr(AB) = σpr(A)σpr(B).

Definition 8.1.4 (Ellipticity) An operator A ∈ �m
cl (Z) is elliptic if its principal

symbol σpr(A) is non-vanishing on T ∗Z \ {0}.
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8.1 The Normal Operator 191

To motivate the proof of Theorem 8.1.1, note that from the Schwartz kernel
theorem we know that the bounded operator N : L2(M) → L2(M) must have
a Schwartz kernel K(x,y) so that

(Nf )(x) =
∫
M

K(x,y)f (y) dV n(y). (8.1)

For general operators K could be very singular, in general it is just a
distribution on M int × M int, but �DOs are characterized by having kernels
of a very special type, namely K is what is called a conormal distribution with
respect to the diagonal of M int × M int. This means that it is smooth off the
diagonal and at the diagonal, it has a singularity of a special type. We refer to
Hörmander (1983–1985, Section 18.2) for further details.

Our first task is then to find out what the Schwartz kernel K of N looks like.
We begin by deriving an integral expression for N .

Lemma 8.1.5 (First expression for N ) Let (M,g) be a compact non-trapping
manifold with strictly convex boundary. Then

(Nf )(x) = 2
∫
SxM

∫ τ(x,v)

0
f
(
γx,v(t)

)
dt dSx(v). (8.2)

Proof From the definitions we have∫
SxM

(I0f )�(x,v) dSx(v) =
∫
SxM

∫ τ(x,v)

−τ(x,−v)

f (γx,v(t)) dt dSx(v).

Thus

(Nf )(x) =
∫
SxM

∫ τ(x,v)

0
f (γx,v(t)) dt dSx(v)

+
∫
SxM

∫ 0

−τ(x,−v)

f (γx,v(t)) dt dSx(v).

The result follows after performing the change of variables (t,v) 
→ (−t, − v)

in the second integral.

The next example determines the Schwartz kernel K when M is a Euclidean
domain.

Example 8.1.6 (N in the Euclidean case) Let M = �, where � ⊂ R
n is a

bounded domain with strictly convex smooth boundary, and let g = e be the
Euclidean metric. Extend f by zero to R

n. Then the formula (8.2) becomes
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(Nf )(x) = 2
∫ ∞

0

∫
Sn−1

f (x + tv) dS(v) dt .

Let x be fixed. It is natural to change to polar coordinates, i.e. consider
y = x + tv, where t ≥ 0 and v ∈ Sn−1. This requires that we introduce the
Jacobian tn−1 as follows:

(Nf )(x) = 2
∫ ∞

0

∫
Sn−1

f (x + tv)

tn−1
tn−1 dS(v) dt = 2

∫
Rn

f (y)

|x − y|n−1
dy.

We have proved that the Schwartz kernel of N has the simple form

K(x,y) = 2

|x − y|n−1
.

We would like to determine K(x,y) in a similar way for more general man-
ifolds (M,g). First we show that one can always change to polar coordinates
in TxM . Recall from Proposition 3.7.10 the notation

Dx = {tv ∈ TxM : v ∈ SxM, t ∈ [0,τ (x,v)]}.
Also recall that TxM has metric g|x whose volume form is denoted by dTx .

Lemma 8.1.7 (Second expression for N ) Let (M,g) be a compact non-
trapping manifold with strictly convex boundary. Then

(Nf )(x) = 2
∫
Dx

f (expx(w))

|w|n−1
g

dTx(w). (8.3)

The proof uses the following basic result.

Lemma 8.1.8 (Change of variables) Let (M,g) and (N,h) be oriented
Riemannian manifolds and let � : M → N be a diffeomorphism. Then∫

N

f dVh =
∫
M

(f ◦ �)|det d�| dVg,

where

det d�|p := det(〈fj,d�|pek〉h),
where (ek) and (fj ) are positively oriented orthonormal bases of TpM and
T�(p)N , respectively (the definition of det d� is independent of the choice of
such bases).

Exercise 8.1.9 Prove Lemma 8.1.8.

Proof of Lemma 8.1.7 Fix x ∈ M int. We will change variables in (8.2) from
(t,v) ∈ D̃x := (0,τ (x,v)] × SxM to w = tv ∈ TxM . In fact, define

q : D̃x → Dx \ {0}, q(t,v) = tv.
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8.1 The Normal Operator 193

Then q is a diffeomorphism. Noting that the manifold D̃x carries the metric
dt2 + gx and volume form dt ∧ dSx , we can write (8.2) as

(Nf )(x) = 2
∫
D̃x

f (expx(q(t,v))) dt ∧ dSx .

We wish to use Lemma 8.1.8, which involves the Jacobian det dq|(t,v). For
v ∈ SxM let {e1 = v,e2, . . . ,en} be a positive orthonormal basis of TxM .
Then {∂t,e2, . . . ,en} is a positive orthonormal basis of T(t,v)D̃x . Moreover,
{e1,e2, . . . ,en} is a positive orthonormal basis of TtvDx ≈ TxM with metric
gx and volume form dTx . Now dq|(t,v)(∂t ) = v = e1 and dq|(t,v)(ej ) = tej

for 2 ≤ j ≤ n. This shows that

det dq|(t,v) = tn−1.

We can now change variables using Lemma 8.1.8:

(Nf )(x) = 2
∫
D̃x

f (expx(q(t,v)))

tn−1
tn−1 dt ∧ dSx

= 2
∫
Dx

f (expx(w))

|w|n−1
g

dTx(w).

Finally, to determine the Schwartz kernel of N we would like to make
another change of coordinates y = expx(w) in (8.3). This boils down to the
property that the exponential map

expx : Dx → M

should be a diffeomorphism onto M for any fixed x ∈ M . By Proposition 3.8.5
this is always true when (M,g) is a simple manifold.

Lemma 8.1.10 (Schwartz kernel of N ) Let (M,g) be a simple manifold. Then

(Nf )(x) =
∫
M

2a(x,y)

dg(x,y)n−1
f (y) dV n(y),

where the function

a(x,y) := 1

det(d expx |exp−1
x (y)

)

is smooth and positive in M × M and satisfies a(x,x) = 1.

Proof Since expx : Dx → M is a diffeomorphism when (M,g) is simple by
Proposition 3.8.5, we can change variables y = expx(w) in (8.3) using Lemma
8.1.8. Since |w|g = dg(x,y), we obtain the formula

(Nf )(x) =
∫
M

2a(x,y)

dg(x,y)n−1
f (y) dV n(y),
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where a(x,y) has the given expression. Now expx is an orientation preserving
diffeomorphism, so det d expx |w is a smooth positive function of w ∈ Dx and
it also depends smoothly on x ∈ M . Since d expx |0 = id, we obtain that
a(x,x) = 1.

Remark 8.1.11 The function a(x,y) in Lemma 8.1.10 can be studied further
by using the fact that d expx can be expressed in terms of Jacobi fields. In fact,
let (e1 = v,e2, . . . ,en) be a positive orthonormal basis of TxM . Proposition
3.7.10 implies that

d expx |tv(e1) = γ̇x,v(t),

d expx |tv(tek) = Jk(t) for 2 ≤ k ≤ n,

where Jk(t) is the Jacobi field along γx,v with initial conditions Jk(0) = 0
and DtJk(0) = ek . Note that {e1(t) = γ̇x,v(t),e2(t), . . . ,en(t)} is a positive
orthonormal basis of Texpx(tv)

M if we let ej (t) be the parallel transport of ej

along γx,v . Thus we obtain from Lemma 8.1.8 that

tn−1 det d expx |tv = det(〈ej (t),Jk(t)〉)nj,k=2 =: Ax(v,t).

The last expression is an ubiquitous quantity in Riemannian geometry as it
dictates how to compute the volume of balls in M of radius r by integrating
over SxM × [0,r]. Note that since M is simple, expx is an orientation-
preserving diffeomorphism and therefore Ax > 0 for all (t,v) ∈ D̃x .

We have now proved that on simple manifolds, the Schwartz kernel of the
normal operator N has a singularity at the diagonal that behaves like 1

dg(x,y)n−1 .

At this point we shall need the following lemma:

Lemma 8.1.12 In local coordinates, there are smooth functions Gjk(x,y)

such that Gjk(x,x) = gjk(x) and

[dg(x,y)]
2 = Gjk(x,y)(x − y)j (x − y)k .

Exercise 8.1.13 Prove the lemma. Hint: do a Taylor expansion at x of the
function f (y) = |exp−1

x (y)|2g .

To show that we have a �DO, by Definition 8.1.2 we need to localize
matters by considering two cut-off functions ψ(x) and φ(y) supported in a
chart of M int (since M is simple, M int is in fact diffeomorphic to a ball, so one
chart will do). Working in local coordinates, if we let

K̃(x,y) := ψ(x)K(x,y)
√

det g(y)φ(y),

we need to show that the operator whose Schwartz kernel is K̃ is a �DO in
R

n. (Recall that in local coordinates dV n = √
det g(y) dy.)
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By Lemmas 8.1.10 and 8.1.12, one has

K̃(x,y) := ψ(x)
2a(x,y)

(Gjk(x,y)(x − y)j (x − y)k)
n−1

2

√
det g(y)φ(y).

Since a(x,y) and Gjk(x,y) are smooth and φ and ψ have compact support,
the kernel k(x,z) := K̃(x,x − z) satisfies estimates of the form∣∣∣∂α

x ∂
β
z k(x,z)

∣∣∣ ≤ Cαβ |z|−n+1−|β|.

By the next result (see Stein (1993, VI.4 and VI.7.4)) this implies that the
operator with Schwartz kernel K̃ is a �DO of order −1.

Proposition 8.1.14 (Schwartz kernel of a �DO in R
n) Let m < 0. If k ∈

C∞(Rn × (Rn \ {0})) satisfies∣∣∣∂α
x ∂

β
z k(x,z)

∣∣∣ ≤ CαβN |z|−n−m−|β|−N, (8.4)

whenever n + m + |β| + N > 0, then the operator A defined by

Af (x) =
∫
Rn

k(x,x − y)f (y) dy

belongs to �m(Rn) and its full symbol a ∈ Sm(Rn) is given by

a(x,ξ) =
∫
Rn

e−iz·ξ k(x,z) dz.

Conversely, if A ∈ �m(Rn) and if K(x,y) is the Schwartz kernel of A, then
k(x,z) := K(x,x − z) satisfies (8.4).

We have now proved that N ∈ �−1(M int). The last part of the proof consists
in proving ellipticity, which requires that we compute the principal symbol of
N . We first show that N ∈ �−1

cl (M int). It is enough to compute a correspond-
ing expansion in local coordinates. Write

K̃(x,y) = |x − y|−(n−1)h̃

(
x,|x − y|, x − y

|x − y|
)
,

where

h̃(x,r,ω) = ψ(x)
2a(x,x − rω)

√
det g(x − rω)

(Gjk(x,x − rω)ωjωk)
n−1

2

φ(x − rω).

Then h̃ is smooth in R
n × [0,∞)× Sn−1 (this uses the support properties of φ

and ψ). Taylor expanding h̃ at r = 0 leads to the formula

K̃(x,y) =
N∑

j=0

K̃−1−j (x,y) + RN(x,y),
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where

K̃−1−j (x,y) = |x − y|−n+j+1
∂
j
r h

(
x,0, x−y

|x−y|
)

j !
.

By Proposition 8.1.14, K̃−1−j is the Schwartz kernel of some �DO with
symbol ã−1−j ∈ S−1−j (Rn) and RN corresponds to a symbol in S−N−2(Rn).
This shows that N is a classical �DO, and its principal symbol in local
coordinates (computed in the set where φ = ψ = 1) is

ã−1(x,ξ) =
∫
Rn

e−iz·ξ K̃−1(x,x − z) dz

=
∫
Rn

e−iz·ξ 2
√

det g(x)

(gjk(x)zj zk)
n−1

2

dz

=
∫
Rn

e−iz·g(x)−1/2ξ 2

|z|n−1
dz

= cn|ξ |−1
g .

Here we used the change of variables z 
→ g(x)−1/2z and the fact that the
Fourier transform of z 
→ 2|z|1−n is cn|ξ |−1. Thus the principal symbol of N
is cn|ξ |−1

g and N is elliptic. This concludes the proof of Theorem 8.1.1.

8.2 Surjectivity of I ∗
0

Let (M,g) be a compact simple manifold. In this section we prove a funda-
mental surjectivity result for I ∗

0 that underpins the successful solution of many
geometric inverse problems in two dimensions. Recall from Theorem 5.1.1 the
space

C∞
α (∂+SM) = {h ∈ C∞(∂+SM) : h� ∈ C∞(SM)}.

Recall the notation #0 in Exercise 4.1.5. Since

(I ∗
0 h)(x) =

∫
SxM

h�(x,v) dSx(v) = (#∗
0h

�)(x),

we see that I ∗
0 maps C∞

α (∂+SM) to C∞(M).

Theorem 8.2.1 Let (M,g) be a simple manifold. Then the operator

I ∗
0 : C∞

α (∂+SM) → C∞(M)

is surjective.
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We can reformulate the result in another very useful form. Recall from
Lemma 6.1.3 that #∗

0w = σn−1w0, where w0 is the zeroth Fourier mode of
w ∈ C∞(SM), and σn−1 is the volume of the (n − 1)-sphere.

Theorem 8.2.2 (Invariant functions with prescribed zeroth Fourier mode) Let
(M,g) be a manifold with I ∗

0 surjective. Given any f ∈ C∞(M), there is
w ∈ C∞(SM) so that

Xw = 0 in SM, #∗
0w = f .

Proof Given f ∈ C∞(M), use surjectivity of I ∗
0 to find h ∈ C∞

α (∂+SM) with
I ∗

0 h = f . Writing w = h�, we have w ∈ C∞(SM) since h ∈ C∞
α (∂+SM).

Clearly Xw = 0, and #∗
0w = #∗

0h
� = I ∗

0 h = f .

The proof of Theorem 8.2.1 is based on the following two facts:

• I0 is injective.
• I ∗

0 I0 is an elliptic �DO.

Here I0 is a linear operator between infinite-dimensional spaces, and in general
surjectivity of the adjoint I ∗

0 would follow from injectivity of I0 combined with
a suitable closed range condition for I0. The ellipticity of the normal operator
ensures the closed range condition. In the argument below it is convenient to
extend I ∗

0 I0 to an elliptic operator P in a closed manifold and use the fact that
P has closed range.

As usual, we consider (M,g) isometrically embedded into a closed manifold
(N,g). Since M is simple, by Proposition 3.8.7 there is an open neighbour-
hood U1 of M in N such that its closure M1 := U1 is a compact simple
manifold. Let I0,1 denote the geodesic ray transform associated to (M1,g) and
let N1 = I ∗

0,1I0,1.
As in Pestov and Uhlmann (2005) we may cover (N,g) with finitely many

simple open sets Uk with M ⊂ U1, M ∩ Uj = ∅ for j ≥ 2, and consider
a partition of unity {ϕk} subordinate to {Uk} so that ϕk ≥ 0, supp ϕk ⊂ Uk

and
∑

ϕ2
k = 1. We pick ϕ1 such that ϕ1 ≡ 1 on a neighbourhood of M and

compactly supported in U1. Hence, for I0,k , the ray transform associated to
(Uk,g), we can define

Pf :=
∑
k

ϕk(I
∗
0,kI0,k)(ϕkf ), f ∈ C∞(N). (8.5)

Lemma 8.2.3 P is an elliptic �DO of order −1 in N .
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Proof Each operator Nk := I ∗
0,kI0,k : C∞

c (Uk) → C∞(Uk) is an elliptic �DO

of order −1 with principal symbol cn|ξ |−1. By Proposition 8.1.3, the operator
P has the principal symbol

σpr(P ) =
∑
k

ϕkσpr(I
∗
0,kI0,k)ϕk = cn|ξ |−1

∑
k

ϕ2
k = cn|ξ |−1.

Thus also P is elliptic.

Having P defined on a closed manifold is convenient, since one can
use standard mapping properties for �DOs without having to worry about
boundary behaviour. For instance for P defined by (8.5) we have

P : Hs(N) → Hs+1(N) for all s ∈ R,

where Hs(N) denotes the standard L2 Sobolev space of the closed manifold N .

Remark 8.2.4 There are other natural ways of producing an ambient operator
P with the desired properties. Let ψ be a smooth function on N with support
contained in U1 and such that it is equal to 1 near M . Let �g denote the
Laplacian of (N,g). Define

P := ψN1ψ + (1 − ψ)(1 − �g)
−1/2(1 − ψ).

As we have already mentioned, N1 is an elliptic �DO of order −1 on U1, and
thus P is also an elliptic �DO of order −1 in N . Instead of (1 − �g)

−1/2 we
could have used any other invertible self-adjoint elliptic �DO of order −1.

Lemma 8.2.5 The operator P is injective. Moreover, P : C∞(N) → C∞(N)

is a bijection.

The proof follows from the injectivity of I0 (Theorem 4.4.1) together with
basic properties of elliptic �DOs that we recall next. Part (a) gives the
existence of a parametrix (approximate inverse), part (b) is elliptic regularity,
and parts (c) and (d) are related to Fredholm properties.

Proposition 8.2.6 Let N be a closed manifold, and let A ∈ �m
cl (N) be elliptic.

(a) There is an elliptic B ∈ �−m
cl (N) so that

AB = Id + R1,

BA = Id + R2,

where Rj are smoothing operators, i.e. they have C∞ integral kernels and
map Hs(N) to Ht(N) boundedly for any s,t ∈ R.

(b) If Au = f and f ∈ Hs(N), then u ∈ Hs+m(N).
(c) Ker(A) = {u ∈ C∞(N) : Au = 0} is finite dimensional.
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(d) Given f ∈ C∞(N), the equation

Au = f

has a solution u ∈ C∞(N) if and only if (f ,w)L2(N) = 0 for all w ∈
Ker(A∗).

Proof Part (a) is a standard parametrix construction for elliptic �DOs (Hör-
mander, 1983–1985, Section 18.1). Let us show how the other parts follow
from this.

To prove (b), note that if Au = f , then by (a),

Bf = BAu = u + R2u.

Thus u = Bf − R2u, where Bf ∈ Hs+m(N) and R2u ∈ C∞(N), so u ∈
Hs+m(N).

To prove (c), note that if Au = 0, then by (a),

0 = BAu = (Id + R2)u.

Now R2 is compact on L2(N) (it is bounded L2(N) → H 1(N) and the
embedding H 1(N) → L2(N) is compact). Thus the kernel of Id + R2 on
L2(N) is finite dimensional, and hence so is Ker(A).

Finally, to prove (d), consider the operator A acting between the spaces

A : Hm(N) → Y := {f ∈ L2(N) : (f ,w)L2(N) = 0 for all w ∈ Ker(A∗)}.

Equip Y with the L2(N) norm. If u ∈ Hm(N) then Au is indeed in Y , since
(Au,w)L2(N) = (u,A∗w)L2(N) = 0 for any w ∈ Ker(A∗). We wish to prove
that A is surjective.

• A has dense range: if f ∈ Y satisfies (Au,f )L2(N) = 0 for all u ∈ Hm(N),
then (u,A∗f )L2(N) = 0 for u ∈ Hm(N) that yields A∗f = 0. Thus f ∈
Ker(A∗), and by the definition of Y one has (f ,f )L2(N) = 0, showing that
f = 0.

• A has closed range: if uj ∈ Hm(N) and Auj → f in Y , then by (a) one
has uj + R2uj → Bf in Hm(N). Since R2 is compact on Hm(N), some
subsequence (R2ujk ) converges in Hm(N). Then (ujk ) converges in Hm(N)

to some u ∈ Hm(N). It follows that f = Au.

By the above two points A : Hm(N) → Y is surjective. Part (d) follows from
this and part (b).
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Proof of Lemma 8.2.5 Since P is elliptic, any element in the kernel of P must
be smooth. Let f be such that Pf = 0, and write

0 = (Pf,f )L2(N) =
∑
k

(
I ∗

0,kI0,k(ϕkf ),ϕkf
)
L2(Uk)

=
∑
k

‖I0,k(ϕkf )‖2
L2

μ(∂+SUk)
.

Hence I0,k(ϕkf ) = 0 for each k. Using injectivity of I0 on simple manifolds it
follows that ϕkf = 0 for each k and thus f = 0.

We have proved that P is injective. Since P is self-adjoint, P ∗ is also
injective. Then surjectivity follows from Proposition 8.2.6(d).

Exercise 8.2.7 Prove that P : Hs(N) → Hs+1(N) is a homeomorphism for
all s ∈ R.

We are now ready to prove the main result of this section.

Proof of Theorem 8.2.1 Let h ∈ C∞(M) be given, and extend it smoothly to
a smooth function in N , still denoted by h. By Lemma 8.2.5 there is a unique
f ∈ C∞(N) such that Pf = h. Let w1 := I0,1(ϕ1f ). Clearly w

�
1|SM ∈

C∞(SM), and we let w := w
�
1|∂+SM . We must have

w� = w
�
1|SM,

since both functions are constant along geodesics and they agree on ∂+SM .
Hence w ∈ C∞

α (∂+SM). To complete the proof we must check that I ∗
0 w = h.

To this end, we write for x ∈ M ,

(I ∗
0 w)(x) =

∫
SxM

w�(x,v) dSx(v)

=
∫
SxM

w
�
1(x,v) dSx(v)

= (I ∗
0,1w1)(x)

= I ∗
0,1I0,1(ϕ1f )(x)

= Pf (x)

= h(x),

where in the penultimate line we used (8.5) and that x ∈ M .

Remark 8.2.8 It turns out that it is possible to give a proof of Theorem 8.2.1
without the need to extend the normal operator to a larger closed manifold N .
In order to do this, one requires finer mapping properties for N . Let ρ denote
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a positive boundary defining function; it was shown in Monard et al. (2019,
Theorem 4.4) that

N : ρ−1/2C∞(M) → C∞(M)

is a bijection. This can be combined with an additional mapping property for
I established in Monard et al. (2021b) for any non-trapping manifold with
strictly convex boundary, namely

I : ρ−1/2C∞(SM) → C∞
α (∂+SM).

These two assertions show that given h ∈ C∞(M), the function

w := I0N−1h ∈ C∞
α (∂+SM)

and satisfies I ∗
0 w = h. Knowing the precise mapping properties of N

and when it can be inverted is of fundamental importance when addressing
statistical questions about inversion. We refer to Monard et al. (2019, 2021b)
for more details. For the purposes of this text the proof of Theorem 8.2.1 as
presented is more than sufficient.

8.3 Stability Estimates Based on the Normal Operator

In this section we will explain how we can derive stability estimates for
the normal operator N using some of the tools developed, in particular, the
existence of a parametrix as in Proposition 8.2.6. We will keep the notation and
set up from the previous section, so that (M,g) is a compact simple manifold
and U1 is an open neighbourhood of M in the closed manifold N whose closure
U1 is a compact simple manifold.

We start by noticing that a forward estimate for N follows easily from the
mapping properties of the �DO P . Indeed, let rM : L2(N) → L2(M) denote
restriction to M and let eM : L2(M) → L2(N) denote extension by zero. Both
operators are bounded and dual to each other. From (8.2) one easily obtains the
following truncation formula

N = rMPeM in L2(M). (8.6)

Exercise 8.3.1 Prove (8.6)

Since P : L2(N) → H 1(N) and rM : H 1(N) → H 1(M), this gives
immediately the mapping property

N : L2(M) → H 1(M),

and hence a forward estimate ‖Nf ‖H 1(M) ≤ C‖f ‖L2(M).
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In order to derive the stability estimate for the normal operator there is a
small price to pay: we shall measure the L2-norm of f on M , but we shall
consider the H 1-norm of the normal operator N1 defined on the slightly larger
manifold U1. This is to avoid the boundary effects as described in Remark 8.2.8
and the need to use Hörmander spaces adapted to the appropriate transmission
condition (cf. Monard et al. (2019)). We will prove:

Theorem 8.3.2 (Stefanov and Uhlmann, 2004) There is a constant C > 0
such that for any function f ∈ L2(M),

C−1‖f ‖L2(M) ≤ ‖N1f ‖H 1(U1)
≤ C‖f ‖L2(M).

Here we regard N1 : L2(M) → H 1(U1) simply extending f by zero to U1.

Proof We have already proved the inequality on the right, so we now
focus on the stability estimate on the left. The injectivity of I0 implies that
P : Hs(N) → Hs+1(N) is a homeomorphism simply by extending the proof
of Lemma 8.2.5 to Sobolev spaces, cf. Exercise 8.2.7. Thus

‖f ‖L2(M) � ‖Pf ‖H 1(N).

But from the definition of P in (8.5) we see that

Pf = ϕ1 N1f,

where ϕ1 is such that ϕ1 ≡ 1 on a neighbourhood of M and compactly
supported in U1 (with f extended by zero). It follows that

‖Pf ‖H 1(N) � ‖N1f ‖H 1(U1)
,

and the theorem is proved.

It was shown in Stefanov and Uhlmann (2004) and Sharafutdinov et al.
(2005) that for a simple manifold s-injectivity of Im implies stability estimates
for the normal operator. As before, this is based on the fact that Nm := I ∗

mIm

is an elliptic pseudodifferential operator acting on solenoidal tensor fields. We
shall not prove these results here; instead we give a brief account of them.
Since I1 is always s-injective for simple manifolds we have:

Theorem 8.3.3 Let (M,g) be simple. There is a constant C > 0 such that for
any 1-form f in L2(S1(T ∗M)), we have

C−1
∥∥f s

∥∥
L2(S1(T ∗M))

≤ ‖N 1
1 f ‖H 1(U1)

≤ C
∥∥f s

∥∥
L2(S1(T ∗M))

.

A sharp stability estimate for N 2, assuming that I2 is known to be
s-injective, was proved in Stefanov (2008):
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Theorem 8.3.4 Let (M,g) be simple and assume that I2 is s-injective.
There is a constant C > 0 such that for any symmetric 2-tensor field f in
L2(S2(T ∗M)),

C−1‖f s‖L2(S2(T ∗M)) ≤ ‖N 2
1 f ‖H 1(U1)

≤ C‖f s‖L2(S2(T ∗M)).

We refer to Assylbekov and Stefanov (2020) for recent sharp stability
estimates for Im using these results.

Remark 8.3.5 One can also consider the normal operator and stability
on compact non-trapping surfaces with strictly convex boundary, but when
conjugate points are present. This situation is studied in detail in Monard et al.
(2015). It turns out that I0 is a Fourier integral operator of order −1/2, but if
there is a pair of interior conjugate points then I ∗

0 I0 is not a pseudodifferential
operator anymore. Moreover, I0 has an infinite-dimensional microlocal kernel,
and some singularities of functions f in the microlocal kernel cannot be
recovered from the knowledge of I0f . This implies that even if I0 were
injective (like it is for radial sound speeds satisfying the Herglotz condition
by Theorem 2.4.1), the recovery of f from I0f will be highly unstable if
conjugate points are present. The instability issue is also discussed in Koch
et al. (2021).

8.4 The Normal Operator with a Matrix Weight

Virtually everything that we have done in this chapter so far can be upgraded
to include an invertible matrix weight. Let (M,g) be a compact non-trapping
manifold with strictly convex boundary and let W : SM → GL(m,C) be a
smooth invertible matrix function, called a weight.

Recall from Definition 5.4.5 that the geodesic X-ray transform with matrix
weight W is the operator IW : C∞(SM,Cm) → C∞(∂+SM,Cm) defined by

IWf (x,v) =
∫ τ(x,v)

0
(Wf )(ϕt (x,v)) dt, (x,v) ∈ ∂+SM .

By Remark 5.4.7, IW is bounded L2(SM,Cm) → L2(∂+SM,Cm). To
compute the adjoint we use the L2

μ space: the adjoint of

IW : L2(SM,Cm) → L2
μ(∂+SM,Cm)

is the bounded operator I ∗
W

: L2
μ(∂+SM,Cm) → L2(SM,Cm) given by (see

Remark 5.4.7)

I ∗
W
h = W

∗h�.
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We will be interested in the weighted transform IW,0 acting on 0-tensors.

Definition 8.4.1 The matrix weighted X-ray transform on 0-tensors is the
operator

IW,0 : C∞(M,Cm) → C∞(∂+SM,Cm), IW,0 := IW ◦ #0.

As in Lemma 4.1.4 one has

(I ∗
W,0h)(x) =

∫
SxM

W
∗h�(x,v) dSx(v).

The normal operator

NW := I ∗
W,0IW,0 : L2(M,Cm) → L2(M,Cm)

is now an elliptic �DO.

Theorem 8.4.2 (NW is an elliptic �DO) Let (M,g) be a simple manifold and
let W ∈ C∞(SM,GL(m,C)). Then NW = I ∗

W,0IW,0 is a classical elliptic

�DO on M int of order −1.

Proof We follow the argument in Section 8.1. From the definitions

NWf (x) =
∫
SxM

W
∗(x,v)(IW,0f )�(x,v) dSx(v)

=
∫
SxM

W
∗(x,v)

∫ τ(x,v)

−τ(x,−v)

W(ϕt (x,v))f (γx,v(t)) dt dSx(v)

=
∫
SxM

∫ τ(x,v)

0
W

∗(x,v)W(ϕt (x,v))f (γx,v(t)) dt dSx(v)

+
∫
SxM

∫ τ(x,v)

0
W

∗(x, − v)W(ϕ−t (x, − v))f (γx,v(t)) dt dSx(v).

Following the arguments in Lemmas 8.1.7 and 8.1.10, we have

NWf (x) =
∫
Dx

W
∗
(
x, w

|w|
)
W

(
ϕ|w|

(
x, w

|w|
))

f (expx(w))

|w|n−1
dTx(w)

+
∫
Dx

W
∗
(
x, − w

|w|
)
W

(
ϕ−|w|

(
x, − w

|w|
))

f (expx(w))

|w|n−1
dTx(w)

=
∫
M

AW(x,v(x,y),y,w(x,y))

dg(x,y)n−1
f (y) dV n(y),

where AW(x,v,y,w) (with v ∈ SxM and w ∈ SyM) is the matrix function

AW(x,v,y,w) := W
∗(x,v)W(y,w) + W

∗(x, − v)W(y, − w)

det(d expx |exp−1
x (y)

)
,
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and

v(x,y) := exp−1
x (y)

| exp−1
x (y)|, w(x,y) := ∇ydg(x,y).

Here AW ∈ C∞(SM × SM), which shows that AW(x,v(x,y),y,w(x,y)) is
bounded in M int × M int and smooth away from the diagonal.

Having computed the Schwartz kernel of NW, we move to local coordinates
and choose cut-off functions φ,ψ ∈ C∞

c (M int). After multiplying by cutoffs,
the Schwartz kernel of NW has the expression

K̃W(x,y) = ψ(x)AW(x,v(x,y),y,w(x,y))
√

det g(y)φ(y)

(Gjk(x,y)(x − y)j (x − y)k)
n−1

2

= |x − y|−(n−1)h̃W

(
x,|x − y|, x − y

|x − y|
)
,

where

h̃W(x,r,ω) = ψ(x)

× AW(x,v(x,x − rω),x − rω,w(x,x − rω))
√

det g(x − rω)

(Gjk(x,x − rω)ωjωk)
n−1

2

φ(x − rω).

We claim that h̃W is smooth in R
n × [0,∞) × Sn−1. To prove this, it is

enough to show that the functions ṽ(x,r,ω) = v(x,x − rω) and w̃(x,r,ω) =
w(x,x − rω) are smooth up to r = 0.

Let U ⊂ R
n be the open subset where the local coordinates are defined, and

let g also denote the Riemannian metric on U . Fix x ∈ U ; we are interested
in the behaviour of y = expx(t v̂) = γx,v̂(t) for small |t |, where v̂ ∈ SxU .
Note that the map (t,v̂) 
→ y is smooth. Hence, the function m(t,v̂;x) :=
(γx,v̂(t) − x)/t with m(0,v̂;x) = v̂ is also smooth. We may introduce new
variables (r,ω) ∈ R × Sn−1 such that

r = t |m(t,v̂;x)| and ω = − m(t,v̂;x)
|m(t,v̂;x)| .

Then x − rω = γx,v̂(t). It is straightforward to check that the Jacobian of
the change of coordinates (t,v̂) 
→ (r,ω) is non-zero for t = 0 and thus by
the inverse function theorem and the fact that (0,v̂) 
→ (0,ω) is injective (cf.
Lemma 11.2.6 for a related formulation) there is δ small enough such that this
change of coordinates is a diffeomorphism from (−δ,δ)×SxU onto its image.
Thus we have smooth inverse functions t (r,ω) and v̂(r,ω) for r small enough
and ω ∈ Sn−1.
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To complete the proof that h̃W is smooth, observe that ṽ(x,r,ω) = v̂(r,ω)

and

w̃(x,r,ω) = d expx |t (r,ω)v̂(r,ω)(v̂(r,ω)),

and thus both are smooth as functions of (r,ω) as desired. Now the same
argument as in the end of Section 8.1 implies that NW ∈ �−1

cl (M int). Ellipticity
follows from Exercise 8.4.3 below.

Exercise 8.4.3 Show that the principal symbol of NW in local coordinates as
above is given by

σpr(NW)(x,ξ) =
∫
Rn

e−iz·ξ
√

det g(x)

|z|n−1
g

× (W∗(x,z/|z|g)W(x,z/|z|g)

+ W
∗(x, − z/|z|g)W(x, − z/|z|g)) dz.

Using that W is invertible, conclude that NW is elliptic. What happens if W is
not invertible? Show that if W takes values in the unitary group, the principal
symbol is cn|ξ |−1

g Id.

With this result in hand, Theorem 8.2.1 can be upgraded to the following.

Theorem 8.4.4 Let (M,g) be a simple manifold. Then IW,0 is injective on
L2(M,Cm) if and only if

I ∗
W,0 : C∞

α (∂+SM,Cm) → C∞(M,Cm)

is surjective.

Proof Let f ∈ L2(M,Cm) be such that IW,0f = 0. Consider a slightly larger
simple manifold M̃ engulfing M and extend W smoothly to it. Extending f by
zero to M̃ we see that

I
W̃,0f = 0,

and thus N
W̃
f = 0. By Theorem 8.4.2, N

W̃
is elliptic and hence f is smooth

in the interior of M̃ and hence on M . Assume now that I ∗
W,0 is surjective. Then

there exists h ∈ C∞
α (∂+SM,Cm) such that I ∗

W,0h = f . Now write

0 = (IW,0f,h) = (
f,I ∗

W,0h
) = (f ,f ),

and thus f = 0.
Assume now that IW,0 is injective. We wish to show that I ∗

W,0 is surjective.
This part of the proof proceeds exactly as the proof of Theorem 8.2.1. We
construct an elliptic operator P : C∞(N,Cm) → C∞(N,Cm), and we show it
is a bijection by showing first that it has trivial kernel. The surjectivity of P

implies the surjectivity of I ∗
W,0 exactly as in the proof of Theorem 8.2.1.
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Exercise 8.4.5 Fill in the details of the proof of Theorem 8.4.4.

Let us state explicitly the following rephrasing of Theorem 8.4.4 that will
be useful later on.

Corollary 8.4.6 Let (M,g) be a simple manifold with IW,0 injective. Given
f ∈ C∞(M,Cm) there exists u ∈ C∞(SM,Cm) such that{

Xu + Au = 0,
#∗

0u = f

where A = −X(W∗)(W∗)−1 and #∗
0u = ∫

SxM
u(x,v) dSx(v).

Proof By Theorem 8.4.4 there is h ∈ C∞
α (∂+SM,Cm) such that #∗

0W
∗h� = f .

We let u := W
∗h� ∈ C∞(SM,Cm). Since Xh� = 0, the function u satisfies

Xu = X(W∗)h� = −Au,

and the corollary follows.
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