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Abstract

In this paper, we study the relative perturbation bounds for joint eigenvalues of commuting tuples of
normal n × n matrices. Some Hoffman–Wielandt-type relative perturbation bounds are proved using the
Clifford algebra technique. We also extend a result for diagonalisable matrices which improves a relative
perturbation bound for single matrices.
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1. Introduction

Let A = (A(1), A(2), . . . , A(m)) be an m-tuple of commuting n × n matrices acting on Cn.
A joint eigenvalue of A is an element λ = (λ(1), λ(2), . . . , λ(m)) ∈ Cm such that

A( j)x = λ( j)x for j = 1, 2, . . . ,m

holds for some nonzero vector x ∈ Cn. The vector x is called a joint eigenvector. The
set of all joint eigenvalues of A is called the joint spectrum of A.

The main concern of perturbation theory of matrix eigenvalues is to estimate the
error when the eigenvalues of a matrix are approximated by the eigenvalues of a
perturbed matrix. Let A and B be two n × n matrices with respective eigenvalues
{λ1, λ2, . . . , λn} and {µ1, µ2, . . . , µn}. An important result in the direction of an absolute
perturbation bound is given by the Hoffman–Wielandt theorem [4], which states: if A
and B are normal matrices, then there exists a permutation π of {1, 2, . . . , n} such that( n∑

i=1

|λi − µπ(i)|
2
)1/2
≤ ‖A − B‖F ,

where ‖ · ‖F denotes the Frobenius norm. This result has been generalised in several
directions. In 1993, Bhatia and Bhattacharyya [1] extended the Hoffman–Wielandt
theorem to joint eigenvalues of m-tuples of commuting normal matrices. More results
on absolute perturbation bounds for joint eigenvalues may be found in [3, 8].
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In 1998, Eisenstat and Ipsen [2] studied relative perturbation bounds for eigenvalues
of diagonalisable matrices. They proved that, if A and B are both diagonalisable and
A is nonsingular, then there exists a permutation π of {1, 2, . . . , n} such that( n∑

i=1

∣∣∣∣∣λi − µπ(i)

λi

∣∣∣∣∣2)1/2
≤ κ(X)κ(X̃)‖A−1(A − B)‖F ,

where X and X̃ are invertible matrices which diagonalise A and B respectively and
κ(X) = ‖X‖ ‖X−1‖ is the condition number of the matrix X. These results were further
extended by Li and Sun [6] for a nonsingular normal matrix A and an arbitrary matrix
B and by Li and Chen [5] for diagonalisable matrices.

To the best of our knowledge, there are no investigations of the relative perturbation
bounds for the joint spectrum of commuting tuples of matrices. The present work is
an attempt in this direction. We derive some relative perturbation bounds for joint
eigenvalues of m-tuples of commuting normal and diagonalisable matrices using the
Clifford algebra technique proposed by McIntosh and Pryde [7]. For the convenience
of the reader we briefly discuss the Clifford algebra technique in Section 2.

2. The Clifford algebra technique

Let Rm be the real vector space of dimension m and let e1, e2, . . . , em be a basis. The
Clifford algebra R(m) is an algebra generated by e1, e2, . . . , em with the relations

eie j = −e jei for i , j and e2
i = −1 for all i.

Then R(m) is an algebra over R of dimension 2m. Let S = {s1, s2, . . . , sk} be a subset
of {1, . . . ,m} such that 1 ≤ s1 < s2 < · · · < sk ≤ m. Then the elements eS = es1 es2 . . . esk

form a basis of R(m), where S runs over all subsets of {1, . . . ,m} and e∅ = 1.An element
α of R(m) is of the form α =

∑
S αS eS , where αS ∈ R. If β =

∑
S βS eS , βS ∈ R, is another

element of R(m), the inner product of α and β is

〈α, β〉 =
∑

S

αS βS .

Under this inner product R(m) becomes a Hilbert space with the orthonormal basis eS .
The tensor product Cn ⊗ R(m), where

Cn ⊗ R(m) =

{∑
S

xS ⊗ eS : xS ∈ C
n
}
,

is a Hilbert space under the inner product

〈x, y〉 =

〈∑
S

xS ⊗ eS ,
∑

S

yS ⊗ eS

〉
=

∑
S

〈xS , yS 〉,

where xS , yS ∈ C
n and the inner product on the right-hand side is the usual inner

product in Cn. Therefore, the norm on Cn ⊗ R(m) is defined by∥∥∥∥∥∑
S

xS ⊗ eS

∥∥∥∥∥ =

(∑
S

‖xS ‖
2
)1/2

,
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where the norm on the right-hand side is the usual norm in Cn. Let Mn be the space
of n × n matrices with complex entries. Then Mn ⊗ R(m) is a linear space and an
element A ∈ Mn ⊗ R(m) has the form A =

∑
S AS ⊗ eS , where AS ∈ Mn. Each element

A =
∑

S AS ⊗ eS ∈ Mn ⊗ R(m) acts on the elements x =
∑

T xT ⊗ eT ∈ C
n ⊗ R(m) by

Ax =

(∑
S

AS ⊗ eS

)(∑
T

xT ⊗ eT

)
=

∑
S ,T

AS xT ⊗ eS eT .

For an m-tuple A =
(
A(1), A(2), . . . , A(m)) of n × n complex matrices, the corresponding

Clifford operator Cliff(A) ∈ Mn ⊗ R(m) acting on Cn ⊗ R(m) is defined by

Cliff(A) = i
m∑

j=1

A( j) ⊗ e j. (2.1)

3. Relative perturbation bounds

Throughout this paper, S n denotes the set of all n! permutations of {1, 2, . . . , n},
‖ · ‖F and ‖·‖ denote the Frobenius norm and the usual operator norm respectively and
<(z) denotes the real part of a complex number z. A square matrix of nonnegative
real numbers is said to be a doubly stochastic matrix if the sum of each row and each
column is 1. A permutation matrix is a square matrix in which each row and each
column contains exactly one nonzero entry 1 and 0 entries everywhere else.

Lemma 3.1 [1, Lemma 1]. Let A = (A(1), A(2), . . . , A(m)) be any m-tuple of operators in
Cn and let Cliff(A) be the corresponding Clifford operator. Then

‖Cliff(A)‖2F = 2m
m∑

k=1

‖A(k)‖2F .

Lemma 3.2 [1]. If P is any operator of Cn, then:

(i) trace(P ⊗ eT ) = 0 for any nonempty subset T of {1, 2, . . . ,m};
(ii) trace(P ⊗ e∅) = 2m traceP.

Now we prove some results on relative perturbation bounds for tuples of matrices.
Let A =

(
A(1), A(2), . . . , A(m)) and B =

(
B(1), B(2), . . . , B(m)) be two m-tuples of normal

n × n matrices such that B = A + E, where E =
(
E(1), E(2), . . . , E(m)) is the perturbation

given to A. Let αi =
(
α(1)

i , α(2)
i , . . . , α(m)

i
)

and βi =
(
β(1)

i , β(2)
i , . . . , β(m)

i
)

be the joint
eigenvalues of A and B, respectively.

Theorem 3.3. If A and B = A + E are m-tuples of commuting normal matrices as
defined above and each A(k) is nonsingular for k = 1, 2, . . . ,m, then there exists a
permutation π of S n such that

n∑
j=1

m∑
k=1

∣∣∣∣∣∣α
(k)
j − β

(k)
π( j)

α(k)
j

∣∣∣∣∣∣2 ≤ m∑
k=1

‖A(k)−1
E(k)‖2F .
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Proof. Since E = B − A,

E(k) = B(k) − A(k) ⇒ A(k)−1
E(k) = A(k)−1

B(k) − I for k = 1, 2, . . . ,m. (3.1)

Let C = (A(1)−1B(1), . . . , A(m)−1B(m)) and D = (A(1)−1E(1), . . . , A(m)−1E(m)). In addition,
let Ĩ = (I, I, . . . , I) be the m-tuple of identity matrices of order n × n. From (3.1),

C − Ĩ = D. (3.2)

Since A and B are m-tuples of normal matrices, there exist orthonormal bases
{u1, u2, . . . , un} and {v1, v2, . . . , vn} of Cn such that

A(k)u j = α(k)
j u j, B(k)v j = β(k)

j v j, for j = 1, 2, . . . , n and k = 1, 2, . . . ,m.

Let P j and Q j respectively denote the orthogonal projection operators to the spaces
spanned by the vectors u j and v j. For k = 1, 2, . . . ,m,

A(k) =

n∑
j=1

α(k)
j P j, B(k) =

n∑
l=1

β(k)
l Ql.

From (2.1) and the above relations,

Cliff(C) = i
m∑

k=1

A(k)−1
B(k) ⊗ ek = i

m∑
k=1

( n∑
j=1

n∑
l=1

α(k)
j
−1

P jβ
(k)
l Ql

)
⊗ ek

= i
n∑

j,l=1

( m∑
k=1

α(k)
j
−1
β(k)

l I ⊗ ek

)
(P jQl ⊗ e∅). (3.3)

Similarly,

Cliff(Ĩ) = i
n∑

r=1

( m∑
t=1

I ⊗ et

)
(Qr ⊗ e∅). (3.4)

Let Cliff(C)∗ denote the adjoint of Cliff(C). From (3.3),

trace[Cliff(Ĩ)Cliff(C)∗]

= −trace
[ n∑

j,l,r=1

( m∑
t=1

I ⊗ et

)( m∑
k=1

α(k)
j
−1
β(k)

l I ⊗ ek

)
(Qr ⊗ eφ)(QlP j ⊗ e∅)

]
= −trace

[ n∑
j,l,r=1

( m∑
t=1

I ⊗ et

)( m∑
k=1

α(k)
j
−1
β(k)

l I ⊗ ek

)
(QrQlP j ⊗ e∅)

]
= −trace

n∑
j,l,r=1

[
−

( m∑
k=1

α(k)
j
−1
β(k)

l

)
(QrQlP j ⊗ e∅)

]
−trace

n∑
j,l,r=1

[ m∑
k,t=1
k,t

(
α(k)

j
−1
β(k)

l − α
(t)
j
−1
β(t)

l

)
(QrQlP j ⊗ etek)

]
.
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Applying Lemma 3.2(ii) to the above relation,

trace[Cliff(Ĩ)Cliff(C)∗] =−trace
n∑

j,l,r=1

[
−

( m∑
k=1

α(k)
j
−1
β(k)

l

)
(QrQlP j ⊗ e∅)

]
=

n∑
j,l,r=1

m∑
k=1

α(k)
j
−1
β(k)

l trace(QrQlP j ⊗ e∅)

= 2m
n∑

j,l=1

m∑
k=1

α(k)
j
−1
β(k)

l trace(QlP j).

Since trace(QlP j) = trace(P jQl),

trace[Cliff(Ĩ)Cliff(C)∗] = 2m
n∑

j,l=1

m∑
k=1

α(k)
j
−1
β(k)

l trace(P jQl). (3.5)

Also,

‖Cliff(C)‖2F = 2m
m∑

k=1

‖A(k)−1
B(k)‖2F

= 2m
m∑

k=1

∥∥∥∥∥ n∑
j=1

α(k)
j
−1

P j

n∑
l=1

β(k)
l Ql

∥∥∥∥∥2

F
= 2m

m∑
k=1

∥∥∥∥∥ n∑
j,l=1

α(k)
j
−1
β(k)

l P jQl

∥∥∥∥∥2

F

= 2m
m∑

k=1

trace
[( n∑

j,l=1

α(k)
j
−1
β(k)

l P jQl

)( n∑
r,t=1

α(k)
r
−1
β(k)

t PrQt

)∗]
= 2m

m∑
k=1

trace
[ n∑

j,l,r=1

α(k)
j
−1
β(k)

l α(k)
r
−1
β(k)

l P jQlPr

]
= 2m

m∑
k=1

n∑
j,l,r=1

α(k)
j
−1
β(k)

l α(k)
r
−1
β(k)

l trace(P jQlPr)

= 2m
m∑

k=1

n∑
j,l=1

∣∣∣∣α(k)
j
−1
β(k)

l

∣∣∣∣2trace(P jQl). (3.6)

Let W = (wi j), where wi j = trace(PiQ j). It can be easily verified that W is a doubly
stochastic matrix. Hence, by Birkhoff’s theorem, W is a convex combination of
permutation matrices. Therefore,

W =

n!∑
s=1

tsPs, where ts ≥ 0 and
n!∑

s=1

ts = 1

and Ps is the permutation matrix corresponding to the permutation πs. Finally, from
(3.2), (3.4), (3.5) and (3.6),

https://doi.org/10.1017/S0004972718000424 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972718000424


[6] Perturbation bounds for the joint spectrum of tuples of matrices 419

‖Cliff(D)‖2F = ‖Cliff(C − Ĩ)‖2F
= ‖Cliff(C)‖2F + ‖Cliff(Ĩ)‖2F − 2<(trace(Cliff(C)∗Cliff(Ĩ)))

= 2m
n!∑

s=1

ts

m∑
k=1

n∑
j=1

[
1 +

∣∣∣∣α(k)
j
−1
β(k)
πs( j)

∣∣∣∣2 − 2<
(
α(k)

j
−1
β(k)
πs( j)

)]
≥ 2m min

s

m∑
k=1

n∑
j=1

[
1 +

∣∣∣∣α(k)
j
−1
β(k)
πs( j)

∣∣∣∣2 − 2<
(
α(k)

j
−1
β(k)
πs( j)

)]

= 2m
n∑

j=1

m∑
k=1

∣∣∣∣∣∣α
(k)
j − β

(k)
π( j)

α(k)
j

∣∣∣∣∣∣2.
Hence, the result is proved. �

Remark 3.4. Sun [10] has generalised the Hoffman–Wielandt inequality for the case
when one matrix is normal and the other is arbitrary. Similarly, Theorem 3.3 can be
extended to the case when one of the commuting tuples of matrices is arbitrary in the
following way. Let A = (A(1), A(2), . . . , A(m)) and B = (B(1), B(2), . . . , B(m)) be two m-
tuples of commuting matrices in Mn with joint eigenvalues αi = (α(1)

i , α(2)
i , . . . , α(m)

i )
and βi = (β(1)

i , β(2)
i , . . . , β(m)

i ), respectively, such that each A(k) is normal and
nonsingular. Since B(1), B(2), . . . , B(m) are commuting matrices, they can be reduced
to upper triangular form by a single unitary matrix. From Pryde [8], it follows that the
m-tuple B has n joint eigenvalues as described above. The following theorem can then
be established by using Theorem 3.3 and the proof of Theorem 1.1 of [10].

Theorem 3.5. If A and B (= A + E) are two m-tuples of commuting matrices as
described above, then there exists a permutation σ in S n such that

n∑
j=1

m∑
k=1

∣∣∣∣∣α(k)
j − β

(k)
σ( j)

α(k)
j

∣∣∣∣∣2 ≤ n
m∑

k=1

‖A(k)−1
‖2‖E(k)‖2F . (3.7)

Remark 3.6. When we relax the normality condition on each B(k), the constant n which
appears on the right-hand side of the above relation (3.7) is best possible. This can be
verified by considering the n × n matrices

A(k) =



0 k 0 · · · 0
0 0 k · · · 0
...
...
...

...
0 0 0 · · · k
k 0 0 · · · 0


, B(k) =



0 k 0 · · · 0
0 0 k · · · 0
...
...
...

...
0 0 0 · · · k
0 0 0 · · · 0


,

where k runs over 1, 2, . . . ,m.

Now we prove the following theorem, which is the diagonalisable analogue of
Theorem 3.3.
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Theorem 3.7. If A and B are m-tuples of commuting diagonalisable matrices and each
A(k) is nonsingular for k = 1, 2, . . . ,m, then there exists a permutation π of S n such that

n∑
j=1

m∑
k=1

∣∣∣∣∣α(k)
j − β

(k)
π( j)

α(k)
j

∣∣∣∣∣2 ≤ κ(P)2κ(Q)2
m∑

k=1

‖A(k)−1
(B(k) − A(k))‖2F ,

where κ(P) = ‖P‖ ‖P−1‖ is the condition number of P.

To prove this theorem, we need the following lemma, which is a slight variation on
the result proved in [9, page 216].

Lemma 3.8. If M and N are normal matrices and Σ = diag(σ1, σ2, . . . , σn) with
σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0, then

‖MΣN − Σ‖F ≥ σn‖MN − I‖F .

Proof. Set Ω = Σ − σnI. Clearly, the diagonal elements of Ω are nonnegative. Now

‖MΣN − Σ‖2F − σ
2
n‖MN − I‖2F = ‖M(Ω + σnI)N − (Ω + σnI)‖2F − σ

2
n‖MN − I‖2F

= ‖(MΩN −Ω) + σn(MN − I)‖2F − σ
2
n‖MN − I‖2F

= ‖(MΩN −Ω)‖2F + 2σn<
{
trace[(MΩN −Ω)∗(MN − I)]

}
= ‖(MΩN −Ω)‖2F + σntrace{Ω[(MN − I)∗(MN − I) + (MN − I)(MN − I)∗]}
≥ 0. �

Proof of Theorem 3.7. Let A = (A(1), A(2), . . . , A(m)) and B = (B(1), B(2), . . . , B(m)) be
two m-tuples of commuting diagonalisable matrices having the joint eigenvalues
αi = (α(1)

i , α(2)
i , . . . , α(m)

i ) and βi = (β(1)
i , β(2)

i , . . . , β(m)
i ), respectively. Since the A(k) and

B(k) are diagonalisable, there are two nonsingular matrices P and Q such that

PA(k)P−1 = D(k)
1 = diag(α(k)

1 , α(k)
2 , . . . , α(k)

n ),

QB(k)Q−1 = D(k)
2 = diag(β(k)

1 , β(k)
2 , . . . , β(k)

n )

for k = 1, 2, . . . ,m. Consider

‖A(k)−1
(B(k) − A(k))‖2F = ‖A(k)−1

B(k) − I‖2F

= ‖P−1D(k)
1
−1

PQ−1D(k)
2 Q − I‖2F

≥ ‖P‖−2‖Q−1‖−2‖D(k)
1
−1

PQ−1D(k)
2 − PQ−1‖2F .

Let UΣV∗ be the singular value decomposition of PQ−1 and σn be the smallest
diagonal element of Σ. From the above relation,

‖A(k)−1
(B(k) − A(k))‖2F ≥ ‖P‖

−2‖Q−1‖−2‖D(k)
1
−1

UΣV∗D(k)
2 − UΣV∗‖2F

≥ ‖P‖−2‖Q−1‖−2‖(U∗D(k)
1
−1

U)Σ(V∗D(k)
2 V) − Σ‖2F

= ‖P‖−2‖Q−1‖−2‖M(k)−1
ΣN(k) − Σ‖2F ,
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where M(k) = U∗D(k)
1 U and N(k) = V∗D(k)

2 V are normal for each k. From Lemma 3.8,

‖A(k)−1
(B(k) − A(k))‖2F ≥ σ

2
n‖P‖

−2‖Q−1‖−2‖M(k)−1
N(k) − I‖2F .

Finally,
‖M(k)−1

(N(k) − M(k))‖2F ≤ κ(P)2κ(Q)2‖A(k)−1
(B(k) − A(k))‖2F .

The required result follows by applying Theorem 3.3 to the commuting tuples of
normal matrices M = (M(1), M(2), . . . , M(m)) and N = (N(1), N(2), . . . , N(m)) and using
the above relations. �

Remark 3.9. Corollary 5.2 of [2] is a special case of Theorem 3.7 for m = 1.
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