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Abstract

A group is said to befactorizable if it has a finite number of abelian subgroups, H,, H2, ... , Hn ,
such that G = HlH1...Hn. It is shown that, if G is a factorizable or connected locally compact
group, then every derivation from Cl(G) to an arbitrary £'(G)-bimodule X is continuous.
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Introduction

This paper is to provide a partial answer to a question in [3]. In order to state
the question, let Cl(G) be the Banach algebra which is the Lebesgue space of
the locally compact group G with convolution product. It is called the group
algebra of G. A derivation from Cl(G) is a linear map D : Cl{G) —> X,
where X is a Banach bimodule over CX(G), such that D{FX * F2) — F{ •
D(F2) + D{FX) • F2 for every Fx and F2 in Cl(G). Then question 22 [3]
asks for which, if any, groups G is there a discontinuous derivation from
C\G).

A complete answer to this question would probably require much more to
be known about the structure of group algebras than is known at present and
attempts to answer the question can generate interesting problems concerning
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186 George Willis [2]

the structure of group algebras. However, some partial answers are known
where a restriction is placed on the bimodule X or on the group G. For
example, since Cl(G) is semisimple for every locally compact group G, an
immediate corollary of [1 l]is that every derivation from Cl(G) to itself is
continuous. Also, every derivation from Cl(G) to a commutative Banach
£'((^-bimodule is continuous, see [20, Theorem 4.3]. The continuity of
derivations from Cl(G) to an arbitrary £'((7)-bimodule may be deduced
from [9, Theorem 2] if G is abelian or compact.

The contribution of this paper is to show that derivations from Cl(G)
are continuous if G is factorizable or connected. In the course of doing so,
some factorization results for finite codimensional ideals in £ (G) when G
is factorizable or connected will be proved, (see Section 2). Such factoriza-
tion results are an example of the sort of information about the structure of
group algebras which is required to answer the automatic continuity ques-
tion. In the cases where G is abelian or compact, finite codimensional ide-
als in c\G) have bounded approximate units because in these cases G is
amenable, see [12], and the required factorizations follow from Cohen's the-
orem, see [ 2, Theorem 11.10]. However, many factorizable and connected
groups are not amenable and other methods have to be used to prove the
required factorization results.

There are some abuses of notation which will occur throughout the paper,
as various algebras which are shown in [7]to be isomorphic will be identified.
Let M(G) denote the algebra of bounded measures on G with convolution
product. Then Cl(G) will be identified with the subalgebra, Ma(G), of
M(G) consisting of measures which are absolutely continuous with respect
to Haar measure, see [7, Theorem 19.18], and the discrete group algebra,
lx{G), will be identified with Md{G), the subalgebra of M(G) consisting
of discrete measures, see [7, Theorem 19.15]. If H is a subgroup of G, then
I' (H) will be identified with the subalgebra of I' (G) consisting of functions
which are supported on H. Each measure, n, belonging to M(G) defines
a left multiplier on Cl{G) by convolution, that is, the map F •-> fi* F is a
left multiplier on Cl(G). Thus, with these identifications, each function in
CX{G), £l(G) or l\H) defines a multiplier on Cl{G).

1. Factorizable groups

\ \ DEFINITION. A group G, is said to be factorizable if iheie are abeVian
subgroups, HX,H2, ... ,Hn of G such that HxH2...Hn = {hxh2... hn\ht e
Ht, i = 1, 2 , . . . « } is equal to G.
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[3] Continuity of derivations 187

The abelian subgroups, H{, H2, ... , Hn, may be regarded as 'parametriz-
ing' G. In later sections we shall use this idea to derive information about
the structure of Cl(G) when G is factorizable from well-known theorems
about the structure of commutative group algebras. This information will be
used in the proof of continuity of derivations from the group algebras.

The class of factorizable groups is quite large. As an almost immediate
consequence of a theorem of Iwasawa we have the following

1.2 THEOREM. If G is a connected Lie group, then G is factorizable.

PROOF. By [8, Theorem 6], there are abelian subgroups, Hx, H2, ... , Hr,
and a compact, connected subgroup, K, of G such that G = HXH2... HrK.
Now A" is a Lie group and so has one-parameter subgroups, V{, V2, ... , Vk,
such that V^V2...Vk covers an open neighbourhood, U, of the identity el-
ement e. Since K is connected, \J^=l Un covers K. Then, since K is
compact, there is an n such that K = U" and it follows that K is factoriz-
able.

Connected Lie groups are uncountable and so, as discrete groups, their
group algebras are not separable. However, they have many countable, fac-
torizable subgroups.

1.3 THEOREM. Let G be a factorizable group and S be a countable subset
of G. Then G has a countable, factorizable subgroup H D S.

PROOF. Let H{, H2,... , Hn be abelian subgroups of G such that G -
HxH2...Hn. Construct subsets Rm, Tm, m = I, 2, ... of G recursively
as follows. For each s e S choose hi e Ht, i = 1, 2, . . . , n such that
s = hxh2...hn and define R{ to be the set of all Af*s chosen. Define T,
to be the subgroup generated by / ? , . Then T{ is a countable subgroup
of G. Next, supposing that Tm has been constructed and is countable for
some m, repeat the construction with Tm in place of 5 . That is, for each
s e Tm choose hl; e Hl., i = 1, 2, . . . , n such that s = hxh2 ...hn and define
Rm+l to be the set of all A,.'s chosen. Define Tm+l to be the subgroup of G
generated by Rm+l, so that Tm+l is countable.

Put H = Um=i Tm . Then H will be a countable, factorizable subgroup
of G containing S.

Subgroups of Lie groups are not the only infinite factorizable groups. For
example, if R is a ring with unit, then the group of upper triangular n x n
matrices over R is factorizable. Compact polythetic groups, as defined in
[14], are factorizable also.
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188 George Willis [4]

Some of the properties for Cl(G) when G is factorizable which are proved
in the next section will hold if it is supposed only that there are abelian
subgroups HX,H2, ... ,Hn of G such that HlH2...Hn is dense in G.
This suggests the following question.

1.4 PROBLEM. Let G be a locally compact group which has abelian sub-
groups Hx, H2, ... , Hn such that HlH2...Hn is dense in G. Must G be
factorizable?

It is easily seen that, if G is supposed also to be compact, then the an-
swer to this question is yes. The non-compact polythetic groups might be an
interesting class of groups on which to begin to answer this question.

2. Factorization in ideals of group algebras

It may be shown that factorization in the finite codimensional ideals of a
group algebra is a necessary condition for the continuity of all derivations
from the algebra, see [4]or the section on point derivations in [3]. It is not
surprising then that an important part of the proof of continuity of deriva-
tions from certain group algebras will be a proof of some factorization results
for finite codimensional ideals in the group algebras. These are established in
Theorems 2.5 and 2.6 below and the proof of continuity of derivations will be
completed in the next section. Theorems 2.5 and 2.6 will be required also in
the proof of the automatic continuity of left £l ((j)-module homomorphisms
from Cl(G) in [21].

The proofs of factorization will be carried out first for discrete group al-
gebras. Suppose that H is an abelian subgroup of G and J is an ideal
with finite codimension in £l(H). Then, by the main theorem in [12], J
has bounded approximate units and so, by Cohen's factorization theorem,
J*el(G) = {h*f\heJ,f€ e\G)} is a closed J-submodule of l\G).
Hence, if £ n / n i s a convergent sum of elements belonging to J * tl(G),
then this sum is in the submodule. This fact will be used repeatedly in the
proof of the following lemma.

2.1 LEMMA. Let G be a group and suppose that G = HxH2...Hn where
H{, H2, ...Hn are abelian subgroups of G. Let, for each k, Jk be an ideal

with finite codimension in tl{Hk). Then there are subalgebras KX,K2, ...,

K.M of lx(G), each of the form ^x*Jk*^x~
l for some k and some x in G,

such that

m=l
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[5] Continuity of derivations 189

is closed and has finite codimension in Il (G).

PROOF. We will show that there are elements x, , x2,... , x in G such
that every / in £l(G) is of the form

j
7=1

where h is in Em=i ^m *tl(G) and each c. depends continuously on / .
To begin, choose, for each k between 1 and «, a finite set, Sk, from Hk

such that ll(Hk) = Jk + span^Jx e Sk} .
Let Z, be a set of representatives of the right cosets of Hx chosen from

H2...Hn. Then each / in lx(G) has the form / = £ z 6 Z / z ) *82 , where

/ z ) belongs to tl(Hx). For each z in Z , , / z ) = g{z) + ExeS c^Sx for

some functions g(z) in j ^ and scalars c^ which depend continuously on

/ • Now £z e zyz )*<5z belongs to Jx*l\G) and 4 ^

belongs to ^2xeS Sx*tx(H2 ..-H^ whence

where g is in Jx *£l(G) and hx belongs to £l(H2...Hn) and depends
continuously on / for each x in 5 , .

Next, since H2...Hn is a set of cosets of H2 , we may choose a set, Z2 ,
of representatives of these cosets which is contained in Hi...Hn. For each
hr above we then have hr — T \ c 7 h^ * <5 , where h[z^ belongs to £1{H^).
Now, for each z in Z2 , /^z) has the form h(z) = gx

z) + Y,yeS
 c

y%
some functions g in J2 and scalars cf,z' . Hence, as above, we havegx

y€S2

where ^x is in J2*l\G) and Ay >Jt belongs to tl(H3...Hn) for each y and
x. It is easily seen that Sx * gx belongs to (5X * J2* Sx-i) * (1{G) for each
x and so, combining with the above, we have

where h = g + Exes ^* * #* > which belongs to a subspace of the form
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190 George Willis [6]

This argument may be repeated a further n - 2 times to show that / is
as described in (a) . The group elements Xj appearing in (a) will belong
to S{S2... Sn and the subalgebras Km will be of the form Sx * Jk * 8x-\
where x belongs to Sx... Sk_{, k = 1, 2 , . . . , n . It is clear that each c

will depend continuously on / and so Ylm=\ £m**l(G) is closed.

For a Banach algebra, A, define A2 = span{ab\a, b e A} . Then A is said
to factor weakly if A2 = A. The next lemma shows that finite codimensional
ideals in lx{G) factor weakly if G is discrete and factorizable.

2.2 LEMMA. Let G be a group as in Lemma 2.1 and let J be a two-sided
ideal with finite codimension in lx(G). Then J factors weakly.

In particular, for each k, let Jk - jntl(Hk), so that Jk has finite codi-
mension in i\Hk). Suppose that Km, m = I, ..., M, are the subalgebras
of £l(G) constructed in Lemma 2.1. Then there are P elements, ap, which
are products in J, such that

Furthermore, there is a K > 0 such that every f in J satisfies f =
?£.lc,a, + TZ.ifm ^re J^_x \cp\ + £ 1 , \\fj{ < jq/||, and fm be-
longs to K.m*tl(G) for each m.

PROOF. Since J has finite codimension in tl(G), Jk has finite codimen-
sion in tl{Hk) for each k. Hence, as constructed in Lemma 2.1, there are
subalgebras Km of l\G) such that E ^ i ^ m * * 1 ^ ) is closed and has finite
codimension in £l(G). Each subalgebra Km is of the form 8X * Jk * 8x-\
for some k and some x in G and so is a finite codimensional ideal in
ll(xHkx~l), which is a commutative group algebra. Hence Km has bounded
approximate units for each m and so, by Cohen's factorization theorem,
K2

m = Km. Since J is an ideal, Km is contained in J and E ^ | K m * i ' ( G )
is contained in J2 . It follows that J2 is closed and has finite codimension
in J.

Equip the quotient space tl{G)/J2 with the quotient norm. It is eas-
ily seen that J2 is a two-sided ideal in lx(G) and so ll(G)/J2 may also
be equipped with the quotient product. Hence the representation of G on
l\G) by translation, the regular representation, induces a representation of
G as a group of isometries on £X(G)/J2 . Now any bounded, finite dimen-
sional group representation is equivalent to a unitary representation and so
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[7] Continuity of derivations 191

the representation of lx{G) on £X(G)/J2 is equivalent to a self-adjoint rep-
resentation. Since (X(G) has a unit and J2 is a two-sided ideal, the kernel
of this representation of tX(G) is J2 and so l\G)/J2 is isomorphic to
a finite dimensional C*-algebra, whence £l(G)/J2 is semisimple. Clearly,
J/J2 is contained in the radical of lx(G)/J2 . Therefore J = J2 .

We have seen that I ^ = 1 K.m * lx{G) has finite codimension in J and so
there are P elements ap in J such that J = span{ap\p = 1, 2, . . . , P} ©

) * *^ ' ( ^ ) Since J = J2, these P elements may be chosen to
be products. The complementary subspaces span{ap\p — 1, 2, . . . , P) and

£m=i ^m*^' (G) a r e c l o s e d a n d s o t h e Projection onto E^=i ^m*^' (G) a l o n S
span{ap|p = 1, 2 , . . . , P} is bounded. Furthermore, since Y^=\ £m *^' (G1)
is closed, the Open Mapping Theorem tells us that the map

m=l m=l

is open. Therefore there is a constant, K, as asserted.

The hypothesis that the groups, Hk , should be abelian is used in only one
way in the above arguments. That is to ensure that finite codimensional ide-
als in £l{Hk) have bounded approximate units so that Cohen's factorization
theorem can be applied. In order to ensure this, it would suffice, in the state-
ment of Lemma 2.1, to suppose only that the subgroups Hk are amenable,
see [12]. However the abelian case will suffice for the automatic continuity
proofs and it is not obvious that the lemmas would apply in significantly
greater generality if 'abelian' were replaced by 'amenable'.

The next lemma will allow this factorization result for discrete groups to be
transferred to non-discrete, factorizable groups. Recall that we are identifying
M(G) with the multiplier algebra of Cl(G) and the group algebra, il(G),
with the algebra of discrete measures in M(G). With these identifications,
the convolutions in what follows are well-defined.

2.3 LEMMA. Let G be a locally compact group and X be a closed two-sided
ideal in C (G) with codimension n. Then

j = {fell(G)\f*Cl(G)cl)

is a closed, two-sided ideal with codimension n in tx{G). Furthermore, for
every F in 1 and every e > 0 there are f in J and U in £ (G) such that

PROOF. It is easily checked that J is a closed, two-sided ideal. The group
algebra C (G) has bounded approximate units of the form {UX}X€A, where
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192 George Willis [8]

Ux is a non-negative function on G with norm equal to one and so the
quotient algebra, £1(G)/J , is a finite-dimensional Banach algebra with ap-
proximate units bounded by one. It follows that c\G)/X has a unit with
norm one. If U+X is the unit in Cl (G)/I, then J = {/ e / ' (G)\f* U e 1} .
Hence the codimension of J is at most n.

Choose functions Fl,F2,... ,Fn from Cl{G) such that {Fi + X\i =
1, 2 , . . . , « } is a basis for Cl(G)/X. By [20, Lemma 2.1], we may choose
A e A and functions / , , f2, ... , fk in £l(G) such that ft* Ux is arbitrarily
close to Ft for i = 1,2,..., n . It follows that they may be chosen such
that {ft*Ux+X\i = 1, 2, . . . , n} is a basis for Cl(G)/I. Then the map
/ f-+ / * Uk + X has rank n and contains J in its kernel. Therefore the
codimension of J is at least n .

The above argument shows that, if U + X is the unit in Cl(G)/X, then
the map

f + J^f*U + X

is an isomorphism between ll(G)/J and Cl(G)/X and more careful appli-
cation of [20, Lemma 2.1] shows that it is in fact an isometry. Hence, if
V + X is an invertible element of Cl(G)/X, then

is an isomorphism and the norm of its inverse is at most \\(V + X)~ ||.
Now let F be in J . Then applying [20, Lemma 2.1 ] again, we see that there

are f in (l(G) and X e A such that f*Ux is arbitrarily close to F, | | / | | , <
II-FÎ  and \\UX\\X < 1. It may also be supposed that Ux +X is sufficiently
close to the unit in Cl(G)/X that it is invertible and \\(UX +X)~1||1 < 2.
Then f * Ux + X will have arbitrarily small norm because F is in I. It
follows that a function, g, may be chosen from ll(G) with arbitrarily small
norm such that g * Ux + X = / *UX+X. Set f = / - g . Then / * Ux is
arbitrarily close to F and / belongs to J.

2.4 THEOREM. Let G be a locally compact group which has abelian sub-
groups HX,H2,... ,Hn such that G = HxH2...Hn and let X be a closed
two-sided ideal with finite codimension in Cl(G). Let J = {/ € £l(G)\f *
Cl (G) c J} and Jk = JC\1 l{Hk), k=l,2, ... ,n. Then there are elements
a,, a2,... , ap which are products in J and subalgebras K,m, of the form
8X* Jk* Sx-\ for some x in G and k between 1 and n, such that the map
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[9] Continuity of derivations 193

defined by

p=l m=\

is a surjection.

PROOF. Choose the elements a and subalgebras K.m to be as constructed
in Lemmas 2.1 and 2.2. Since 1 is an ideal, it follows from the definitions
of the subalgebras Jk that the range of T is contained in I . To show that
T is surjective, it will suffice to show there is a K > 0 such that for every
e > 0 and F in I , there is (F,, . . . , Fp, Dl, ... , DM) in (®J=, Cl(G)) ©

K * Cl(G)) Wi111 n o r m leSS t h a n KWF\\l S u c h t h a t

, . . . , Fp, Dx,..., DM)\\x<t.

We shall show that this holds with K equal to the constant found in Lemma
2.2.

Let F be in J and e > 0 be given. Then by Lemma 2.3 there are
f m J and U in ^ ( G ) satisfying H/H, < | |F | | , , | |[/ | | , < 1 and such
that \\F - f * U\\x < e . By Lemma 2.2, / = £ j _ , cpap + £f=1 /m where

Fp = cpU, p=l,2,...,P and Dm = fm*U, m = l,2,...,M.

Then T{FX, ... , Fp, Dx, ... , DM) = / * U, so that

\\F -T(FX, ... , Fp, Dx, ... , DM)\\x<e ,

and
P M P M

<

The factorization results we require may be easily deduced from this the-
orem.

2.5 THEOREM. Let G be as in the theorem and let I be a closed two-sided
ideal with finite codimension in C (G). Then there is an integer R such that
for every sequence {Fn}^=l in J which converges to zero in norm there are.

(a) elements / ' ' , / 2 ) , . . . , /R) in J and sequences {F^}^ , . . . ,

{FnR)}7=i inIsuchthatFn = Y:?=l/
r)*F!t

r),n = l,2,... and ]$% -
0 a j n - » o o for r = 1,2, ... , R;
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(b) elements FW,F{2),..., F{R) in I and sequences {F™}^,...,

iFnR)}Zi inIsuchthatFn = i:f=lF
lr)*Fir), n = l,2,... and \\F^% -

0 a s n —> o o f o r r = 1 , 2 , ... , R .

PROOF, (a). This follows immediately from the theorem because T is
an open map, each of the functions ap is a product in J and each of the

subalgebras K.m has a bounded approximate identity for Km * Cl(G).
(b). For this, note first that if / is in J and F is in Cl(G), then F*f

will be in J . Taking a bounded approximate identity {Ux}XeA for Cl(G),
we have F * f — l i m ^ ^ F * / * Ux where f *UX is in I by definition of
J. Now J is a closed two-sided ideal and so the result follows.

Since CX{G) has a left bounded approximate identity, Cohen's factoriza-
tion theorem implies that the sequence {Fn}™=l may be factored as Fn =
U * F'n, for n = 1 , 2 , . . . where U belongs to Cl(G), F'n belongs to
1 for each n and ||F^||, —> 0 as n -+ oo. Now by part (a) we have

K = £?=i ^ * Fn]' " = 1 . 2 » - " w h e r e fr) belongs to J for each
r. Let F{r) = U * f"r). Then, by the above observation, F(r) is in I and

These factorization results could be obtained simply by a direct applica-
tion of Cohen's factorization theorem if it were known that finite codimen-
sional ideals in the group algebras had bounded approximate units. However
many factorizable groups, for example SL(2, R) and SU(2, C) as a dis-
crete group, are not amenable and so finite codimensional ideals in their
group algebras do not have bounded approximate units, see [19, Theorem
5.2].

The first part of the next theorem will be needed in the proof of continuity
of derivations from Cl(G) when G is connected. The second part will be
needed for the proof of continuity of left ^1(G)-module homomorphisms
from CX{G) in [21].

2.6 THEOREM, (a). Let G be a connected locally compact group and I
be a closed, two-sided ideal with finite codimension in Cl(G). Then there
is an integer R such that for every sequence {Fn}™=l in I which converges
to zero in norm there are in X elements Fr and sequences {F^}^ for
r — \,2,... , R+\ such that {/r

n^}^l1 converges to zero in norm for each
r and Fn = £?=

+/ Fr * F^ for each n.
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[11] Continuity of derivations 19 5

(b). If it is further supposed that G is separable, then for each n, Fn =

Ylf=i fr*F^ > where fr belongs to J and {F^}™=1 are sequences converging
to zero in I for each r.

PROOF, (a). The proof will be by an 'approximation by Lie groups' argu-
ment. The regular representation of G on CX(G) induces a representation,
px, of G on CX(G)/1. Since the regular representation is strongly contin-
uous and Cl(G)/l is finite dimensional, px is norm continuous, that is, the
map JC •-> px(x) is continuous with respect to the given topology on G and
the norm topology for operators on CX(G)/1. Choose a neighbourhood, U,
of the identity element in G such that ||7 - px{x)\\ < 1 for every x in U.
Then, by the theorem in [13, Section 4.6], there is a compact, normal sub-
group N of G contained in U and such that G/N is a connected Lie group.
Denote by mN the normalized Haar measure on N, and regard it as lying in
M(G). Then convolution by mN determines a projection on CX(G) which
induces an idempotent operator, px(mN) on CX(G)/I. Since the support of
mN is contained in U and mN is a probability measure, \\I-px{mN)\\ < 1.
We have then that / - px(mN) is an idempotent operator and has norm less
than one. It follows that px(mN) = / .

As shown in [15, 3.5.3 and 3.6.4] the quotient map G —• G/N induces an
algebra homomorphism TN : CX(G) -> CX(G/N) whose kernel is the closed
two-sided ideal IN = {F - mN * F\F e CX(G)} . That 1N is a closed two-
sided ideal follows from the fact that mN is a central idempotent in M(G).
It is clear from this characterization that the kernel of TN is contained in
J . Also, since N is compact, it is amenable and so, as shown in [15], 1N

has bounded approximate units.
Let {^n}«li b e a sequence in J which converges to zero in norm. Then

TN(Fn) is a sequence in 7^(1) which converges to zero. Since the kernel
of TN is contained in I, TN(X) is a closed ideal with finite codimension
in CX(G/N). Now G/N is a connected Lie group and so is factorizable, by
Theorem 1.2. Therefore we may apply Theorem 2.5(a) to show that there is
an integer R such that this sequence may be factored as

R

r=l

where TN{Fr) and TN(F^) belong to TN(1) for each r and n and where

{T^F^)}^ converges to zero in norm.
The restriction of 7^ to J is an open map onto TN(X) and so the se-

quences {F^}™=1 may be chosen from I such that H-F^H, —> 0 as n —* oo.
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Since TN is an algebra homomorphism {Fn-Y^=xFr*F^}^x is contained

in TN and it converges to zero because {-F,,}^, and {F^}™=1 converge to
zero in norm. As remarked above, JN has bounded approximate units and
so, by Cohen's factorization theorem, there are in IN an element FR+X and

a sequence {Fn
 + }̂ Lj which converges to zero such that

FR+l *Fn =Fn~
r=\

for each n . Rearranging this equation gives the required result.
(b). For this, we shall need some more information about JN. Since

G is separable and N is amenable, the argument used in [22, Proposition
1.3] shows that there is a discrete probability measure, ft, on N such that
IN = [(de-/i)*Cl{G)]~ . Let A be the closed subalgebra of ll(N) generated
by Se and n and define AQ = {f € A\ ^2x€N f(x) = 0} . Then \ is
an ideal in A which contains de - n and has bounded approximate units
Uj = de - (1/7) Y,Jj=i t*J\ J = 1 , 2 , 3 , . . . . By the choice of fi, the w/s
are also bounded approximate units for IN and so Cohen's factorization
theorem implies that, if {Dn}^Lx is a sequence in TN which converges to
zero, then there are a sequence {D'n}™=l in JN and an element d in AQ
such that Dn = d *D'n for each n . It is easily checked that AQ C J.

Let {Fn}^Lx be a sequence in Z which converges to zero in norm. Then,
by Theorem 2.5(a), there is an integer R such that this sequence may be
factored as

R

r=l

where: N is the compact subgroup of G found in part (a); TN(F^) belongs
to 7^(1) for each r and n and {^v(^r))}^l1 converges to zero in norm;
fr belongs to the closed ideal {/ e £\G/N)\f*Cl(G/N) C TN(I)} for each
r.

As in part (a), the functions fr and TN(F^) may be pulled back to
functions gr and F^ in J and I respectively so that {Fn - 5Z*=1 gr *
F^}™=x is contained in IN and converges to zero. Then there are a function
fR+l in AQ and a sequence {ir

n
(/?+1)}^L1 in IN which converges to zero in

norm such that Fn - £ ? = 1 gr * Fn
(r) = fR+l * Fn

(*+1) for each n. Since A^
is contained in J, this equation may be rearranged to give the required
factorization.

The final lemma in this section will be used in the automatic continuity
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arguments in the next section and in [21]to show that certain ideals are finite
codimensional and thus allow the application of Theorems 2.5 and 2.6.

2.7 LEMMA. Let G be a locally compact group and let J be a closed two-
sided ideal with codimension n in l\G). Then I = [span{/*F\f eJ,Fe

is a closed two-sided ideal with codimension at most n in C (G).

PROOF. Suppose that Ft, i = 1,2, ..., n, n+ I are elements of Cl(G)
which are linearly independent modulo X. Since these functions may be si-
multaneously approximated arbitrarily closely by functions of the form f{*U
where U is in CX{G) and ft is in tl(G) for * = 1,2, . . . , n, n + l, it fol-
lows that there are n+l functions of this form which are linearly independent
modulo I . However, if fi * U, i = 1,2, ... , n, n+l are linearly indepen-
dent modulo J, then, by the definition of T, ft, i = 1,2, ... , n, n+l are
linearly independent modulo J which is a contradiction to the hypothesis
that the codimension of J is n. Therefore the codimension of 2 is at most
n.

Lemma 2.7 looks as though it might be a special case of Lemma 2.3 and
indeed, the proof of Lemma 2.7 is essentially just the second paragraph of
the proof of Lemma 2.3. However, there are many more finite codimen-
sional ideals in ll(G) than those occurring in Lemma 2.3 and so Lemma 2.7
applies more generally than Lemma 2.3. In the generality in which Lemma
2.7 applies, the codimension of I may be strictly less than that of J. For
example, if J is an ideal with codimension one in t' (R) corresponding to
a discontinuous character on R, then I — Cl (R), i.e. has codimension zero.

3. The continuity of derivations

There is a standard automatic continuity technique which we shall be using
known as the

STABILITY LEMMA. Let S : X —* y be a linear map with separating space
&(S). Suppose that there are sequences of operators (•RB)^11 and {Tn)°^=l on
X and y respectively such that TnS - SRn : X —* y is a continuous map
for each n. Then there is an integer, N, such that [T{T2... TN&(S)]~ =
[r, T2... Tne(S)]~ for every n>N.

A proof of this lemma may be found in [18]. The separating space of a
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linear map 5 : X —> y is denned by

6(5) = {y€ y\3(xn)™=l C X such that Jiirn^ ||jcj| = 0 and ^Sxn = y}.

The Closed Graph Theorem implies that S is continuous if and only if
6(5) = (0).

In order to apply the Stability Lemma we require the following fact about
group algebras. If G is an abelian or compact group and I is a closed, two-
sided ideal with infinite codimension in Cx (G), then there are sequences,

K,C=i a n d {5X=i i n £ l (G), such that BnAiA2...An ? I but
BnAlA2...AHAn+leX,forn = l,2,....

That the ideals in these group algebras satisfy this condition follows from
well-known properties of CX{G). In the abelian case, if I has infinite codi-
mension in c\G), then Wiener's Tauberian theorem, [17, Theorem 7.2.4]
implies that

is an infinite subset of G, the carrier space of c\G). Since h{I) contains
an infinite number of points, there is a sequence {Wn}^=x of disjoint, open
subsets of G each of which contains a point of h{T). Then [17, Theorem
2.6.2] implies that there is a sequence {Fn}™=l of functions in c\G), none
of which belongs to I, such that Fn * Fm = 0 if m ^ n. If G is compact,
such a sequence of functions may be chosen from the characters on G, [6,
Definition 3.4]. To see this note that, if J has infinite codimension in £ (G),
then there is an infinite sequence of distinct characters not in I and, by
[6, Theorem 3.6(2)], the convolution product of distinct characters is zero.
Once such a sequence of functions, {-f),}^li, has been found put An =

E r - V ( I I ^ H i 2 k ) and Bn = Fn. Then { ^ } - , and {*„}", will have
the required property.

This property is used in conjunction with the Stability Lemma in the proof
of continuity of derivations from CX{G) if G is abelian or compact, see [9,
Theorem 2]. Some earlier results where similar ideas were used are [10,
Lemma 1.2], [16, Theorem 2] and [1, corollary 2.6]. The other property of
group algebras used in this proof is that, if G is abelian or compact, then
finite codimensional ideals in Cl(G) have bounded approximate units. It
may happen that the group algebra of a factorizable or connected group has
neither of these properties. However, Lemma 2.7 and Theorems 2.5 and 2.6
will allow essentially the same argument as used in the papers mentioned
above to apply to these cases too.

3.1 THEOREM. Let G be a factorizable group. Then every derivation,
D : Cl{G) -*• X, where X is an Cl (G)-bimodule, is continuous.
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PROOF. TO show that derivations into arbitrary bimodules are continuous
it will suffice to show that derivations into a particular bimodule are continu-
ous. This bimodule is denned as follows. The Banach space C1 (G)®Cl (G),
the projective tensor product of CX(G) with itself, may be denned to be an
£I(G)-bimodule by putting F • (A <g> B) = (F * A) ® B and (A <g> B) • F =
A®(B*F),(F,A,B € Cl(G)), and then extending this action of F to
the rest of Cx (G)®CX (G) by linearity and continuity. The dual space of this
bimodule, (Cx (G)®CX (G))*, becomes a bimodule over CX{G) under the dual
actions. By [20, Lemma 3.1], we need only show that derivations from C (G)
into (Cx (G)®CX {G))* are continuous.

Let D : CX{G) -• (CX(G)®CX(G))* be a derivation with separating
space &{D). Then, by [20, Lemma 3.1], &(D) is a closed submodule of
(Cx(G)®Cl(G))*. Put

!={FeCl(G)\F-&(D) = (0)}.

Then 1 is a closed two-sided ideal in Cx {G) which is called the continuity
ideal. The continuity ideal has the property that for every f in I the
map V H- F -D(V) : Cl(G) -> (Cl(G)&CX(G))' is continuous. To see
this, note that the map is the composite of D and the left action of F on
{Cl(G)®Cx{G))*. Since, by definition of I , the action of F annihilates
&(D), the composite map has zero separating space and so is continuous by
[18, Lemma 1.3].

Since the measures in M(G) act as multipliers on Cl{G), the action of
CX{G) on (C\G)®CX{G))* extends to an action of M(G) which makes
(Cl(G)®£l(G))* an Al(G;)-bimodule. By [20, Lemma 3.4], D extends in a
unique way to a derivation

D:M(G)->(Cl(G)&Cl(G))*

and it may be shown in the same way as in [20, Lemma 3.1] that &(D) is a
closed .M(C?)-submodule of (Cl {G)®Cl (G))*.

Let
H\H2..
algebra

" i
••«,.

of

,H2, ... ,

,. Then,
Hn be abehan subgroups of
regarding £X(G) and, for each

M(G), we may define

and, for each k,

J = {f€l\G)\f-e(D) = (0)}

Jk = {fe£X(Hk)\f.6(D) = (0)}

G
k,

such
l\Hk

that
) as

G =
a sub-

Since &(D) is an At(G)-bimodule, Jk is a closed two-sided ideal in
for each k and J is a closed two-sided ideal in £1{G).
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Suppose that, for some k, Jk had infinite codimension in ll(Hk). Then,
since Hk is abelian, there would be sequences {an}^lj and {fyj^i such
t h a t bnaxa2...an ? Jk b u t bnala2...aHaH+l e Jk, f o r n = 1 , 2 , . . . .

We could then define, for each integer n, operators Rn,Tn on Cl(G) and
(C1(G)®C\G))* respectively by

RnF = an*F,(FeC\G)) and Tn4> = an-<j>,{4> e{CX{G)®c\G))*).

The properties of an and bn then imply that

bn-TJ2...Tn6(D)^(0) but bn-TlT2...TnTn+l6(D) = (0).

Consequently, we would have that

[TxT2... TnTn+ie(D)]- C [TlT2... Tne(D)f

for every n . However, TnD - DRn is continuous for each n because

(TnD-DRn){F) = D(an)-F

and so this would contradict the Stability Lemma. Therefore, Jk has finite
codimension in iX{Hk) for each k .

By definition, Jk = jC\il{G) for each k. Hence, by Lemma 2.1, J has
finite codimension in l\G). It is also immediate from the definitions that

[span{/ *F\feJ,F€C1 (G)}]~ CI

whence, by Lemma 2.7, J has finite codimension in Cl(G).
Let {^/Jnti be a sequence in J which converges to zero in norm. Then,

by Theorem 2.5, there are: an integer R; elements Fr, r = 1, 2, . . . , R in
J ; and sequences {F^}^ ,r=l,2,...,r such that Fn = £?=, Fr * Fn

(r)

for each n and H-fj ||j - » 0 as n - » oo for each r. By the derivation
property for D, it follows that, for each n,

R

Now WDiFJ-F^Wi —> 0 as n -» oo and, since Fr is in the continuity ideal
for each r, \\Fr • Z)(FB

(r))||, -» 0 as n -> oo. It follows that the restriction
of D to I is continuous. Since 1 has finite codimension in £ (G), D is
continuous.

3.2 THEOREM. Lef G be a connected locally compact group. Then every
derivation, D : Cl{G) —> # , wAere X is an arbitrary Cl (G)-bimodule, is
continuous.
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PROOF. AS in the previous theorem, it will suffice to show that every
derivation,

is continuous. Let D be such a derivation with separating space &(D) and
continuity ideal X. Denote by D the unique derivation from M{G) which
extends D. We will begin by showing that there is a compact, normal sub-
group N of G such that G/N is a Lie group and (Se - mN) * CX{G) c T,
where mN denotes the normalized Haar measure on N.

By [13, Theorem 4.6], there is a compact, normal subgroup, K, of G such
that G/K is a Lie group. Let mK be Haar measure on K, regarded as a
measure on G and identify Cl(K) with the subalgebra of M{G) consisting
of measures absolutely continuous with respect to mK . Since M{G) acts as
an algebra of multipliers on Cl (G), this identification induces a left module
action of Cl{K) on (Cl(G)®Cl(G))*. Put JK = {F e c\K)\F • 6(Z>) =
(0)} . Then IK is a closed two-sided ideal in Cl(K).

Suppose that IK had infinite codimension in Cl(K). Then there would
be in CX(K) sequences, {An}™=1 and {Bn}™=i, such that

b u t BnAlA2 '" " AnAn+l * XK > for fl = 1 , 2

We could then define, for each integer n, operators Rn , Tn on Cl(G) and

(C1(G)®C\G))* respectively by

RHF = AH*F,(FeCl(G)) and 7 > = An • <\>, {<f> e (Cl(G)®Cl(G))*).

The properties of An and Bn then imply that, for each n ,

BnTJ2... Tne(D) * (0) but BnTxT2...Tn Tn+ie(D) = (0).

Consequently, we would have that

[TJ2---TnTn+ie(D)f C[TlT2...Tn&(D)]- for every n.

However, TnD-DRn is continuous for each n because {TnD - DRn)(F) =
D(An) • F and so this would contradict the stability lemma. Therefore, IK

has finite codimension in £ (K).
The regular representation of K on Cl(K) induces a representation, pK,

of K on the finite dimensional space Cl(K)/IK . Since Cl(K)/IK is finite
dimensional, pK is continuous with respect to the given topology on K and
the norm topology for operators on c\K)/lK . Choose an open neighbour-
hood, U, of the identity element in G such that \\I - pK(x)\\ < 1 for every
x in U f)K. Then, by the [13, Theorem 4.6], there is a compact, normal
subgroup, N ,of G which is contained in U such that G/N is a Lie group.
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[13, Lemma 4.7.1] shows that, replacing N by N n K if necessary, we may
suppose that N CK.

Convolution by mN defines an idempotent operator on c\K) which in
turn induces an idempotent operator pK{mN) on £ (K)/JK. Since mN is
supported in N and is a probability measure, \\I-pK(mN)\\ < 1 and so, since
it is an idempotent operator, I—pK(mN) = 0. Therefore (de — mN)*C (K) C
IK.

Now let F be in Cl{G) and {Ux}XeA be a bounded approximate identity
for Cl{K). Then it is easily checked that limA \\UX * F - -F||, = 0 and so, if
4> belongs to &(D), then

{{8e-mN)*F).<j> =

\im{(8e -mN)*Ux*F)-<t> =

- m^) *[/ , )•( /•• </>) = 0,

because (Se - mN) *UA€lK. Therefore (5e - mN) • C1 (G) c I .
Since JV is a normal subgroup in G, mN is central in M(G). It follows

that (Se — mN)-C (G) is a closed two-sided ideal in £ (G). Denote this ideal
by IN. It is shown in [ 15]that 1N is the kernel of the algebra homomorphism
TN : CX(G) -> C\G/N) induced by the quotient map G -• G/N and so we
have shown that this kernel is contained in I . Hence the module action of
C\G) on &(D) induces an action of CX{G/N).

Define IG/N = {F e Cl{G/N)\F • 6(D) = (0)}. Then, since G/N is a
Lie group and hence factorizable, the same argument as used in the previous
theorem shows that IG,N has finite codimension in c\G/N). Therefore

I = T^x{rG,N) has finite codimension in £*(G). The continuity of D may
now be shown in the same way as in the previous theorem, the only change
being that we must now use Corollary 2.6 in the place of Corollary 2.5.

REMARK. In these proofs we have shown that the continuity ideal cannot
have infinite codimension by working in M(G) in its guise as the multiplier
algebra of c\G). This, and the structure of factorizable and connected
groups, has enabled us to use well-known results about the structure of £ (G)
when G is compact or abelian. We have not needed to know anything about
the structure of £'((?) when G is connected or factorizable. If it could be
shown that £ (G) has some of the same structure when G is connected or
factorizable as it does when G is compact or abelian, then a more direct
proof of the continuity of derivations could be given which would almost be
a direct application of [9, Theorem 2]. The structure required is that, for
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each ideal, J , with infinite codimension in c\G) there should be a pair
of sequences, {An}™=l and {BH}™=1 in Cl{G), such that BnAlA2...An 0
J but BnAxA2...AnAn+l e 1, for n = 1, 2, . . . . This may be shown if
G is discrete and factorizable. In this case, if I is an ideal with infinite
codimension in CX(G), then Theorem 2.4 implies that there is an abelian
subgroup, H, such that Il (H) n I has infinite codimension in Il (H) and
so the pair of sequences may be found in £l (H) DX, which is a subalgebra of
c\G). If G is connected or factorizable but nondiscrete, then the arguments
given above will show that such sequences exist in M(G) but they will not
be in CX{G).
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