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Abstract Plancherel (Trace) Formulas over
Homogeneous Spaces of Compact Groups

Arash Ghaani Farashahi

Abstract. _ispaper introduces auniûed operator theory approach to the abstractPlancherel (trace)
formulas over homogeneous spaces of compact groups. Let G be a compact group and let H be a
closed subgroup of G. Let G/H be the le� coset space of H in G and let µ be the normalized G-
invariant measure on G/H associated with Weil’s formula. _en we present a generalized abstract
notion of Plancherel (trace) formula for the Hilbert space L2(G/H, µ).

1 Introduction

_e abstract aspects of harmonic analysis over homogeneous spaces of compact non-
Abelian groups or, precisely, le� coset (resp. right coset) spaces of non-normal sub-
groups of compact non-Abelian groups are placed as building blocks for coherent
states analysis [2–4, 11], theoretical and particle physics [1, 9, 10, 12]. Over the last
decades, abstract and computational aspects of Plancherel formulas over symmet-
ric spaces have achieved signiûcant popularity in geometric analysis, mathematical
physics, and scientiûc computing (computational engineering); see [6, 7, 12–17] and
references therein.

Let G be a compact group, let H be a closed subgroup of G, and let µ be the nor-
malized G-invariant measure on G/H associated with Weil’s formula. _e le� coset
space G/H is considered as a compact homogeneous space on which G acts via the
le� action. _is paper, which contains 4 sections, is organized as follows. Section 2 is
devoted to ûxing notations and preliminaries, including a brief summary of Hilbert-
Schmidt operators, non-Abelian Fourier analysis over compact groups, and classi-
cal results on abstract harmonic analysis over locally compact homogeneous spaces.
We present some abstract harmonic analysis aspects of the Hilbert function space
L2(G/H, µ) in Section 3. _en we deûne the abstract notion of dual space Ĝ/H for
the homogeneous space G/H, and we will show that this deûnition is precisely the
standard dual space for the compact quotient group G/H when H is a closed normal
subgroup of G. We then introduce the deûnition of abstract operator-valued Fourier
transform over the Banach function space L1(G/H, µ). _e paper closes by a pre-
sentation of a generalized version of the abstract Plancherel (trace) formula for the
Hilbert function space L2(G/H, µ).
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2 Preliminaries and Notations

LetH be a separableHilbert space. An operator T ∈ B(H) is called aHilbert–Schmidt
operator if for one, hence for any, orthonormal basis {ek} ofH we have∑k ∥Tek∥2 <

∞. _e set of all Hilbert-Schmidt operators on H is denoted by HS(H), and for T ∈

HS(H) the Hilbert–Schmidt norm of T is ∥T∥2
HS = ∑k ∥Tek∥2. _e set HS(H) is a

self adjoint two sided ideal inB(H), and ifH is ûnite-dimensionalwe haveHS(H) =

B(H). An operator T ∈ B(H) is trace-classwhenever ∥T∥tr = tr[∣T ∣] <∞, if tr[T] =

∑k⟨Tek , ek⟩ and ∣T ∣ = (TT∗)1/2 [19].
Let G be a compact group with the probability Haar measure dx. _en each irre-

ducible representation ofG isûnite dimensional and everyunitary representation ofG
is a direct sum of irreducible representations; see [1,9]. _e set of of all unitary equiv-
alence classes of irreducible unitary representations of G is denoted by Ĝ. _is deû-
nition of Ĝ is in essential agreement with the classical deûnition when G is Abelian,
since each character of an Abelian group is a one dimensional representation of G. If
π is any unitary representation of G, for ζ , ξ ∈Hπ the functions πζ ,ξ(x) = ⟨π(x)ζ , ξ⟩
are called the matrix elements of π. If {e j} is an orthonormal basis for Hπ , then π i j
means πe i ,e j . _e notation Eπ is used for the linear span of the matrix elements of
π and the notation E is used for the linear span of ⋃[π]∈Ĝ Eπ . _en the Peter–Weyl
_eorem [1,9] guarantees that if G is a compact group, E is uniformly dense in C(G),
L2(G) =⊕[π]∈Ĝ Eπ , and {d−1/2

π π i j ∶ i , j = 1, . . . , dπ , [π] ∈ Ĝ} is an orthonormal basis
for L2(G). For f ∈ L1(G) and [π] ∈ Ĝ, the Fourier transform of f at π is deûned in
the weak sense as an operator in B(Hπ) by

(2.1) f̂ (π) = ∫
G
f (x)π(x)∗dx .

If π(x) is represented by the matrix (π i j(x)) ∈ Cdπ×dπ , then f̂ (π) ∈ Cdπ×dπ is the
matrix with entries given by f̂ (π)i j = d−1

π c
π
ji( f ), which satisûes

dπ
∑
i , j=1

cπi j( f )π i j(x) = dπ

dπ
∑
i , j=1

f̂ (π) jiπ i j(x) = dπtr[ f̂ (π)π(x)] ,

where cπi , j( f ) = dπ⟨ f , π i j⟩L2(G). _en as a consequence of the Peter–Weyl _eorem,
we get [18,21]

(2.2) ∥ f ∥2
L2(G) = ∑

[π]∈Ĝ

dπ∥ f̂ (π)∥2
HS .

Let H be a closed subgroup of G with the probabilityHaar measure dh. _e le� coset
space G/H is considered as a compact homogeneous space that G acts on it from the
le�, and q∶G → G/H, given by x ↦ q(x) ∶= xH, is the surjective canonical map.
_e classical aspects of abstract harmonic analysis on locally compact homogeneous
spaces have been quitewell studied by several authors; see [5,8–10,20] and references
therein. IfG is compact, each transitiveG-space can be considered as a le� coset space
G/H for some closed subgroup H of G. _e function space C(G/H) consists of all
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functions TH( f ), where f ∈ C(G) and

TH( f )(xH) = ∫
H
f (xh)dh.

Let µ be a Radon measure on G/H and x ∈ G. _e translation µx of µ is deûned by
µx(E) = µ(xE), for all Borel subsets E of G/H. _emeasure µ is called G-invariant
if µx = µ, for all x ∈ G. _e homogeneous space G/H has a normalized G-invariant
measure µ, which satisûes the following Weil formula [1,20]:

(2.3) ∫
G/H

TH( f )(xH)dµ(xH) = ∫
G
f (x)dx for all f ∈ L1

(G),

and also the following norm-decreasing formula

∥TH( f )∥L1(G/H ,µ) ≤ ∥ f ∥L1(G) for all f ∈ L1
(G).

3 Abstract Harmonic Analysis of Hilbert Function Spaces over Ho-
mogeneous Spaces of Compact Groups

_roughout this paperwe assume thatG is a compact groupwith the probabilityHaar
measure dx, H is a closed subgroup of G with the probability Haar measure dh, and
also µ is the normalized G-invariant measure on the homogeneous space G/H that
satisûes (2.3).

In this section, we present some properties of the Hilbert function space
L2(G/H, µ) in the framework of abstract harmonic analysis.
First we shall show that the linear map TH has a unique extension to a bounded

linear map from L2(G) onto L2(G/H, µ).

_eorem 3.1 Let H be a closed subgroup of a compact group G and let µ be the
normalized G-invariant measure on G/H associated with Weil’s formula. _e linear
mapTH ∶C(G)→ C(G/H) has aunique extension to a bounded linearmap from L2(G)

onto L2(G/H, µ).

Proof Let µ be the normalized G-invariant measure on the homogeneous space
G/H that satisûes (2.3) and f ∈ C(G). _en we claim that

(3.1) ∥TH( f )∥L2(G/H ,µ) ≤ ∥ f ∥L2(G) .

To this end, using compactness of H, we have

∥TH( f )∥p
L2(G/H ,µ) = ∫G/H

∣TH( f )(xH)∣
2dµ(xH) = ∫

G/H
∣∫

H
f (xh)dh∣

2
dµ(xH)

≤ ∫
G/H

(∫
H
∣ f (xh)∣dh)

2
dµ(xH)

≤ ∫
G/H

∫
H
∣ f (xh)∣2dhdµ(xH).
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_en, by Weil’s formula, we get

∫
G/H

∫
H
∣ f (xh)∣2dhdµ(xH) = ∫

G/H
∫

H
∣ f ∣2(xh)dhdµ(xH)

= ∫
G/H

TH(∣ f ∣2)(xH)dµ(xH)

= ∫
G
∣ f (x)∣2dx = ∥ f ∥2

L2(G) ,

which implies (3.1). _us,we can extend TH to a bounded linear operator from L2(G)

onto L2(G/H, µ), which we still denote by TH , and that satisûes

∥TH( f )∥L2(G/H ,µ) ≤ ∥ f ∥L2(G) for all f ∈ L2
(G).

Let J2(G ,H) ∶= { f ∈ L2(G) ∶ TH( f ) = 0} and J2(G ,H)⊥ be the orthogonal
completion of the closed subspace J2(G ,H) in L2(G).
As an immediate consequence of_eorem 3.1, we deduce the following result.

Proposition 3.2 Let H be a closed subgroup of a compact group G and let µ be
the normalized G-invariant measure on G/H associated with Weil’s formula. _en
TH ∶ L2(G)→ L2(G/H, µ) is a partial isometric linear map.

Proof Let φ ∈ L2(G/H, µ) and φq ∶= φ ○ q. _en φq ∈ L2(G) with

(3.2) ∥φq∥L2(G) = ∥φ∥L2(G/H ,µ) .

Indeed, using Weil’s formula, we can write

∥φq∥
2
L2(G) = ∫G

∣φq(x)∣2dx = ∫
G/H

TH(∣φq ∣
2
)(xH)dµ(xH)

= ∫
G/H

(∫
H
∣φq(xh)∣2dh)dµ(xH),

and since H is compact and dh is a probability measure, we get

∫
G/H

(∫
H
∣φq(xh)∣2dh)dµ(xH) = ∫

G/H
(∫

H
∣φ(xhH)∣

2dh)dµ(xH)

= ∫
G/H

(∫
H
∣φ(xH)∣

2dh)dµ(xH)

= ∫
G/H

∣φ(xH)∣
2
(∫

H
dh)dµ(xH)

= ∫
G/H

∣φ(xH)∣
2dµ(xH) = ∥φ∥2

L2(G/H ,µ) ,
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which implies (3.2). _en T∗
H(φ) = φq and THT∗

H(φ) = φ. Because using Weil’s
formula we have

⟨T∗
H(φ), f ⟩L2(G) = ⟨φ, TH( f )⟩L2(G/H ,µ)

= ∫
G/H

φ(xH)TH( f )(xH)dµ(xH)

= ∫
G/H

φ(xH)TH( f )(xH)dµ(xH)

= ∫
G/H

TH(φq . f )(xH)dµ(xH)

= ∫
G
φq(x) f (x)dx = ⟨φq , f ⟩L2(G)

for all f ∈ L2(G), which implies that T∗
H(φ) = φq . Now a straightforward calculation

shows that TH = THT∗
HTH . _en by [19, _eorem 2.3.3], TH is a partial isometric

operator.

We can then conclude the following corollaries as well.

Corollary 3.3 Let H be a closed subgroup of a compact group G. Let PJ2(G ,H)

and PJ2(G ,H)⊥ be the orthogonal projections onto the closed subspaces J2(G ,H) and
J2(G ,H)⊥, respectively. _en, for each f ∈ L2(G) and a.e. x ∈ G, we have
(i) PJ2(G ,H)⊥( f )(x) = TH( f )(xH).
(ii) PJ2(G ,H)( f )(x) = f (x) − TH( f )(xH).

Corollary 3.4 Let H be a compact subgroup of a compact group G and µ be the
normalized G-invariant measure on G/H associated with Weil’s formula. _en
(i) J2(G ,H)⊥ = {ψq ∶ ψ ∈ L2(G/H, µ)}.
(ii) For f ∈ J2(G ,H)⊥ and h ∈ H, we have Rh f = f .
(iii) For ψ ∈ L2(G/H, µ) we have ∥ψq∥L2(G) = ∥ψ∥L2(G/H ,µ) .
(iv) For f , g ∈ J2(G ,H)⊥, we have

⟨TH( f ), TH(g)⟩ L2(G/H ,µ) = ⟨ f , g⟩L2(G) .

We ûnish this section with the following remark.

Remark 3.5 Invoking Corollary 3.4, one can regard the Hilbert function space
L2(G/H, µ) as a closed linear subspace of the Hilbert function space L2(G); that is,
the closed linear subspace consists of all f ∈ L2(G) that satisfy Rh f = f for all h ∈ H.
_en _eorem 3.1 and Proposition 3.2 guarantees that the bounded linear map

TH ∶ L2
(G)Ð→ L2

(G/H, µ) ⊂ L2
(G)

is an orthogonal projection.
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4 Abstract Trace Formulas over Homogeneous Spaces of Compact
Groups

In this section, we present the abstract notions of dual spaces and Plancherel (trace)
formulas over homogeneous spaces of compact groups.
For a closed subgroup H of G, let

H⊥ = {[π] ∈ Ĝ ∶ π(h) = I for all h ∈ H} .

_en, by deûnition, we have H⊥ ⊆ Ĝ . If G is Abelian, each closed subgroup H of G is
normal and the compact group G/H is Abelian and so Ĝ/H is precisely the set of all
characters (one dimensional irreducible representations) ofG that are constant on H,
that is precisely H⊥. If G is a non-Abelian group and H is a closed normal subgroup
of G, then the dual space Ĝ/H which is the set of all unitary equivalence classes of
unitary representations of the quotient group G/H, has meaning and is well deûned.
Indeed, G/H is a non-Abelian group. In this case, themap Φ∶ Ĝ/H → H⊥ deûned by
σ ↦ Φ(σ) ∶= σ ○ q is a Borel isomorphism and Ĝ/H = H⊥; see [1, 18,21]. _us, if H is
normal, H⊥ coincides with the classic deûnitions of the dual space either when G is
Abelian or non-Abelian.
For a given closed subgroup H of G and also a continuous unitary representation

(π,Hπ) of G, deûne

(4.1) Tπ
H ∶= ∫

H
π(h)dh,

where the operator valued integral (4.1) is considered in the weak sense. In other
words,

⟨Tπ
Hζ , ξ⟩ = ∫

H
⟨π(h)ζ , ξ⟩dh for ζ , ξ ∈Hπ .

_e function h ↦ ⟨π(h)ζ , ξ⟩ is bounded and continuous on H. Since H is com-
pact, the right integral is the ordinary integral of a function in L1(H). Hence, Tπ

H is a
bounded linear operator on Hπ with ∥Tπ

H∥ ≤ 1.

Deûnition 4.1 Let H be a compact subgroup of a compact group G. _e dual space
Ĝ/H of the le� coset space G/H is deûned as the subset of Ĝ given by

(4.2) Ĝ/H ∶= {[π] ∈ Ĝ ∶ Tπ
H /= 0} = {[π] ∈ Ĝ ∶ ∫

H
π(h)dh /= 0} .

_en evidently we have

(4.3) H⊥ ⊆ Ĝ/H.

First we present an interesting property of (4.2) when the le� coset space G/H has
the canonical quotient group structure.

_e next theorem shows that the reverse inclusion of (4.3) holds if H is a normal
subgroup of G.

_eorem 4.2 Let H be a closed normal subgroup of a compact group G. _en
Ĝ/H = H⊥.
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Proof Let H be a closed normal subgroup of a compact group G. Invoking the in-
clusion (4.3), it is suõcient to show that Ĝ/H ⊆ H⊥. Let [π] ∈ Ĝ/H be given. Due
to normality of H in G, themap τx ∶H → H given by h ↦ τx(h) ∶= x−1hx belongs to
Aut(H), and we also have x−1Hx = H, for all x ∈ G. Let x ∈ G. _en by compactness
of G we have d(τx(h)) = dh, and hence we can write

∫
H
π(h)dh = ∫

xHx−1
π(τx(h))d(τx(h)) = ∫

H
π(τx(h))dh

= ∫
H
π(x)∗π(h)π(x)dh = π(x)∗(∫

H
π(h)dh)π(x) = π(x)∗Tπ

Hπ(x),

which implies that π(x)Tπ
H = Tπ

Hπ(x). Since x ∈ G was arbitrary we deduce that
Tπ

H ∈ C(π). Irreducibility of π guarantees that Tπ
H = αI for some constant α ∈ C with

∣α∣ ≤ 1. By deûnition of Ĝ/H we have Tπ
H /= 0, and hence we get α /= 0. Now let t ∈ H

be arbitrary. _en we can write

π(t) = α−1π(t)αI = α−1π(t)Tπ
H = α−1

∫
H
π(th)dh = α−1

∫
H
π(h)dh = α−1Tπ

H = I,

which implies [π] ∈ H⊥.

Let KH
π ∶= { ζ ∈ Hπ ∶ π(h)ζ = ζ ∀h ∈ H} . _en KH

π is a closed linear subspace of
Hπ andR(Tπ

H) =KH
π , whereR(Tπ

H) = {Tπ
Hζ ∶ ζ ∈Hπ}. It is easy to see that [π] ∈ H⊥

if and only ifKH
π =Hπ .

_en we can also present the following results.

Proposition 4.3 Let H be a closed subgroup of a compact group G and let (π,Hπ)

be a continuous unitary representation of G.
(i) _e operator Tπ

H is an orthogonal projection ofHπ onto KH
π .

(ii) _e operator Tπ
H is unitary if and only if [π] ∈ H⊥.

Proof (i) Using compactness of H, we have

(Tπ
H)

∗
= (∫

H
π(h)dh)

∗

= ∫
H
π(h)∗dh = ∫

H
π(h−1

)dh = Tπ
H .

As well, we can write

Tπ
HTπ

H = (∫
H
π(h)dh)(∫

H
π(t)dt) = ∫

H
π(h)(∫

H
π(t)dt)dh

= ∫
H
(∫

H
π(h)π(t)dt)dh = ∫

H
(∫

H
π(ht)dt)dh = ∫

H
Tπ

Hdt = Tπ
H .

(ii) _e operator Tπ
H is unitary if and only if Tπ

H = I. _e operator TH is the identity if
and only if π(h) = I for all h ∈ H. _us, Tπ

H is unitary if and only if [π] ∈ H⊥.

Let φ ∈ L1(G/H, µ) and [π] ∈ Ĝ/H. _e Fourier transform of φ at [π] is deûned
as the linear operator

(4.4) F(φ)(π) = φ̂(π) ∶= ∫
G/H

φ(xH)Γπ(xH)
∗dµ(xH),

on the Hilbert spaceHπ , where for each xH ∈ G/H the notation Γπ(xH) stands for
the bounded linear operator deûned on the Hilbert spaceHπ by Γπ(xH) = π(x)Tπ

H ;
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that is,

⟨Γπ(xH)ζ , ξ⟩ = ⟨π(x)Tπ
Hζ , ξ⟩ for ζ , ξ ∈Hπ .

_en we have

⟨Γπ(xH)ζ , ξ⟩ = TH(πζ ,ξ)(xH),

for all ζ , ξ ∈Hπ . Indeed,

⟨Γπ(xH)ζ , ξ⟩ = ⟨π(x)Tπ
Hζ , ξ⟩ = ⟨π(x)(∫

H
π(h)dh) ζ , ξ⟩

= ⟨(∫
H
π(x)π(h)dh) ζ , ξ⟩ = ⟨(∫

H
π(xh)dh) ζ , ξ⟩

= ∫
H
⟨π(xh)ζ , ξ⟩dh = ∫

H
πζ ,ξ(xh)dh = TH(πζ ,ξ)(xH).

Remark 4.4 Let H be a closed normal subgroup of a compact group G and let
µ be the normalized G-invariant measure over the le� coset space G/H associated
with Weil’s formula. _en it is easy to check that µ is a Haar measure of the compact
quotient group G/H, and by _eorem 4.2 we have Ĝ/H = H⊥. Also, for each φ ∈

L1(G/H, µ) and [π] ∈ H⊥, we have

φ̂(π) = ∫
G/H

φ(xH)π(x)∗dµ(xH).

_us, we deduce that the abstract Fourier transform deûned by (4.4) coincides with
the classical Fourier transform over the compact quotient group G/H if H is normal
in G.

_e operator-valued integral (4.4) is considered in the weak sense; that is,

⟨ζ , φ̂(π)ξ⟩ = ∫
G/H

φ(xH)⟨ζ , Γπ(xH)
∗ξ⟩dµ(xH) for ζ , ξ ∈Hπ .

In other words, for [π] ∈ Ĝ/H and ζ , ξ ∈Hπ we have

(4.5) ⟨ζ , φ̂(π)ξ⟩ = ∫
G/H

φ(xH)TH(πζ ,ξ)(xH)dµ(xH),

because we can write

⟨ζ , φ̂(π)ξ⟩ = ∫
G/H

φ(xH)⟨ζ , Γπ(xH)
∗ξ⟩dµ(xH)

= ∫
G/H

φ(xH)⟨Γπ(xH)ζ , ξ⟩dµ(xH)

= ∫
G/H

φ(xH)TH(πζ ,ξ)(xH)dµ(xH).
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If ζ , ξ ∈Hπ , then we have

∣ ⟨ζ , φ̂(π)ξ⟩∣ = ∣∫
G/H

φ(xH)TH(πζ ,ξ)(xH)dµ(xH)∣

≤ ∫
G/H

∣φ(xH)∣∣TH(πζ ,ξ)(xH)∣dµ(xH)

= ∫
G/H

∣φ(xH)∣∣∫
H
πζ ,ξ(xh)dh∣dµ(xH)

≤ ∫
G/H

∣φ(xH)∣(∫
H
∣πζ ,ξ(xh)∣dh)dµ(xH)

≤ ∫
G/H

∣φ(xH)∣(∫
H
∥π(xh)ζ∥ ⋅ ∥ξ∥dh)dµ(xH)

= ∫
G/H

∣φ(xH)∣(∫
H
∥ζ∥ ⋅ ∥ξ∥dh)dµ(xH)

= ∥ζ∥ ⋅ ∥ξ∥ ⋅ (∫
G/H

∣φ(xH)∣(∫
H
dh)dµ(xH))

= ∥ζ∥ ⋅ ∥ξ∥ ⋅ ∥φ∥L1(G/H ,µ) ,

so we deduce that φ̂(π) is a bounded linear operator on Hπ with

∥φ̂(π)∥ ≤ ∥φ∥L1(G/H ,µ) .

_e following proposition presents the canonical connection of the abstract Fourier
transform deûned in (4.4) with the classical Fourier transform (2.1).

Proposition 4.5 Let H be a closed subgroup of a compact group G and let µ be the
normalized G-invariant measure on G/H associated with Weil’s formula. _en for φ ∈

L1(G/H, µ) and [π] ∈ Ĝ/H, we have

(4.6) φ̂(π) = φ̂q(π).

Proof Using Weil’s formula and also (4.5), for ζ , ξ ∈Hπ , we can write

⟨ζ , φ̂(π)ξ⟩ = ∫
G/H

φ(xH)TH(πζ ,ξ)(xH)dµ(xH)

= ∫
G/H

TH(φq .πζ ,ξ)(xH)dµ(xH)

= ∫
G
φq(x)πζ ,ξ(x)dx

= ∫
G
φq(x)⟨π(x)ζ , ξ⟩dx

= ∫
G
φq(x)⟨ζ , π(x)∗ξ⟩dx = ⟨ζ , φ̂q(π)ξ⟩,

which implies (4.6).

In the next theorem we show that the abstract Fourier transform deûned in (4.4)
satisûes a generalized version of the Plancherel (trace) formula.
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_eorem 4.6 Let H be a closed subgroup of a compact group G and let µ be the
normalized G-invariant measure on G/H associated with Weil’s formula. _en each
φ ∈ L2(G/H, µ) satisûes the following Plancherel formula;

(4.7) ∑

[π]∈Ĝ/H

dπ∥φ̂(π)∥2
HS = ∥φ∥2

L2(G/H ,µ) .

Proof Let φ ∈ L2(G/H, µ) be given. If [π] ∈ Ĝ with [π] /∈ Ĝ/H, then we have
Tπ

H = 0. Hence, for ζ , ξ ∈Hπ , we have TH(πζ ,ξ) = 0. _erefore, we get

(4.8) φ̂q(π) = 0.

Indeed, using Weil’s formula, for ζ , ξ ∈Hπ we can write

⟨ζ , φ̂q(π)ξ⟩ = ∫
G
φq(x)⟨ζ , π(x)∗ξ⟩dx = ∫

G
φq(x)⟨π(x)ζ , ξ⟩dx

= ∫
G
φ(x)πζ ,ξ(x)dx = ∫

G/H
TH(φq .πζ ,ξ)(xH)dµ(xH)

= ∫
G/H

φ(xH)TH(πζ ,ξ)(xH)dµ(xH) = 0.

Using equations (4.6) and (4.8), the Plancherel formula (2.2), and Corollary 3.4 we
achieve

∑

[π]∈Ĝ/H

dπ∥φ̂(π)∥2
HS = ∑

[π]∈Ĝ/H

dπ∥φ̂q(π)∥2
HS

= ∑

[π]∈Ĝ/H

dπ∥φ̂q(π)∥2
HS + ∑

{[π]∈Ĝ∶[π]/∈Ĝ/H}

dπ∥φ̂q(π)∥2
HS

= ∑
[π]∈Ĝ

dπ∥φ̂q(π)∥2
HS = ∥φq∥

2
L2(G) = ∥φ∥2

L2(G/H ,µ) ,

which implies (4.7).

Remark 4.7 Let H be a closed normal subgroup of a compact group G and let µ
be the normalized G-invariant measure over the le� coset space G/H associatedwith
Weil’s formula. _en _eorem 4.2 implies that Ĝ/H = H⊥, and hence the Plancherel
(trace) formula (4.7) reads as follows:

∑
[π]∈H⊥

dπ∥φ̂(π)∥2
HS = ∥φ∥2

L2(G/H ,µ)

for all φ ∈ L2(G/H, µ), where

φ̂(π) = ∫
G/H

φ(xH)π(x)∗dµ(xH)

for all [π] ∈ H⊥; see Remark 4.4.
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