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Abstract. A comparison is made of the differences and similarities between the solar dynamo and 
the geodynamo. Special attention is paid to the energetics, the dynamics, the role of turbulence, 
and the a - and ω-sources in these dynamos. 

1. Introduction 

This meeting is focussed on dynamos operating in systems of enormous scale, a large 
part being devoted to the creation of galactic magnetic fields. The Sun is about the 
smallest body under serious consideration! The theory of the solar dynamo appears, 
at the moment and in a certain sense that will be developed below, to be converging 
to that of the Earth's dynamo. I thought therefore that I should try to persuade 
those who delve into the grander scales of cosmic magnetism, and who have not in 
the past had much desire or need to acquaint themselves with the magnetism of 
tiny Earth, to invest a little time thinking about the geodynamo, and perhaps as a 
result find useful parallels with their subjects. I shall therefore try to contrast the 
dynamos operating in the Sun and Earth and, since I shall be using those words so 
frequently, I shall usually abbreviate them by the letters 'S ' and CE\ 

2. The Power and the Turbulence 

There are of course many striking physical differences between Ε and S. Perhaps 
the salient difference between their dynamo mechanisms is the availability of energy. 
Stix (private communication) estimates that, of the L® « 4-l026W of power emitted 
by S, only P{£ouie « 1022W is diverted into Joule heating; thus P£oule/L0 « 3 Ί 0 - 5 . 
Of the 4.2 · 1013H^ energing from E, the part emanating from Eys core has been 
estimated (within a factor of 4 either way) to be L® « 3 · 1012W (see Loper and 
Roberts, 1983, Table 2); today, this figure is thought to be a minimum (see e.g. 
Loper and Roberts, 1992). The Joule expenditure of the geodynamo depends on 
the (unobservable) strength of the toroidal field, Β τ , in £" s core; Loper and Roberts 
(1983, Eq. 4.14) give P£ouIe « l0lb(BT/T)2W. If we take BT « 0.02T, we obtain 
pJouie w 4 . iQiiw s o t b a t pJouiejLç w g.l. Despite considerable uncertainties in 
these estimates, it is clear that Ε has an energy problem that S does not share. S can 
drive its dynamo almost incidentally as a by-product of the violent and turbulent 
thermal convection in the solar convection zone (SCZ), but it is very doubtful if 
thermal convection in E's core can be of sufficiently high thermodynamic efficiency 
to explain E's dynamo (Braginsky, 1963, 1964; Metchnik et al., 1974; Hewitt et 
al., 1975; Backus, 1975; Gubbins et al., 1979; Verhoogen, 1980). £"s dynamo is 
therefore usually thought to be powered by compositional convection, through the 
release and flotation of the light components of core alloy as the heavy components 
freeze onto the inner core surface during the general cooling of the Earth (Braginsky 
1963, 1964; see Loper and Roberts, 1983). 
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It might at first sight be thought that the tightness of s energy budget could 
be eased by accepting a smaller value for e.g. that Β τ has much the same 
strength as the poloidal field B p , and that therefore the Earth is a weak field 
dynamo, but in fact such an assumption would merely replace one difficulty by 
another. A strong toroidal field assists convection in E ' s core by countering the 
constraint imposed by E*s rotation. According to the classical theory of rotating 
fluids (e.g. Greenspan, 1968; Roberts and Soward, 1978), a body of fluid is rotating 
rapidly if its Ekman number, Ek = ί / /Ω£, and Rossby number, Ro = U/2QC, are 
both small, where ν is kinematic viscosity, Ω is the angular velocity, and U and 
£ are characteristic of the velocity and length scales. Taking = 10~ 6 m 2 s _ 1 , 
Ω φ = 7 · HT V " 1 , U® = 1 0 - 4 m s - 1 and £ « 3.48 · 106m (the radius of the core), 
we obtain Ek® « 10""15 and Ro$ « 3 · 10" 7. Viscous and inertial forces are both 
small compared with the Coriolis force. Such a system does not convect easily. If, 
however, the Elsasser number, A = σΒ2/2Ωρ, where σ is electrical conductivity, ρ is 
density and β is a typical field strength, is 0(1) , the viscosity and Ekman number 
become largely irrelevant. In this case the Lorentz forces are of similar magnitude 
to the Coriolis force and they release the convection from the rotational constraint, 
i.e. convection becomes easier. If we take σ$ = ' 3 •1055m""1, = 104kg m~3 and 
Β = 0.02T, we obtain Αφ « 100. The inertial forces also have no substantial role 
to play (Ro® <C 1). Ε is highly magnetic. 

If we attempt to use the same argument for the SCZ and take ν « 10~ 4 r a 2 s - 1 

as representative of the radiative or molecular viscosity, Ωφ = 2.74 · Ι Ο - 6 « " 1 (the 
angular velocity of the radiative core, see below), and £© = 2 · 108m (the depth of 
the SCZ), we obtain « 10~15. The available power is so great, however, that 
it drives vigorous turbulence, and it is the associated inertial forces that break the 
constraint of rotation. If we base It® = RQAΩ « 6 0 0 m s - 1 on the difference ΔΩ = 
Qequator __ Qpoies jn a n g U j a r velocities of equator and poles, we obtain Roq « 1. 
Similar magnitudes are found to be typical of the supergranulation (ROQ « 3), but 
for the granulation Roq « 300. 5, as measured by /?o, is not a rapidly rotating 
body. We assess its Elsasser number below, to decide whether it is highly magnetic 
or not. 

Except near its upper and lower extremities, the energy flux in the SCZ is mainly 
convective. In principle, motions on all scales contribute to this process from the 
giant cells to the granulation. In view of the lack of observational evidence for giant 
cells, it seems prudent here to assume that smaller cells, having dimensions of the 
order of / = 2 · 107m comparable with the scale height, are mainly responsible for 
the outward flux Fr = Ι//4πΓ2, where r is distance from the solar centre. Taking 
a point at depth 108m in mid-SCZ as representative, we obtain F r Q « 10 8 iym" 2 . 
Mixing length theory [with pCp(V — Vadiabatic) = 10 6 Jm~ 3 ] gives an rms turbu-
lent velocity of ν « lOOme'1 . The corresponding turbulent diffusivity D = | v l is 
approximately 1 0 9 m 2 s - 1 , which greatly exceeds the kinematic viscosity assumed 
above. If we now insert i/Q = 109m2s~1 into our earlier definition of Ek, we obtain 
Ek® « 0.01. Moreover, we must expect that the turbulent magnetic diffusivity will 
also be O(D), i.e. = 10 9 m 2 s" 1 . 

In the SCZ, the Elsasser number based on rfurb, i.e. B2/2£lßprfurb where μ is 
the magnetic permeability, is U5(B2/p)kg m~3T-2, which works out at 6 0 ( B / T f 
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near the base of the SCZ, 100(#/T)2 at a depth of 108m and 5 · 10 4 (ß/T) 2 near the 
surface, at a depth of 106m, these large variations mirroring similar variations in p. 
Clearly, Lorentz forces are likely to be significant near the surface of 5 (and, indeed, 
they dominate above the photosphere!). They would be significant at all depths if 
Β « 0.1T, or greater. We return to this point later but merely note here that 
^turb _ ίο9™2«.""1 implies an Ω-effect magnetic Reynolds number, Rn = ΑΩ£2/η, 
of R§ « 100, which suggests that, if α is large enough, a mean-field αω-dynamo can 
function throughout the SCZ, a view of the solar dynamo that generally prevailed 
a decade ago. Although it prevails no longer (see below), the general opinion is 
nevertheless that the solar dynamo is of αω-type. Some corroboration is provided 
by results of numerical integrations of such kinematic dynamos; they create, as S 
does, fields that oscillate with characteristic periods of order τη, where τη = C2/η is 
the electromagnetic diffusion time. Using values given above, τη© « 1 year, which 
is perhaps as close to the observed 22 year period as one can hope to obtain from 
the present rough order-of-magnitude estimates. 

In the case of E, we take <τφ = 3· ΙΟ5,?™""1, so that η = {μσ)~ι is η$ » 3m2s*1, 
and we obtain R$ & 100 (where we have taken Δ Ω = U/C). The large value R§ 
(and the nature of core dynamics, see below) suggests that the geodynamo is also 
of αω-type. The electromagnetic diffusion time of E's core is τη$ « 105 years. The 
frequency of reversals, although varying greatly over geological time, appears to be 
significantly less than (and, in some epochs, much less than) If so, it must be 
an αω-dynamo of a different, and basically steady, type from that operating in S. 
One idea is that meridional motions within £"s core are more significant than those 
in S. (They are known to be small on the surface of 5.) Numerical integrations of 
kinematic au;-models usually show that a sufficiently large and suitably directed 
meridional motion can transform an otherwise oscillatory dynamo into a steady one. 
But perhaps the αω-dynamo in E's core is different in another important respect: 
perhaps it not a turbulent dynamo at all? 

Few would care to argue that the flow in E's core is laminar, and indeed the 
spectrum of geomagnetic field variations is broad-band. Nevertheless, Ε has such 
a tight energy budget that turbulence in its core would be a luxury. Suppose that 
power were available to maintain as vigorous a turbulence, so that, as in the SCZ, 
ήmolecular ^ J Q - I I rfurb Then the electromagnetic decay time, τη$, of the mean 
magnetic field seen on £"s surface would be only of the order of a minute. Even 
though short period variations are screened out by E's mantle, the observations 
suggest that τη$ is not greatly shortened by turbulence in the core. For example, 
palaeomagnetic studies have indicated that the time taken by the geomagnetic 
field to change its polarity during a reversal is of order 104 years. Such results 
strongly indicate that the total magnetic diffusivity, ητ = + does 
not much exceed and that the energy of the fluctuating fields in E's 
core are not large compared with that of the mean field. In the classical turbulence 
of incompressible fluids (which of course cannot really be legitimately applied to 
E's rapidly rotating, highly magnetic core), the rms fluctuating mean velocity, v, 
is 0 ( ( « / ) ï ), where e is the rate of viscous dissipation of energy per unit mass. If we 
take P$oule = 10UW as being representative of, or probably more significant than, 
the unknown dissipation by viscosity (P$tsc), we obtain c® « 3 · 10~1 5m2s~3, and 
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taking ι/® = 10 6 m2 s 1 as before we find « 10 5m5 1 , or about a tenth of the 
mean velocity we assumed earlier. In the same spirit, we might take / « ( r ;

3

/ e ) 4
 7 

which gives / e « 104m, so that η%τ* = ±v®l® « 0.03m2«"1 « 0 . 0 ^ o l e c u l a r . 
Perhaps these strands, taken together, indicate that the irregularities of motion 

in E's core are not caused by "macho" turbulence of the classical cascading type, 
such as arises in the SCZ. 

Braginsky and Meytlis (1990) have developed a theory of turbulence that is 
tailor-made to fit conditions in E's core. They argue that the geomagnetic field 
is maintained by motions of a scale comparable with the core radius. These mo-
tions are much affected by Coriolis forces and so create the required α-effect (see 
§2). Highly anisotropic turbulence exists, but is on too weak, and on too small, a 
scale to contribute significantly to either α or η; it is fed directly by the unsta-
ble density stratification in the core, rather than by cascade of energy from the 
macroscales. This "wimp" turbulence greatly enhances the effective diffusivities of 
heat and of the light component of composition for which the molecular values are 
Kheat w 10~5T/, composition ^ lO""10^, respectively. Although the turbulent diffu-
sion of these quantities are highly anisotropic, their greatest values are, according 
to Braginsky and Meytlis, of order η. Their estimates of ν are of the same order 
and smaller than the value of 17$ adopted above. 

3. Large-scale and Small-scale Instabilities 

Another marked difference between Ε and S arises from their very different com-
pressibilities. The SCZ spans 9 density scale-heights, but the bottom of E's fluid 
core is only 10% denser than its surface. Thus convection in E's core is commonly 
considered in a Boussinesq approximation (V · V = 0 and ρ « pc = constant), 
while that in S is studied using the aiielastic approximation [V · (/?oV) = 0 where 
po is the isentropic, hydrostatic reference state]. Magnetic buoyancy, which is very 
significant in the SCZ is irrelevant in E's core. 

The geomagnetic field is most probably generated by large-scale convective in-
stabilities, that are much affected by Lorentz forces and rotation, and the acronym 
MAC, standing for 'Magnetic', Archimedean' (i.e. buoyant) and 'Coriolis', is often 
employed to describe them. This emphasizes that these forces are key ingredients 
in their dynamics, along with pressure forces but not the viscous and inertial forces 
(EK® < 1 and Ro® <C 1, see above). The basic state is taken to be zonal: 

V 0 = V0(s, ζ)Ιφ, Β = B0(«, ζ)1φ, Co = C0(«, z\ (1) 

where C = δρ/ρο = (ρ — po)/po is the fractional density excess, creating buoyancy, 
l q is the unit vector in the direction of g-increasing, and (δ,φ,ζ) are cylindrical 
coordinates, with lz = ß / Ω ; Vo, BQ and Co may depend on t but, since they 
apparently vary slowly on the τη time scale in the case of Ε, they are usually taken 
to be constant. The α-effect is created by finite amplitude waves riding on the basic 
state (1). The characteristic time scale of these waves is the so-called "slow time 
scale" : τ8 = 2Ωμρο/Β2 = τη/A, which in the case of Ε is reminiscent of the observed 
time scale (102 — 103 years) of the geomagnetic secular variation. The waves and 
instabilities are usually analysed in the magnetostrophic approximation, in which 
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2ρ0Ω χ V = Vp -h J χ Β -f p0Cge, (2) 

where J = V χ Β /μο is the electric current density, and g e is the effective acceler-
ation due to gravity (with centrifugal forces included). Braginsky (1967) developed 
an elegant theory of small amplitude MAC waves and instabilities using a formalism 
devised by Frieman and Rotenberg (1960). This theory ignored all forms of dissi-
pation, i.e. it treated the core as an ideal fluid; the resulting α was identically zero. 
This unrealism was removed by Braginsky and Roberts (1975) who generalized the 
analysis to include a finite magnetic resistivity and obtained nonzero a . Braginsky 
(1980) used these techniques to study both ideal and resistive instabilities. It is 
not difficult to restore inertial forces to the Frieman-Rotenberg theory; nor is it 
hard, at a price, to generalise the Braginsky-Roberts approach to include all the 
turbulent diffusivities. The large variation in ρ across the SCZ creates very severe 
complications however, even in the anelastic approximation, and there was until 
recently little incentive for applying these methods to 5. 

For some as yet unfathomed reason, the solar internal rotation, Ω(Γ, θ) is ap-
proximately independent of r throughout most of the SCZ while, in contrast, the 
radiative zone (RZ) rotates as a solid body (although, strictly speaking, we are 
not entitled to make such a strong statement; helioseismology is as yet unable to 
determine Ω reliably for r < 0.4i?©, approximately). There must, therefore be very 
large radial gradients in Ω(Γ, θ) in a layer near the base of the SCZ, and this has 
in fact been confirmed helioseismologically, although the thickness, δ of the layer 
has not been resolved - probably it is at most 0.3 pressure scale heights. We will 
here take it to be δ = 107m, and following Spiegel and Zahn (1992) we shall call 
it the tachocline. The first question one must answer about the tachocline is why 
it exists at all. Why does the shear not spread out into the SCZ and into the RZ? 
Presumably it does not spread into the SCZ because the Reynolds stresses that cre-
ate the r-independent Ω in the SCZ are too strong (see Rüdiger 1989), and return 
the upward flux of angular momentum to the tachocline. In the so-called overshoot 
region, however, where the turbulent intensity begins to diminish with depth, the 
turbulent stresses become ineffective and cannot obliterate the radial shear in Ω. 

The question of why Ω does not spread into the RZ is much harder to answer. 
The very fact, that the RZ rotates at a uniform angular velocity, f?c, intermediate 
between the values of Ω(0) and Ω ( | π ) just above the tachocline, strongly indicates 
that there is an effective coupling mechanism between the bulk of the SCZ and the 
bulk of the RZ. But the RZ is fluid, and such stresses should engender in it not a 
solid body rotation but a differential shear VoJ in fact, we may expect that Ω should 
be constant on each member of a family of axisymmetric surfaces, but would differ 
from one surface to the next. Because of the complications of self-gravitation, we 
shall not attempt a full analysis here, but try to get a little feeling for the situation. 
Suppose that the differential motion in the RZ is small and transform to a reference 
frame rotating with angular velocity l?c . Then we may write 

2ρ0Ω€χ V = -Vp + poge· (3) 

If, for simplicity, we take po = po(r) and g e = <jfe(r)r/r> we easily see that ροΥψ 
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is constants on cylinders, i.e. that po(r)Q(s, z) = F(s) for some F. In particular, 
Ω cannot be constant. The real situation is more complicated, but this gives the 
flavour: the solution again depends on an arbitrary function F that cannot be 
determined without the addition of more physics. The fact that a differential shear 
is not observed in acoustic sounding of the RZ suggests that there must be a very 
effective mechanism linking the different surfaces together, perhaps a magnetic field, 
as suggested by Spruit (1990). Such a field, even if only of order 10~4T, effectively 
couples the surfaces together, so giving the RZ an effective rigidity that causes 
it to respond to the applied stresses as a solid body. It is hard to believe that 
the RZ does not contain some (primordial) magnetic field of at least this size; see 
Mestel and Weiss (1987). An alternative possibility is that differential rotation in the 
radially stratified RZ would set up anisotropic, horizontally-dominated turbulence 
that would enforce uniform rotation on spherical surfaces. It would then follow 
from (3) that Ω is constant in the RZ; see Zahn (1993) and also Spiegel and Zahn 
(1992), where a detailed theory of the tachocline is developed. They argue that 
the observations are compatible only with a model in which the horizontal viscous 
transport is dominant, despite the thinness of the tachocline. Their theory requires 
pole-equator temperature differences to be present in the tachocline (see below). 

It is perhaps "lucky" for the existence of the solar dynamo that the tachocline 
is somehow maintained! The large shears within it engender a strong Ω-effect that 
winds up the poloidal field to produce a toroidal field whose maximum strength 
may be as great as IT (or even larger). To explain the progression of magnetic 
activity towards the equator, it is necessary to invoke an a that is predominantly 
negative (positive) deep in the northern (southern) hemisphere of the SCZ. For-
tunately, numerical simulations have indicated that the convection in the SCZ is 
in the form of concentrated downdraughts, the return upward flow being slower 
and extending over broader regions; see Glatzmeier, 1985; Nordlund et al., 1992. 
As the downdraughts approach the base of the SCZ and the overshoot layer they 
spread out and, tending to conserve their angular momentum as they do so, they ac-
quire downward (upward) vorticity, i.e. the helicity deep in the northern (southern) 
hemisphere of the SCZ is therefore predominantly positive (negative), leading to 
the required sign for a . (There is still, however, a difficulty: the phase relationship 
between BR and ΒΦ in the solar cycle is not convincingly of the type that would be 
expected with this sign of a ; see Stix, 1976; Yoshimura, 1976.) 

A field of IT in the tachocline would correspond (see above) to an Elsasser 
number of order 60, at least comparable with that of E . The tachocline is there-
fore, like E's core, likely to be a highly magnetic system, and may be subject 
to MAC instabilities. The main differences between the instabilities of E's core 
and of the tachocline are (first) that the magnetic field Bo in (1) is strongly time 
dependent; it waxes and wanes in strength according to the phase of magnetic ac-
tivity. The time scale of the instability sought must therefore be of the same order, 
τηq. Second, the instability of the tachocline is apparently not directly powered 
by thermal/compositional buoyancy (as for E's core), but by magnetic buoyancy. 
Indirectly, however, the power is again supplied by thermal buoyancy, since it is the 
convective motions in the bulk of the SCZ that maintain the Ω(0) required to create 
the large radial shears in the tachocline. Because δ is so small, the variation in po 
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across the tachocline is small, and suddenly the whole Braginsky method and its 
developments become viable and interesting. And, moreover, the analogy between 
the dynamos operating in Ε and S then becomes closer. Both may rely for their 
α-effect on large-scale instabilities, of the whole fluid core in the case of and 
of the tachocline in the case of 5 (see Schmitt 1984, 1985, 1987; Prautzsch, 1993). 
Schmitt calls these instabilities 'magnetostrophic'. They are in fact closely related 
to what Acheson called 'field gradient instabilities', which he initially studied in the 
geodynamo context, but which, with the solar context in mind, he also analysed for 
a compressible medium (Acheson, 1978), when they are usually spoken of as being 
driven by "magnetic buoyancy". They are particular forms of MAC wave instability, 
or perhaps one should say 'MC wave instability', since they are driven magnetically 
rather than thermally. What we are describing here is the recent partial conver-
gence of solar dynamo theory and geomagnetic dynamo theory, alluded to in §1. It 
is pertinent to remark that there have been very many studies of instabilities in E's 
core, notably by Acheson and Fearn, and that a local method of analysis has proved 
to be illuminating; see for example the review by Fearn (1989) where many of these 
references may be found. Such methods have been less used in solar physics [but see 
Gilman and Cadez (1970), Cadez (1974), Acheson (1978), Hughes (1985)]. Recent 
work in the solar context has tended to focus on the magnetic instabilities associ-
ated with JBo alone in (1), but at least some geomagnetic studies have investigated 
the stabilizing effect of the velocity shear associated with Vo in (1). The existence 
of pole-equator temperature differences in the tachocline reminds one of Gilman's 
model of the solar dynamo as an MHD Rossby wave (e.g. see Gilman 1969a,b); one 
must wonder whether that old but interesting approach could be adapted to modern 
requirements, and make a contribution to understanding the tachocline dynamo. 

It is clear from these considerations why the prevailing opinion today is that 
the solar dynamo is an αω-dynamo driven by sources that occupy a comparatively 
shallow layer near the base of the SCZ, and which we may call 'the solar dynamo 
layer' (SDL). There are two main scenarios, in both of which the ω-source is con-
fined to the tachocline. In scenario A, the one described above, α is supplied by 
instabilities of the distributions of Β and V within the tachocline, i.e. both the a -
and ω-sources are confined to the tachocline, which therefore is the SDL (although, 
strictly speaking, the currents created in the SDL will leak upwards into the SCZ, 
and the motions in the main SCZ may then induce further fields, i.e. secondary 
dynamo action of a non-self-excited character may exist in the SCZ). In the other 
scenario (B), the α-source is provided by turbulence within, and/or above (Parker 
1992), the tachocline, i.e. the SDL is more extensive than the tachocline but includes 
it. It is not clear in either scenarios what the effective value of ητ is in the SDL. 
We might expect I/q r 6 to be less than the 10 9 m 2 s _ 1 assumed earlier for the SCZ, 
for two reasons. First, as noted above, one must expect a diminution in turbulent 
intensity as the RZ is approached; second, the presence of an intense magnetic field 
will tend to suppress the turbulence and so decrease rf^ r b by perhaps two orders of 
magnitude (Parker, 1992). 

Let us now consider scenario B. There are two main possibilities: B\y the a - and 
ω-sources are separated; they are both present in the tachocline. Scenario B\ is 
one that Parker (1992) has explored in a "surface dynamo wave" model. Although 
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he modestly calls this model a "pedagogical device", it illustrates well the effects of 
separated sources and of a magnetically-quenched rç©rb. The history of scenario B<i 
goes back 25 years. Although ρ is almost constant within the SDL, the rms turbulent 
velocity ν varies considerably. This is an ingredient for a potent mechanism for a-
creation, as the seminal paper of Steenbeck et al. (1967) demonstrated. In the limit 
of small microscale Reynolds numbers, they obtained an expression of the form 

/3î; 
α = ~—ßV[ln (ρου2)], (4) 

where η stands for r^oiecuiav L a t e f ) krause and Rädler (1980, Ch. 9) gave the 
general expression in the first order smoothing approximation, and in the limit of 
large microscale magnetic Reynolds number (and small Strouhal number). This has 
the form 

/ 2 
a = Ω-Vv, (5) 

ν 
(where we have ignored spatial variations in /?o). Since ν decreases across the SDL 
from its full value at the top (i.e. its value in the bulk of the SCZ) to effectively 
zero at the top of the RZ, \Vv\ = 0(V/CSDL)> where CSDL is the thickness of the 
SDL. Taking also I = CSDL, we obtain from (5), |a | « CSDL&& ^ 20ms""1. As a 
result, the α-effect Reynolds number, Ra = α€/ητ, for the SDL is R%DL « 4. This 
suggests that, in addition to a possible α-effect, from the instabilities (scenario A), 
there may be an appreciable α-effect from the turbulence in the SDL. 

4. Conclusions 
It is evident that, although some features of the geodynamo and solar dynamo 
mechanisms are still unclear, many more seem to have been understood, at least 
qualitatively. It is perhaps unwise for someone with my geophysical background to 
speculate on the way that solar dynamo theory is likely to develop, but the question 
of whether scenario A or scenario Β will prevail is so interesting that it is hard to 
resist stating a preference. I am impressed by the orderliness with which sunspots 
follow Hale's polarity rules, despite the violent turbulence elsewhere on the solar 
surface. It suggests a similar orderliness in the tachocline, and therefore a dynamo 
that operates, as in the Earth, through large-scale instabilities of a well ordered 
MHD state (scenario A). The IT field in the tachocline would then imply current 
densities of order J « Β/μδ « 0.1 i m " 2 . If we take η = jfnoiecuiar _ g 2 m 2 «" 1 , 
corresponding to the density and temperature in the tachocline, we obtain a Joule 
dissipation C2/σ of order 3 · lO~9Wrn~3, which when integrated over a tachocline 
of volume 3 · 1025m3 would give P© « 1017W, which is no embarrassment when 
compared with L© = 4 · 1024Η^. The large IT zonal fields might, however, raise 
problems if they were accompanied by the large irregular fields generated by a fully 
developed turbulence. The Joule dissipation in a turbulent dynamo creating a mean 
zonal field of order IT may be larger by a factor of order R r i c r o s c a l e = vl^molecular 
than that in the corresponding laminar dynamo; see Krause and Rädler (1980). 
Since R ^ o s c a i e w iQr, this would give P© « 1 0 2 4 ^ . 
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