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FINITE DIMENSIONAL REPRESENTATIONS
OF Ut(sl (2)) AT ROOTS OF UNITY

XIAO JIE

ABSTRACT. All finite dimensional indecomposable representations of Ut(sl (2)) at
roots of 1 are determined.

1. Introduction. Quantum group or quantum enveloping algebra Uq(ª) is a certain
(Hopf algebra) deformation of the universal enveloping algebra U(ª) of a complex sim-
ple finite-dimensional Lie algebra ª, introduced by Drinfeld [Dr1], [Dr2], Jimbo [Ji] and
Kulish-Reshetikhin [Kr] in their study of the quantum Yang-Baxter equation. The sim-
plest and most important example is that of the simple Lie algebra sl (2). An important
problem is to describe finite dimensional representations of the algebra Uq(ª). Now it
is well-known that: (1) when q is not a root of 1 the (finite dimensional) representation
theory of Uq(ª) is essentially the same as that of U(ª), namely representations of Uq(ª)
are deformations of representations of U(ª), so that the latter are obtained as q ! 1
[Lu], [Ro]; (2) when q is a root of 1, then the situation changes dramatically and finite
dimensional representations of Uq(ª) are not completely reducible in general, however,
all simple modules of Uq(sl (2)

�
are classified (for example, see [DCK]); (3) a very pro-

found application of the representation theory of Uq

�
sl (2)

�
is that Reshetikhin et al. (see

[KiR], [RT1], [RT2], [KM]) construct some new topological invariants of compact ori-
ented 3-manifolds and of framed links in those manifolds. The aim of the present note is
to determine all finite dimensional restrictable modules of Uq

�
sl (2)

�
. Thanks to [RT2],

all projective and injective objects in the category of finite dimensional restrictable mod-
ules of Uq

�
sl (2)

�
are implicitly given. Therefore, we can apply the BGG philosophy

[BGG] to reduce the problem of classifying all restrictable modules of Uq

�
sl (2)

�
into

that of modules over a finite dimensional algebra. In our situation, it is not difficult to see
that the corresponding algebra is just one of tame representation type. It is interesting
to us that this gives us a close relationship between the restrictable representations of
Uq

�
sl (2)

�
and those of some tame quivers and their trivial extensions (see [Ri], [Ha]).

The approach in this note not only allows us to construct all finite dimensional restrictable
modules of Uq

�
sl (2)

�
, but also to arrive at a position to understand their category com-

pletely; for example, we provide an Auslander-Reiten formula to compute Ext1Uq(sl (2))( , ).
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REPRESENTATIONS OF Ut(sl (2)) 773

2. Simples and projectives. We mainly adopt the notations as in [RT2]. For given
q 2 C, the quantum group Uq

�
sl (2)

�
is the associative algebra over the cyclotomic field

Q(q1Û2) with 4 generators K, K�1, X, Y subject to the following relations:

(2.1.1) XY � YX ≥ K2 � K�2

q1Û2 � q�1Û2

(2.1.2) XK ≥ q�1Û2KX, YK ≥ q1Û2KY, KK�1 ≥ K�1K ≥ 1.

Since we want to consider the restrictable representations of Uq

�
sl (2)

�
at q a root of

1, let t ≥ exp(ôp�1mÛ2r), where m, r are coprime integers with odd m and m ½ 1,
r ½ 2, q ≥ t4. We define the quotient algebra Ut

�
sl (2)

�
of Uq

�
sl (2)

� 
 Q(t) over the
cyclotomic field Q(t) with generators K, K�1, X, Y subject to the following relations

(2.1.3) XY � YX ≥ K2 � K�2

t2 � t�2

(2.1.4) XK ≥ t�2KX, YK ≥ t2KY, KK�1 ≥ K�1K ≥ 1.

(2.1.5) K4r ≥ 1, Xr ≥ Yr ≥ 0

where qr ≥ t4r ≥ 1. A representation of Uq

�
sl (2)

�
over Q(t) is called restrictable if

it satisfies the relations (2.1.3), (2.1.4) and (2.1.5). The algebra Ut

�
sl (2)

�
also has the

structure of a Hopf algebra; the action of comultiplication ∆, counit ¢ and the antipode
ñ are given by the following formulas:

(2.1.6) ∆(X) ≥ X 
 K + K�1 
 X, ∆(Y) ≥ Y 
 K + K�1 
 Y, ∆(K) ≥ K 
 K

ñ(K) ≥ K�1, ñ(X) ≥ �t2X, ñ(Y) ≥ �t�2Y

¢(K) ≥ 1, ¢(X) ≥ ¢(Y) ≥ 0.

However we don’t need to use the Hopf structure.
The following notation is often used in consideration for representations of quantum

groups

[n] ≥ t2n � t�2n

t2 � t�2
≥ sin(ômnÛr)

sin(ômÛr)
and [n]! ≥ [n][n � 1] Ð Ð Ð [1].

For ã 2 f1,�1,
p�1,�p�1g and 0 � i � r � 1, we define a (i + 1)-dimensional

Ut

�
sl (2)

�
-module Vi(ã) as follows. This module has a basis ei

0(ã), ei
1(ã), . . . , ei

i(ã) and
the actions of the generators are given by the following rules

(2.1.7) Kei
n(ã) ≥ ati�2nei

n(ã)

Xei
n(ã) ≥ ã2[n][i + 1� n]ei

n�1(ã)

Yei
n(ã) ≥ ei

n+1(ã)

where n ≥ 0, 1, . . . , i and ei
�1(ã) ≥ ei

i+1(ã) ≥ 0. It is easy to see that Vi(ã) for
0 � i � r � 1 is a simple Ut

�
sl (2)

�
-module. It is well-known now that all
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774 XIAO JIE

n
Vi(ã) j ã 2 f1,�1,

p�1,�p�1g and 0 � i � r�1
o

form a complete non-redundant

list of simple Ut

�
sl (2)

�
-modules over Q(t).

Let U+
t and U�

t be the subalgebras of Ut

�
sl (2)

�
generated by K, X and K, Y respec-

tively. We also have the Verma modules Wj(ã) and W̃j(ã) which are free over U�
t and U+

t

respectively, where ã 2 f1,�1,
p�1,�p�1g and 0 � j � r � 1; so dimQ(t) Wj(ã) ≥

dimQ(t) W̃j(ã) ≥ r. They are given by the following rules:

(2. 1. 8)

Wj(ã): Kej
n(ã) ≥ ãtj�2nej

n(ã)

Xej
n(ã) ≥ ã2[n][j + 1� n]ej

n�1(ã)

Yej
n(ã) ≥ ej

n+1(ã)

(2. 1. 9)

W̃j(ã): Kf j
n(ã) ≥ ãt�j+2nf j

n(ã)

Xf j
n(ã) ≥ f j

n+1(ã)

Yf j
n(ã) ≥ ã2[n][j + 1� n]f j

n�1(ã)

where n ≥ 0, 1, . . . , r� 1 and f j
r (ã) ≥ ej

r(ã) ≥ 0, ej
�1(ã) ≥ f j

�1(ã) ≥ 0.
We have the following extensions:

(2.1.10) 0 ! Vr�j�2(ãt�r) ! Wj(ã) ! Vj(ã) ! 0

0 ! Vr�j�2(ãtr) ! W̃j(ã) ! Vj(ã) ! 0.

It is obvious that
Wr�1(ã) ' W̃r�1(ã) ' Vr�1(ã).

It is convenient to use a graphical representation for the structure of Ut

�
sl (2)

�

-modules. Every vertex stands for a vector from our chosen basis; arrows and dotted
ones show the actions of X and Y respectively; more precisely, an arrow may be labeled
by a scalar corresponding to the action of X or Y and a vertex labeled by its weight (i.e.
eigenvalue for K); the absence of arrows coming out of a vertex means that the corre-
sponding vector is annihilated by one of X or Y. The example below is for r ≥ 5.

t2 t4 t

[2] [4]

)
V1(1)

[2] [2][3]

V2(1)
[3][2] [3]

9>>=
>>; V2(t�5)

[4] �[4][2]

V4(1) ≥ W4(1)
W1(1)
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LEMMA 2.1.11. Vr�1(ã) ' Wr�1(ã) is a projective Ut

�
sl (2)

�
-module.

PROOF. Assume M to be a finite dimensionalUt

�
sl (2)

�
-module and a surjective mor-

phism F: M ! Vr�1(ã). Then M has a decomposition M ≥ L
ï2Λ Mï, where Mï ≥

fx 2 M j (K � ï)nx ≥ 0 for some n Ù 0g (we don’t need to assume that M has
a decomposition into a direct sum of its weight spaces under K-action). Take x 2 M
such that Fx ≥ er�1

0 (ã), then x 2 Mãtr�1 by (2.1.8). Because the maximal common
factor of (T � ãtr�1)n and T4r � 1 is T � ãtr�1, Kx ≥ ãtr�1x. Take y ≥ Yr�1x; then
Fy ≥ Yr�1Fx ≥ Yr�1er�1

0 (ã) ≥ er�1
r�1(ã), Yy ≥ 0 and Ky ≥ KYr�1x ≥ ãt�(r�1)y by

(2.1.4); also Ker�1
r�1(ã) ≥ ãt�(r�1)er�1

r�1(ã). Therefore there exists a unique Ut

�
sl (2)

�
-

morphism G: Vr�1(ã) ! M such that Ger�1
r�1(ã) ≥ y since Wr�1(ã) is a Verma module.

So F is a split surjective morphism, i.e., Vr�1(ã) is a projective Ut

�
sl (2)

�
-module.

Also Vr�1(ã) is an injective Ut

�
sl (2)

�
-module by a similar discussion. We denote:

Pr�1(ã) ≥ Vr�1(ã).

2.2. The indecomposable extensions of the Verma modules Wj(ã) for j Â≥ r � 1, con-
structed in [RT2], are fundamentally important to generate other modules. For any 0 �
j � r�2 we define these modules, denoted by Pr�j�2(ã), by the following rules. The basis
of Pr�j�2(ã) is fbr�j�2

n (ã), ar�j�2
n (ã), n ≥ 0, . . . , r� j� 2, and ej

n(ã), f j
n(ã), n ≥ 0, . . . jg

and the actions of K, X, Y are given by the following rules:

(2.2.1) Kbr�j�2
n (ã) ≥ ãtr�j�2�2nbr�j�2

n (ã)

Xbr�j�2
n (ã) ≥ ã2[n][r � j � 1� n]br�j�2

n�1 (ã) + ar�j�2
n�1 (ã)

Ybr�j�2
n (ã) ≥ br�j�2

n+1 (ã)

n ≥ 0, . . . , r � j � 2

Kf j
n(ã) ≥ ãt�r�j+2nf j

n(ã)

Xf j
n(ã) ≥ f j

n+1(ã)

Yf j
n(ã) ≥ ã2t2r[n][j + 1� n]f j

n�1(ã)

n ≥ 0, . . . , j

Kej
n(ã) ≥ ãtr+j�2nej

n(ã)

Xej
n(ã) ≥ ã2t2r[n][j + 1� n]ej

n�1(ã)

Yej
n(ã) ≥ ej

n+1(ã)

n ≥ 0, . . . , j

Kar�j�2
n (ã) ≥ ãtr�j�2�2nar�j�2(ã)

Xar�j�2(ã) ≥ ã2[n][r� j � 1� n]ar�j�2
n�1 (ã)

Yar�j�2(ã) ≥ ar�j�2
n+1 (ã)

n ≥ 0, . . . , r � j � 2

where br�j�2
r�j�1(ã) ≥ f j

j (ã), f j
j+1(ã) ≥ ar�j�2

r�j�2(ã), ej
j+1(ã) ≥ ar�j�2

0 (ã) and ar�j�2
�1 (ã) ≥

ej
j(ã).

Obviously dim Pr�j�2(ã) ≥ 2r.
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(2.2.2)

P2(1)

The structure of Pr�j�2(ã) (0 � j � r � 2) is indicated above (we take r ≥ 5, j ≥ 1,
ã ≥ 1).

Pr�j�2(ã) has a unique maximal submodule and the quotient of Pr�j�2(ã) modulo this
submodule is

(2. 2. 3) top Pr�j�2(ã) ≥ vr�j�2(ã)

and Pr�j�2(ã) has a unique minimal submodule, it is

(2. 2. 4) soc Pr�j�2(ã) ≥ Vr�j�2(ã).

We also have the following extensions

(2.2.5) 0 ! Wj(ãtr) ! Pr�j�2(ã) ! Wr�j�2(ã) ! 0

0 ! W̃j(ãt�r) ! Pr�j�2(ã) ! W̃r�j�2(ã) ! 0

LEMMA 2.2.6. Pr�j�2(ã) for 0 � j � r� 2, ã 2 f1,�1,
p�1,�p�1g are projec-

tive Ut

�
sl (2)

�
-modules.

PROOF. We want to prove Ext1
�
Pr�j�2(ã), V

� ≥ 0 for any simple Ut

�
sl (2)

�
-module

V. Assume there is a non-split exact sequence

0 ! V !̈ M ! Pr�j�2(ã) ! 0.

Then M has a decomposition M ≥ L
ï2Λ Mï, where Mï ≥ fx 2 M j (K � ï)nx ≥ 0

for some n Ù 0g and ï 2 Λ satisfies ï4r ≥ 1. Moreover, for any x 2 Mï, the maximal
common factor of (K � ï)n with ï4r ≥ 1 and K4r � 1 is K � ï, therefore Kx ≥ ïx,
and M ≥ L

ï2Λ Mï is the weight space decomposition. Consider M as Q(t)[K]-module
we have M ≥ V ý Pr�j�2(ã). We use the basic fact that non-split extensions of simple
Ut

�
sl (2)

�
-modules must be Verma modules W̃l or Wl (0 � l � r � 1). Fix the basis of

Pr�j�2(ã) as in (2.2.1). So we only have the following cases in M:
(1) 0 Â≥ Xbr�j�2

0 (ã) � ej
j(ã) 2 V; this implies that V ≥ Vj(ãtr) and MÛW̃j(ãt�r) is

indecomposable. However now Vj(ãtr)ýVj(ãtr) is a submodule of MÛW̃j(ãt�r)
with the quotient Vr�j�2(ã); this is a contradiction to our basic fact.

(2) 0 Â≥ Ybr�j�2
r�j�2(ã) � f j

j (ã) 2 V. Similar discussion as in (1).

(3) 0 Â≥ Xej
0(ã) 2 V; because ej

0(ã) ≥ Xr�1br�j�2
r�j�2(ã), this contradicts Xr ≥ 0.

(4) 0 Â≥ Yf j
0(ã) 2 V. Similar discussion as in (3).
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(5) 0 Â≥ Xf j
j (ã) � ar�j�2

r�j�2(ã) 2 V; this implies that V ≥ Vr�j�2(ã); now M has a

submodule N generated by f j
0(ã); but Vr�j�2(ã)ýVr�j�2(ã) is a submodule of N

with the quotient Vj(ãt�r), a contradiction to the basic fact.
(6) 0 Â≥ Yej

j(ã) � ar�j�2
0 (ã) 2 V. Similar discussion as in (5).

(7) 0 Â≥ Xar�j�2
0 (ã) 2 V or 0 Â≥ Yar�j�2

r�j�2 2 V, contradicting Xr ≥ 0 or Yr ≥ 0 again.
Therefore the extension is split, hence Pr�j�2(ã) is projective.
By a similar discussion we know that Pr�j�2(ã) is an injective Ut

�
sl (2)

�
-module, too.

REMARK. Because Ut

�
sl (2)

�
is finite dimensional overQ(t), every indecomposable

projective Ut

�
sl (2)

�
-module is finite dimensional; and since the tops of Pj(ã) (0 � j �

r � 1,ã 2 f1,�1,
p�1,�p�1g) are just all simple modules Vj(ã), so Pj(ã), 0 �

j � r � 1, ã 2 f1,�1,
p�1,�p�1g is a complete list of indecomposable projective

Ut

�
sl (2)

�
-modules up to isomorphism.

COROLLARY 2.2.7. Every Ut

�
sl (2)

�
-module (possibly infinite dimensional) has a

decomposition into a direct sum of its weight spaces under the action of K.

PROOF. Every Ut

�
sl (2)

�
-module N has a projective cover P ! N ! 0. Since P is a

direct sum of Pj(ã)’s, so P, hence N, has such decomposition.

3. Blocks of Ut

�
sl (2)

�
.

3.1. Before we decompose Ut

�
sl (2)

�
into the direct sum of blocks (up to Morita equiv-

alence), we should introduce some basic notions widely used in the representation theory
of finite dimensional algebras (see [G] or [Ri]).

Given a finite dimensional algebra A over a field k, mod A denotes the category of all
finite dimensional A-modules. A non-split exact sequence in mod A

0 �! L
f�! M

g�! N �! 0

with L, N decomposable, is called an Auslander-Reiten sequence provided: for any mor-
phism h: L ! L0 which is not a split injection, there exists i: M ! L0 such that i Ž f ≥ h;
and for any morphism j: N0 ! N which is not a split surjection, there exists l: N0 ! N
such that g Ž l ≥ j. It is easy to see that Auslander-Reiten sequences, if they exist, es-
sentially are unique for given L or given N; so we denote L ≥ úN and N ≥ ú�L (in
fact ú ≥ DTr and ú� ≥ TrD; these functors are defined in [AR]). We say that A has
Auslander-Reiten sequences provided that for any indecomposable non-injective mod-
ule L there exists an Auslander-Reiten sequence starting with L, and to any indecompos-
able non-projective module N there exists an Auslander-Reiten sequence ending in N.
According to a famous theorem due to Auslander-Reiten [Ar], we know that A always
has an Auslander-Reiten sequence. A morphism f : M ! N with M, N indecomposable is
said to be irreducible if f is not an isomorphism and given any factorization f ≥ f 0 Ž f 00:

M
f�! N

f 00 & % f 0

V
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then f 0 is a split surjection or f 00 is a split injection.

Given an Auslander-Reiten sequence 0 ! L
f! M

g! N ! 0, the irreducible mor-
phism starting with L or ending in N can easily be determined: those starting with L are
of the form f 0: L ! M0 where M0 is a non-zero direct summand of M, say M ≥ M0ýM00,
and f ≥ �

f 0

f 00

�
for some f 00; those ending in N are of the form g0: M0 ! N, where again

M ≥ M0 ýM00 and g ≥ (g0, g00), for some g00.
Let M, N be indecomposable A-modules; denote by rad(M, N) the set of non-isomorph-

isms from M to N. If M, N are not necessarily indecomposable, say with decomposi-
tions M ≥ L

i Mi, N ≥ L
j Nj where Mi, Nj are indecomposable, define rad(M, N) ≥L

i,j rad(Mi, Nj) and rad2(M, N) ≥ ff 2 HomA(M, N) j f ≥ f 0 Ž f 00, f 0 2 rad(I, N),
f 00 2 rad(M, I) for some A-module Ig. f : M ! N is irreducible if and only if f̄ is
non-zero in rad(M, N)Û rad2(M, N). Now we could define the Auslander-Reiten quiver
ΓA of A: ΓA has [M] of the isomorphic class of indecomposable module M 2 mod A
as a vertex. Two vertices [M] and [N] are linked together by n arrows [M] ! [N] if
n ≥ dimk rad(M, N)Û rad2(M, N) ½ 1. Let us denote by PΛ and IΛ the subset of ΓA corre-
sponding to projective and injective modules respectively; we have the Auslander-Reiten
translation ú: ΓA n PA

¾! ΓA n IA such that ú[N] ≥ [úN]. In this sense, ΓA is a translation
quiver.

A possible form of a component of ΓA is ZA1Ûn, which is called a tube; it is given
by the following translation quiver and by making an identification along x with ún

x for
any vertex x.

where dotted lines stand for ú-orbits. n is called the rank of the tube. A rank 1 tube is
said to be homogeneous.

If A is a hereditary algebra of tame type, the classification of the indecomposable
modules in mod A is finished (see [DR] or [Ri]); mod A is divided into three parts, the
first is the component of preprojective modules; the second part consists of a P1k-family
of components which are tubes and among those almost are homogeneous tubes; the third
is the component of preinjective modules. The corresponding Auslander-Reiten quiver
can be drawn by hand.

3.2. In representation theory, a quiver ∆ is just a directed graph. Write ∆ ≥ (∆0, ∆1);
here ∆0 is the set of vertices and ∆1 the set of arrows. A representation V ≥ (Vx, Vå) of
∆ over k is given by finite dimensional vector spaces Vx, for all x 2 ∆0, and linear maps
Vå: Vx ! Vy, for any arrow å: x ! y. If V, V0 are two representations of ∆ over k, a
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map f ≥ (fx): V ! V0 is given by maps fx: Vx ! V0
x (x 2 ∆0) such that V0

åfx ≥ fyVå.
In this way we obtain the category of representations of ∆. Now assume there is given a
representation V of ∆ over k. If p ≥ (ajå1, . . . ,åljb) is a directed path in ∆, we denote by
Vp the composition Vp ≥ Vål

Ž Ð Ð Ð Ž Vå1 : Va ! Vb. We say that V satisfies the relation
r ≥ P

p ïpp (ï 2 k), provided
P

p ïpVp ≥ 0 (Note that we may require that all paths p
occurring in one relation have a fixed starting point, say a, and a fixed end point, say b;
thus all Vp are linear maps from Va to Vb and we form the linear combination

P
p ïpVp

in Homk(Va, Vb)). A basic theorem (due to Gabriel) in the representation theory of finite
dimensional algebras claims that, if k is algebraically closed, mod A is always equivalent
to the category of representation of a finite quiver ∆ with a certain set I of relations. We
also say that A is given by quiver ∆ and relations I.

Operating an algebra A by the dual functor D ≥ Homk( , k), we get a new algebra
T(A), called the trivial extension of A. The underlying vector space of T(A) ≥ AýD(A)
and the multiplication is given by

(a, d)(a0, d0) ≥ (aa0, da0 + ad0)

for a, a0 2 A, d, d0 2 D(A), since D(A) admits an A�A-bimodule structure in an obvious
way.

Because T(A) is a selfinjective algebra, we could form the stable category modT(A)
like this: objects of modT(A) are those of mod T(A) and given two objects M, N, the set of
morphisms from M to N is defined as HomT(A)(M, N) ≥ HomT(A)(M, N)ÛP(M, N) where
P(M, N) ≥ ff 2 HomT(A)(M, N) j there exists projective T(A)-module P and morphisms
g: M ! P, h: P ! N such that f ≥ hŽgg. So modT(A) is a quotient category of mod T(A).
The structure of modT(A) can be derived from that of mod A if A is a tilted algebra (see
[Ha]). Particularly, if A is a hereditary algebra of tame type, not only modT(A), but also
mod T(A) is clearly displayed. The aim of this section is just to fit mod Ut

�
sl (2)

�
into

this kind of category.

REMARK. The meaning of “graphical representations” and “representation of
quiver” is totally different. The first is used to represent the structure of an Ut

�
sl (2)

�
-

module under the actions of K, X, Y firstly by Kirillov-Reshetikhin [KR], the latter was
introduced by Gabriel and is widely used in the representation theory of finite dimen-
sional algebras.

3.3. We come back investigating the structure blocks of Ut

�
sl (2)

�
. Following methods

introduced by Brauer in the modular representation theory of finite group (see [A]) and
by Bernstein-Gelfand-Gelfand in the study of the category O for complex semisimple Lie
algebra (see [BGG]), we can decompose Ut

�
sl (2)

�
into the direct sum of its blocks. The

structure of every block is determined by that of the corresponding projective Ut

�
sl (2)

�
-

modules which are linked to each other. Let P1, P2, . . . , Pl be all non-isomorphic pro-
jective Ut

�
sl (2)

�
-modules which are linked; then the corresponding block is defined as

B ≥ EndUt(sl (2)) (P1 ý Ð Ð Ð ý Pl). Since any endomorphism of a Verma module or simple
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module is a multiplication by a scalar, so, by the proof of the Gabriel theorem (see 4.3
of [G]), the algebra of every block can be given by its quiver and relations over Q(t).

3.3.1. (1) Because the blocks corresponding to projective modules Pr�1(ã), ã 2
f1,�1,

p�1,�p�1g are always trivial (Lemma 2.1.11), Ut

�
sl (2)

�
contains 4 blocks

isomorphic toQ(t). In view of (2.2), the structure of Pr�j�2(ã) (0 � j � 2) is clearly dis-
played: Note that, along the way of the canonical morphisms Pr�j�2(ã) ! Pj(ãt�r) !
Pr�j�2(ã) and Pr�j�2(ã) ! Pj(ãtr) ! Pr�j�2(ã), the vector br�j�2

0 (ã) goes to ar�j�2
0 (ã).

By a standard technique for representations of quivers with relations, we have: (2) if
tr ≥ 1, then the block corresponding to the projective modules Pr�j�2(ã) and Pj(ã) is
isomorphic to the algebra Λ2 given by the following quiver and relations

x2 � y2 ≥ 0

xy ≥ yx ≥ 0
if 2j Â≥ r� 2.

y
x

x
y

or isomorphic to the algebra Λ1 given by

x2 � y2 ≥ 0

xy ≥ yx ≥ 0
if 2j ≥ r� 2;

x

y

(3) if tr ≥ �1, then the block corresponding to the projective modules Pr�j�2(ã) and
Pj(�ã) (0 � j � r�2) is isomorphic to Λ2 too; (4) if tr ≥ p�1 or�p�1, then the block
corresponding to the projective modules Pr�j�2(ã), Pj(ãtr), Pj(ãt�r) and Pr�j�2(ãt2r) is
isomorphic to Λ4, given by the following quiver and relations

x2 � y2 ≥ 0

xy ≥ yx ≥ 0.

x y
x y

y x
y x

By a detailed counting we have the following:

THEOREM 3.3.2. The blocks of Ut

�
sl (2)

�
over Q(t) consist of 4 blocks isomorphic

to Q(t) and one of the following situations:
(i) 2(r� 1) blocks isomorphic to Λ2 if tr ≥ 1 and r is odd.

(ii) 2(r � 2) blocks isomorphic to Λ2 and 4 blocks isomorphic to Λ1 if tr ≥ 1 and r
is even.

(iii) 2(r� 1) blocks isomorphic to Λ2 if tr ≥ �1.
(iv) r� 1 blocks isomorphic to Λ4 if tr ≥ p�1 or �p�1.

We easily know that there are good coverings Λ4 ! Λ2 and Λ2 ! Λ1. Λ4 is the trivial
extension of the hereditary algebra

Ã3:

Ð
% -

Ð Ð
& .

Ð
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and Λ2 is the trivial extension of the Kronecker algebra Ð �!�! Ð. After the work of
Tachikawa-Wakamatsuand Happel (see [Ha3]), the categories of finite dimensional mod-
ules over those algebras Λ1, Λ2 and Λ4 can be very well displayed. Their Auslander-
Reiten quivers are pictured above.

P éP é2P

A P1Q(t) family of homogeneous tubes

The Auslander-Reiten quiver ΓΛ1 of Λ1 is obtained by identifying along P with éP,
and ΓΛ2 of Λ2 by identifying along P with é2P.

P1

P2

éP1

éP2

é2P1

é2P2

Two tubes of ZA1Û2 and a P1Q(t)Ł family of homogeneous tubes

The Auslander-Reiten quiver ΓΛ4 of Λ4 is obtained by identifying along
�

P1
P2

�
with�

é2P1
é2P2

�
. Up to now we have realized all finite dimensional indecomposable Ut

�
sl (2)

�
-

modules as representations of the corresponding quivers.

4. Constructing of indecomposables. Reducing the problem of representations of
Ut

�
sl (2)

�
to those of Λ1, Λ2 and Λ4 means that the category mod Ut

�
sl (2)

�
is very

clear now. However we will give the structure of all finite dimensional indecomposable
Ut

�
sl (2)

�
-modules by their chosen basis and the actions of generators K, X, Y.

We consider only the case of q a primitive root of 1 i.e., the case (iv) of Theorem 3.3.2.
The other cases can be easily deduced from this one.

4.1 Indecomposable modules Vj(ã, n). The basis of Vj(ã, n) is

far�j�2
u (ã, m � 1), ej

v(ã, m) j 0 � m � n, 0 � u � r� j � 2, 0 � v � jg
and the actions are given by:

Kej
v(ã, m) ≥ ãtmrtj�2vej

v(ã, m)

Xej
v(ã, m) ≥ ã2t2mr[v][j + 1� v]ej

v�1(ã, m) + év0ar�j�2
r�j�2(ã, m + 1)

Yej
v(ã, m) ≥ ej

v+1(ã, m)

and

Kar�j�2
u (ã, m � 1) ≥ ãt(m�1)rtr�j�2�2uar�j�2

u (ã, m � 1)

Xar�j�2
u (ã, m � 1) ≥ ã2t2(m�1)r[u][r � j � 1� u]ar�j�2

u�1 (ã, m � 1)

Yar�j�2
u (ã, m � 1) ≥ ar�j�2

u+1 (ã, m � 1)

https://doi.org/10.4153/CJM-1997-038-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-038-4


782 XIAO JIE

where ar�j�2
u (ã,�1) ≥ 0, ar�j�2

u (ã, n) ≥ 0, ar�j�2
�1 (ã, m�1) ≥ ar�j�2

r�j�1(ã, m�1) ≥ 0 and

ej
j+1(ã, m) ≥ ar�j�2

0 (ã, m � 1). The graphical representations of Vj(ã, n) are as follows:

r ≥ 5, j ≥ 1, n ≥ 3.

4.2 Indecomposable modules Ṽj(ã, n). The basis Ṽj(ã, n) is far�j�2
u (ã, m�1), ej

u(ã, m) j
0 � m � n, 0 � u � r� j � 2, 0 � v � jg and the actions are given by:

Kej
v(ã, m) ≥ ãtmrtj�2vej

v(ã, m)

Xej
v(ã, m) ≥ ã2t2mr[v][j + 1� v]ej

v�1(ã, m)

Yej
v(ã, m) ≥ ej

v+1(ã, m)

and

Kar�j�2
u (ã, m � 1) ≥ ãt(m�1)rtr�j�2�2uar�j�2

u (ã, m � 1)

Xar�j�2
u (ã, m � 1) ≥ ã2t2(m�1)r[u][r � j � 1� u]ar�j�2

u�1 (ã, m � 1) + éu0ej
j(ã, m)

Yar�j�2
u (ã, m � 1) ≥ ar�j�2

u+1 (ã, m � 1)

where ar�j�2
u (ã,�1) ≥ ar�j�2

u (ã, n) ≥ 0, ej
�1(ã, m) ≥ ej

j+1(ã, m) ≥ 0 and

ar�j�2
r�j�1(ã, m � 1) ≥ ej

0(ã, m � 1).

The graphical representations of Ṽj(ãn) are as follows:

r ≥ 5, j ≥ 1, n ≥ 3.
The induced Auslander-Reiten sequences are:

(4.3) 0 ! Vj(ã, n) ! Vj(ã, n + 1)ý Vj(ãt2r, n + 1) ! Vj(ãt2r, n + 2) ! 0

0 ! Ṽj(ãt2r, n + 2) ! Ṽj(ã, n + 1)ý Ṽj(ãt2r, n + 1) ! Ṽj(ã, n) ! 0

and 0 ! Ṽj(ã, 1) ! Vj(ã) ý Pr�j�2(ãtr) ý Vj(ãt2r) ! Vj(ã, 1) ! 0.
The Auslander-Reiten translation is defined by

úVj(ãt2r, n + 2) ≥ Vj(ã, n), úṼj(ã, n) ≥ Ṽj(ãt2r, n + 2), n ½ 0,

and úVj(ã, 1) ≥ Ṽj(ã, 1), where Vj(ã, 0) ≥ Ṽj(ã, 0) ≥ Vj(ã).

4.4 The indecomposable modules Wj(ã, n) and W̃j(ã, n). The basis of Wj(ã, n) is
fej

u(ã, m) j 0 � m � r� 1, 1 � m � ng and the actions of K, X, Y as follows:

Kej
u(ã, m) ≥ ãt(1+(�1)m )rtj�2uej

u(ã, m)

Xej
u(ã, m) ≥ ã2[u][j + 1� u]ej

u�1(ã, m) + éu0ej
r�1(ã, m + 1)

Yej
u(ã, m) ≥ ej

u+1(ã, m)
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where ej
u(ã, n + 1) ≥ 0 and ej

r(ã, m) ≥ 0 for 1 � m � n. The graphical representation of
Wj(ã, n) is as follows

r ≥ 5, j ≥ 1, n ≥ 3.
The basis of W̃j(ã, n) is ff j

u(ã, m) j 0 � u � r� 1, 1 � m � ng and the actions of K,
X, Y as follows

Kf j
u(ã, m) ≥ ãt(1+(�1)m )rt�j+2uf j

u(ã, m)

Xf j
u(ã, m) ≥ f j

u+1(ã, m)

Xf j
u(ã, m) ≥ ã2[u][j + 1� u]f j

u�1(ã) + éu,0f j
r�1(ã, m � 1)

where f j
u(ã, 0) ≥ 0 for any u and f j

r (ã, m) ≥ 0 for 1 � m � n. The graphical representa-
tion of W̃j(ã, n) is as follows

r ≥ 5, j ≥ 1, n ≥ 3.
The induced Auslander-Reiten sequences are

0 ! Wj(ãt2r, n) ! Wj(ã, n + 1)ýWj(ãt2r, n� 1) ! Wj(ã, n) ! 0

and
0 ! W̃j(ãt2r, n) ! W̃j(ã, n + 1)ý W̃j(ãt2r, n� 1) ! W̃j(ã, n) ! 0

and úWj(ã, n) ≥ Wj(ãt2r, n), úW̃j(ã, n) ≥ W̃j(ãt2r, n) where Wj(ãt2r, 0) ≥ W̃j(ãt2r, 0) ≥
0.

4.5 The indecomposable modules Tj(ã,ï, n) and T̃j(ã,ï, n). The basis of Tj(ã,ï, n) is
fej

u(ã, m), êj
u(ã, m) j 0 � u � r� 1, 1 � m � ng and the actions of K, X, Y are given as

follows:

Kej
u(ã, m) ≥ ãtj�2uej

u(ã, m)

Xej
u(ã, m) ≥ ã2[u][j + 1� u]ej

u�1(ã, m) + ï1éu,0êj
r�1(ã, m � 1)

Yej
u(ã, m) ≥ ej

u+1(ã, m)

and

Kêj
u(ã, m) ≥ ãt2rtj�2uêj

u(ã, m)

Xêj
u(ã, m) ≥ ã2[u][j + 1� u]êj

u�1(ã, m) + ï2éu,0ej
r�1(ã, m) + éu,0ej

r�1(ã, m � 1)

Yêj
u(ã, m) ≥ êj

u+1(ã, m)

where ej
u(ã, 0) ≥ êj

u(ã, 0) ≥ 0, ej
r(ã, m) ≥ êj

r(ã, m) ≥ 0 and ï ≥ (ï1,ï2) 2 Q(t)Ł ð
Q(t)Ł.
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The graphical representation of Tj(ã,ï, n) is shown above, r ≥ 5, j ≥ 1, n ≥ 2.
The basis of T̃j(ã,ï, n) is ff j

u(ã, m), f̂ j
u(ã, m) j 0 � u � r � 1, 1 � m � ng. The

actions of K, X, Y as follows:

Kf j
u(ã, m) ≥ ãt�j+2uf j

u(ã, m)

Xf j
u(ã, m) ≥ f j

u+1(ã, m)

Yf j
u(ã, m) ≥ ã2[u][j + 1� u]f j

u�1(ã, m) + ï1éu0 f̂ j
r�1(ã, m) + éu0 f̂ j

r�1(ã, m � 1)

and

Kf̂ j
u(ã, m) ≥ ãt2rt�j+2uf̂ j

u(ã, m)

Xf̂ j
u(ã, m) ≥ f̂ j

u+1(ã, m)

Yf̂ j
u(ã, m) ≥ ã2[u][j + 1� u]f̂ j

u�1(ã, m) + ï2éu0f j
r�1(ã, m) + éu,0f j

r�1(ã, m � 1)

where f j
u(ã, 0) ≥ f̂ j

u(ã, 0) ≥ 0, f j
r (ã, m) ≥ f̂ j

r (ã, m) ≥ 0 and ï ≥ (ï1,ï2) 2 Q(t)ŁðQ(t)Ł.
The graphical representation of T̃j(ã,ï, n) is as follows:

r ≥ 5, j ≥ 1, n ≥ 2.
It is easy to see that Tj(ã,ï, n) ' Tj(ã,ï0n) if and only if there is a c 2 Q(t) with

ï ≥ cï0; so is it for T̃j(ã,ï, n). So we write ï 2 P1Q(t)Ł to denote those ï.

REMARK. In the definition of Tj(ã,ï, n), one can change the action of X on êj
u(ã, m)

by Xêj
u(ã, m) ≥ ã2[u][j+1�u]êj

u�1(ã, m)+ï2éu0ej
r�1(ã, m), also obtain an indecompos-

able Ut

�
sl (2)

�
-module; however, we claim that this module is isomorphic to Tj(ã,ï, n).

Similarly for T̃j(ã,ï, n).
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The induced Auslander-Reiten sequences are

0 ! Tj(ã,ï, n) ! Tj(ã,ï, n + 1)ý Tj(ã,ï, n � 1) ! Tj(ã,ï, n) ! 0

0 ! T̃j(ã,ï, n) ! T̃j(ã,ï, n + 1)ý T̃j(ã,ï, n � 1) ! T̃j(ã,ï, n) ! 0

and úTj(ã,ï, n) ≥ Tj(ã,ï, n), úT̃j(ã,ï, n) ≥ T̃j(ã,ï, n), where Tj(ã,ï, 0) ≥
T̃j(ã,ï, 0) ≥ 0.

Now we have given all finite dimensional indecomposable modules of Ut

�
sl (2)

�
;

however we find some modules in Subsection 4.5 are isomorphic, so we give the fol-
lowing identifications.

PROPOSITION 4.6. Tj(ãt2r,ï�1, n) ' Tj(ã,ï, n) ' T̃j(ã,ï�1, n) ' T̃j(ãt2r ,ï, n) for
any ï 2 P1Q(t)Ł and n ½ 1, 0 � j � r� 2.

REMARK. If ï ≥ (ï1,ï2) 2 P1Q(t)Ł, we denote (ï2,ï1) 2 P1Q(t)Ł by ï�1; also
ï�1 ≥ (ï�1

1 ,ï�1
2 ) in P1Q(t)Ł.

PROOF. (1) Tj(ã,ï, n) ' Tj(ãt2r,ï�1, n). Define ß: Tj(ã,ï, 1) ! Tj(ãt2r,ï�1, 1)
as: ß�ej

u(ã, m)
� ≥ êj

u(ãt2r, m) and ß�êj
u(ã, m)

� ≥ ej
u(ãt2r, m). We only check that,

ß�Xej
u(ã, m)

� ≥ ß�ã2[u][j + 1�u]ej
u�1(ã, m) +ï1du,0êj

r�1(ã, m) + éu,0 êj
r�1(ã, m�1)

� ≥
ã2[u][j + 1� u]êj

u�1(ãt2r, m) +ï1éu,0ej
r�1(ãt2r, m) + éu,0ej

r�1(ãt2r, m� 1) ≥ Xêj
u(ãt2r, m).

So ß induces Tj(ã,ï, n) ' Tj(ãt2r,ï�1, n). Similarly T̃j(ã,ï�1, n) ' T̃j(ãt2r,ï, n).
(2) Define †: T̃j(ã,ï�1, 1) ! Tj(ã,ï, 1) as follows:

†�f j
j+1+i(ã, 1)

� ≥ (�1)iã2i [r � 1]! [r � j � 2]!
[r � 1� i]! [r � j � 2� i]!

êj
r�i�1(ã, 1)

for 0 � i � r� j � 2.

†�f j
j�i(ã, 1)

� ≥ 1
ï1ã2i

[j � i]!
[j]! [i]!

ej
i(ã, 1)

for 0 � i � j.

†�f̂ j
r�1�i(ã, 1)

� ≥ (�1)i [r� 1� i]! [r � j � 2� i]!
ã2(j+1)[j]! [j]! [r � 1]! [r � j � 2]!

ej
j+i+1(ã, 1)

for 0 � i � r� j � 2.

†�f̂ j
i (ã, 1)

� ≥ (�1)r�j�2ã2(r+i�j�2)[r � 1]! [r � j � 2]! [i]! [j]!
ï2[j + 1]! [j � i]!

êj
j�i(ã, 1)

for 0 � i � j.
It can be checked that † preserves the actions of X and Y. Therefore we have

T̃j(ã,ï�1, 1) ' Tj(ã,ï, 1).
(3) Since Tj(ã,ï, 1) and T̃j(ã,ï�1, 1) are corresponding to the simple regular modules

over Λ4 and dimQ(t) Ext1
�
Tj(ã,ï, 1), Tj(ã,ï, 1)

� ≥ 1, Tj(ã,ï, n) ' T̃j(ã,ï�1, n) for
n ½ 1 in view of (2).

Comparing with the Auslander-Reiten quiver of Λ4, we can summarize the work of
this section into the following result.
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THEOREM 4.7. The modules (i) Pi(ã), ã 2 f1,�1,
p�1,�p�1g and 0 � i �

r � 1, (ii) Vj(ã, n) and Ṽj(ã, n), ã 2 f1,�1,
p�1,�p�1g, 0 � j � r � 2, n ½ 0,

(iii) Wj(ã, n) and W̃j(ã, n), ã 2 f1,�1,
p�1,�p�1g, 0 � j � r � 2, n ½ 1 and

(iv) Tj(ã,ï, n), ã 2 f1,
p�1g, ï 2 P1Q(t)Ł, n ½ 1, form a complete list of all finite

dimensional indecomposable modules of Ut

�
sl (2)

�
over Q(t) up to isomorphism.

By [AR], we have the following Auslander-Reiten formula.

COROLLARY. There exist canonical isomorphisms ExtUt(sl (2))(M, N) '
DHomUt(sl (2))(N, úM) for any indecomposable Ut

�
sl (2)

�
-modules M and N, where D ≥

HomQ(t)

�
,Q(t)

�
.

REMARK. All statements in this note are valid over the field C of complex numbers.

ACKNOWLEDGEMENTS. The results presented here were obtained during the au-
thor’s visit to the Department of Mathematics in the University of Antwerp (UIA) and
University of Bielefeld (SFB 343). The author would like to thank Prof. F. Van Oys-
taeyen and Prof. C. M. Ringel for their kind hospitality and very useful discussions. The
author is also grateful to Ms. Rahner for her typing with patience and other help.

REFERENCES

[A] J. L. Alperin, Local representation theory, Cambridge University Press, 1986.
[APW] H. H. Andersen, P. Polo and K. Wen, Representations of quantum algebras, Invent. Math. 104(1991),

1–59.
[AR] M. Auslander and I. Reiten, Representation theory of artin algebras III: almost split sequences, Comm.

Algebra 3(1975), 239–294.
[BGG] J. Bernstein, I. M. Gelfand and S. I. Gelfand, A category of G-modules, Functional Anal. Appl. 10

(1976), 87–92.
[DCK] C. De Concini and V. G. Kac, Representations of quantum groups at roots of 1, Progr. Math. 92(1990),

471–506.
[DR] V. Dlab and C. M. Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math.

Soc. 173(1976).
[Dr1] V. G. Drinfeld, Hopf algebras and quantum Yang-Baxter equation, Soviet Math. Dokl. 32(1985), 254–

258.
[Dr2] , Quantum groups, Proc. ICM, Berkeley, 1986, 798–820.
[G] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, Springer, Lecture Notes in

Math. 831, 1980, 1–71.
[Ha] D. Happel, Triangulated categories in the representation theory of finite dimensional algebras, London

Math. Soc. Lecture Note Ser. 119(1988).
[Ji] M. Jimbo, A q-difference analogue of V(G) and the Yang-Baxter equation, Lett. Math. Phys. 10(1985),

63–69.
[KiR] A. N. Kirillov and N. Yu. Reshetikhin, Representations of the algebras Uq(sl 2), q-orthogonal polyno-

mials and invariants of links, Preprint LOMI (E) 9(1988).
[KM] R. Kirby and P. Melvin, The 3-manifold invariants of Witten and Reshetikhin-Turaev for sl (2,C), Invent.

Math. 105(1991), 473–545.
[KR] P. P. Kulish and N. Yu. Reshetikhin, J. Soviet Math. 23(1983), 2435.
[Lu] G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras, Adv. Math.

70(1988), 237–249.
[Ri] C. M. Ringel, Tame algebras and integral quadratic forms, Springer, Lecture Notes in Math. 1099, 1984.
[Ro] M. Rosso, Finite dimensional representations of the quantum analogue of the enveloping algebra of a

complex simple Lie algebra, Comm. Math. Phys. 117(1988), 583–593.

https://doi.org/10.4153/CJM-1997-038-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-038-4


REPRESENTATIONS OF Ut(sl (2)) 787

[RS] A. N. Rudakov and I. R. Shafarevich, On the irreducible representations of a simple three-dimensional
Lie algebra over a field of finite characteristic, Math. Notes 2(1967), 439–454.

[RT1] N. Yu. Reshetikhin and V. G. Turaev, Ribbon graphs and their invariants derived from quantum groups,
Comm. Math. Phys. 127(1990), 1–26.

[RT2] , Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math. 103(1991),
547–597.

[Ru] A. N. Rudakov, Reducible P-representations of a simple three-dimensional Lie P-algebra, Moscow Univ.
Math. Bull. 37(1982), 51–56.

[Su] R. Suter, Modules over Uq(sl2), Comm. Math. Phys. 163(1994), 359–393.

[X1] J. Xiao, Generic modules over the quantum group Ut

�
sl(2)

�
at t a root of unity, Manuscripta Math.

83(1994), 75–98.

[X2] , Restricted representations of U
�

sl(2)
�

-quantizations, Algebra Colloq. (1)1(1994), 56–66.

[XV] J. Xiao and F. Van Oystaeyen, Weight modules and their extensions over a class of algebras similar to
the enveloping algebra of sl (2,C), J. Algebra 175(1995), 844–864.

Department of Mathematics
Beijing Normal University
Beijing 100875
People’s Republic of China

https://doi.org/10.4153/CJM-1997-038-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-038-4

