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Abstract. Let / be an exact, area-preserving, monotone twist diffeomorphism of the
cylinder and let a) be a Liouville number. We will show that arbitrarily close to /
in the C°° topology there exists a C°° diffeomorphism g with no homotopically
non-trivial invariant circle of rotation number <a.

1. Introduction
This paper continues our series of papers on area-preserving diffeomorphisms of
the cylinder ([9] and references therein, [10] and [11]). We will prove a result about
the possibility of destroying certain invariant circles of such a diffeomorphism by
a C°° small perturbation. Our result is a partial converse of the KAM theorem.
However, we obtain such a converse only for (symplectic) mappings of a two-
dimensional manifold, leaving open all the questions which one could pose in higher
dimensions. We also make a 'twist' hypothesis. This twist hypothesis is often satisfied
in cases of interest, but, of course, one would like to remove it.

The main result of this paper is most easily formulated in terms of exact,
area-preserving, monotone twist diffeormorphisms of an infinite cylinder (R/Z) xR.
We will denote the set of all such diffeomorphisms by 5TX. The precise conditions
for a diffeomorphism / of (R/Z)xR to be a member of STX are the conditions
imposed on / in [9, § 2] and [11, § 2]. We will let 3™ denote the set of elements
of 5"1 which are C°°.

For the convenience of the reader, we repeat the definition of 2Tl here. Let / be
a mapping of (R/Z) xR into itself. We will say that / e ST1 if the following conditions
are satisfied. First, we require that / b e a C1 diffeomorphism which maps points
near the top end of the cylinder to points near the top end, and likewise for points
near the bottom end. Second, setting f(d, y) = (0', y'), we require that the form
y'de'-ydd on (R/Z)xR be exact. Third, we require that / satisfy a positive
monotone twist condition, i.e. 68'/By > 0 everywhere. Fourth, we require that / twist
the cylinder infinitely at either end. To express this condition, we use a lift / of /
to the universal cover R2 of (R/Z) x R, and set/(x, y) = (*', y'). The fourth condition
means <hat for fixed x we have x' -» +oo as y -* +oo and x' -» -oo as y -* —oo.

We will use the word 'circle' in the topological sense, i.e. a subset T of (R/Z) xR
will be said to be a circle if it is homeomorphic to R/Z. We will say that T is
homotopically trivial if it can be deformed to a point, i.e. there is a continuous
mapping F:Tx[0, l]-»(R/Z)xR such that F | r x 0 = inclusion and F | T x l is con-
stant. Otherwise F will be said to be homotopically non-trivial. Intuitively, the
homotopically non-trivial circles are the ones which 'go around' the cylinder.
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200 /. N. Mather

According to a theorem of Birkhoff [2, § 3], if F is a homotopically non-trivial
circle in (R/Z) xH which is also /-invariant for some fe STl, then F is the graph of
a Lipschitz function u:W/Z^R. See [7] for a discussion of this result and [5] and
[4] for a proof. Poincare denned the rotation number of such a circle as follows.
Let/ be a lift of / to the universal cover R2 of (R/Z) x R. Let f be the inverse image
of T under the projection R2-»(R/Z)xR. Let (x,y)eT and set (xn, yn)=f{x,y).
Poincare's rotation number is denned as

p(f,T)= lim xn/n.

It is well known and easily verified that this limit exists and is independent of
(x, y). Birkhoff [2, §4] proved that if p is irrational, then there is at most one
homotopically non-trivial /-invariant circle of rotation number p. The question of
when there do or do not exist invariant circles is very complicated and has led to
deep studies by Riissmann, Herman and others. See Herman's two volumes [5,6]
and the references therein. See also the article of Bullett [3] for some remarkable
results about the 'piecewise standard map'.

In particular, the question of persistence of such invariant circles has been much
studied. It has been known since the work of Poincare in the 19th century that a
generic fe 2F0 has no homotopically non-trivial invariant circles of rational rotation
number. The big breakthrough came in the 1960s with the development of KAM
(Kolmogorov, Arnold, Moser) theory. This theory deals with much more general
situations than area-preserving mappings. But, for the situation we are considering
here, it implies the following. Let fe ST* and let F be a homotopically non-trivial
/-invariant circle. Let a> = p(f, F) be its rotation number. We say that at satisfies a
Diophantine condition, or w e DC, if there exist positive numbers C, N such that

\q<o-p\>Cq-N

for all q, peZ\{0}. According to KAM theory, if F is C°° and p(f, F)e DC, then
there exists a neighbourhood N of / in ST° such that if g e N and g is its lift to the
universal cover (near / ) , then there exists a homotopically non-trivial g-invariant
circle A with p(g, A) = p(/, F). This result is due to Moser [12], who also gave a
beautiful exposition [13] of this and related results in classical dynamics. For the
case of invariant circles of area-preserving mappings, improvements in the original
KAM results (in the sense of requiring less differentiability) have been made by
Riissmann and Herman. The best results and a complete survey of the literature in
this direction are contained in [5] and [6]. Salamon [14] gives proofs of the KAM
theorem in all dimensions with careful attention to the differentiability class.

The main result of this paper is a partial converse of the KAM result on persistence
of invariant circles. A real number o> is called a Liouville number if it is irrational
but does not satisfy a Diophantine condition. In other words, an irrational o» is
Liouville if for all positive numbers C, N there exist q, p e Z\{0} such that

\qu>-p\<Cq-N.

The main result of this paper (theorem 2.1) is that if w is rational or Liouville, then
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any f^ST° can be arbitrarily well approximated in the C°° topology b y a g e f *
which has no invariant circle of rotation number to. For the case of rational rotation
number, this is a result essentially due to Poincare. The precise formulation we have
given uses a notion (C°° topology) which was introduced after the time of Poincare.
A modern rigorous account of Poincare's result (in the formulation we have just
given) may be found in [15]. However, a method which is more quantitative than
Poincare's is necessary to obtain this result for the case of a Liouville number.

Our method is based on a study of'Peierls's barrier', denned e.g. in [11]. Suppose
to is a rotation number, or one of p/q+, p/q or p/q-, where p/q is a rational
number. Let / e SFX (denoted J in [11]) and let h be the generating function of the
lift / of / to the universal cover R2 of (R/Z) x R. The generating function h was
denned e.g. in [11, § 2]. It is uniquely characterized by the condition/(x, y) = (x', y')
if and only if y = -d,/i(x, x') and y' = d2h(x, x') for (x, y, x', y') e R4. Peierls's barrier
P* = P<o,h = Pa,j was defined in [11, § 6]. For the moment, all we need to recall about
it is that it is a non-negative real-valued function of a real variable, and / has a
homotopically non-trivial invariant circle of rotation symbol to if and only if P^j
vanishes identically.

It seems worth noting that the function Pa = Pmh — Paj is closely related to the
number AWu = AW ĥ = &Waj introduced by the author in [8]. Indeed, AWa is an
upper bound for Pm, and / has an invariant circle of rotation symbol to if and only
if AW^ = 0 [8, proposition 5.2]. The continuity of AW,,, at irrational numbers [8,
proposition 5.1] suggested that proposition 5.2 of [8] might be useful as a necessary
condition for the existence of invariant circles. The result of this paper bears out
this hope. We show that it is possible to destroy invariant circles of Liouville rotation
number w by a small perturbation by showing it is possible to increase Ptt,(f) by
such a perturbation.

We do this by increasing Pp/,±(£) by a perturbation (§ 5) and then using a suitable
modulus of continuity for Po)(^) as a function of to to apply this result to numbers
which are well approximated by rationals. Indeed, the main technical difficulty is
to obtain the modulus of continuity. The appropriate modulus of continuity is the
content of theorem 2.2. The proof of this modulus of continuity relies on the modulus
of continuity we previously obtained in [11].

It would probably be possible to prove these results by following our original
plan, suggested in [8], and using AWU instead of P<u(^). But it is technically easier
to prove the appropriate moduli of continuity for Pa,(^

:) (as a function of w), so we
use P^i) in place of A Wm. It seems that the moduli of continuity which we prove
for P^ig) (as a function of to) should also hold for A Ww, but the proof involves
extra difficulties, which do not seem very interesting, so we limit ourselves to
considering P(U(^).

2. Main results
If / e ^°°, it has a lift / to the universal cover R2 of (R/Z) x R, and any two such
lifts differ by a translation (x,y)->(x + n,y), where neZ. We let #°° denote the
space of all such lifts of elements of "̂°° and we provide #°° with the C°° topology.
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THEOREM 2.1. Suppose w e R\DC, fe 2T1 and f is a lift off to R2. Then there exists
g 6 5̂ °° arbitrarily close to f, with respect to the C00 topology, such that there is no
homotopically non-trivial g-invariant circle F with p(g, F) = w. Here g denotes the
unique element of 3**" of which g is the lift.

Conversely, KAM theory implies that if we DC and / has a homotopically
non-trivial C°° invariant circle F with p(f, F) = «, then so does every g € 3°° near /
in the C°° topology.

As mentioned in the introduction, the proof depends on a modulus of continuity
for Peierls's barrier. Here is the result we need:

THEOREM 2.2. There exists a positive real number C such that the following holds.
Suppose h:U2^U is continuous and satisfies (Hj)-(H5) and (H69) of [11, §§ 3 and
4]- Ifp/q is a rational number (in lowest terms) and <o is a rotation symbol, then

in the case <os:p/q+, and

in the case a><p/q-. Here w* is the number underlying w.

The above terminology was introduced in [11]. For the convenience of the reader,
we review this terminology. The space if of rotation symbols is the disjoint union
R_1L(Q+)JL(Q-), where R denotes the set of real numbers and Q the set of rational
numbers. We think of Q+ and Q - as copies of Q, disjoint from Q and from each
other. If p/qeQ, we let piq- and p/q+ be the corresponding elements of Q - and
of Q+. If a) e i , it is its own underlying number and p/q is the underlying number
of p/q— or p/q+. We denote the underlying number of w by to*. We provide if
with the unique total order for which p/q—<p/q^p/q+ and for which the mapping
<o^a>* is weakly order-preserving.

We recall from [11, §§ 3 and 4] the conditions imposed on h. It is a continuous
real-valued function on U2 which satisfies the following:

(H,) h(x,x') = h(x+l,x'+l) forallx,x'eR.

(H2) lim h(x, x + €) = +<x> uniformly in x.
lfl*°°

(H5) There exists a positive continuous function p on R2 such that

( x-* 6x2/2 — h(x, x') is convex for any x', and
( 6e' \

( x-
\x'- ex'2/2-h(x,x') is convex for any x

Here 6 is a positive number. We say that h satisfies (H6) if there exists 0>O such
that h satisfies (H6e).

Note that in [11] we also considered conditions (H3) and (H4). However, these
follow immediately from the above conditions, as we showed at the end of [11,
§ 4], so we will not need to consider them here.
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Note that if h is the generating function of a lift/ o f / e STX, then h satisfies the
above conditions with 0 = cot B, provided that B is a uniform lower bound for the
amount of twisting of /, in the sense that the derivative of / or / " ' at any point
turns vertical vector by at least B (in the clockwise direction for / and the counter-
clockwise direction for/"1). The (completely elementary) verification of (H,)-(H5)
and (H6fl) for such h is carried out in [11].

Peierls's barrier Pm = Pml, defined in [11, § 6] is a non-negative function defined
on U, associated to a continuous function /i:R2-»R satisfying (H!)-(H6) and a
rotation symbol w. Its value at a real number £ measures the extent to which to fails
to be in a 'minimal configuration of rotation symbol w' associated to h. We recall
the relevant definitions from [11].

A configuration is a bi-infinite sequence x = ( . . . , x,,...)eRz. We set
h(xj,..., xk) = Y,iIj h(Xj, x,+i). A configuration is said to be minimal (for h) if it
minimizes h(xj,... ,xk) subject to fixed boundary conditions for every pair of
integers j < k. A configuration x' is said to be a translate of x if there exist integers
j , k such that x! = xi+J + k for all integers i. A basic result of Aubry says that the set
of translates of a minimal configuration is totally ordered. More precisely, we will
write x<y (or x>y) to mean Xj<y, (or xt> yt) for every integer i. Aubry's result
is that if x' and x" are both translates of the same minimal configuration, then one
of the three conditions x'<x", x' = x" or x'>x" holds [1]. Aubry's result has the
consequence that if x is a minimal configuration, then there is a number u> = p(x),
called the rotation number of x, such that if x\ = xi+j + k, with j > 0, then x' > x (resp.
x'<x) if j<o + k>0 (resp. j<o + k<0). When p{x) is irrational, it is also called the
rotation symbol p(x) of x When p(x) is rational, say p/q in lowest terms, q>0,
then there is a further distinction which may be noticed by considering the translate
x\ = xi+q -p. In this case we define the rotation symbol p~(x) as follows: p(x)=p/q+
if x'>x; p(x)=p/q if x' = x; p(x)=p/q- if x'<x.

Some further notations from [11] are: M denotes the set of all minimal configur-
ations; M = Mu>Jt the set of all minimal configurations (for h) of rotation symbol
equal to to or the number underlying u>; if x = ( . . . , x0,...) € Uz is a configuration,
then pro(x) = xoeU; and A0,=pr0(Ma>). It follows from Aubry's theory that A^ is
a closed subset of M and pr0: M^ -* Am is a homeomorphism, where Mw is provided
with the topology induced from the product topology on Rz [1].

Peierls's barrier Pw(^) = /*„,,),(£) is defined for every real number £ If ije Aa, then
Ptu(^) is defined to be 0. Otherwise, £ is in a complementary interval (x0, y0) of Aa,
where x, yeMw. In this case P<u(^) is defined as the minimum of JV (h(z,, z,+,)-
h(Xi,x,+i)) taken over all configurations z which satisfy XjSz.sj , , zo = f and in
the case that w is rational of the form p/q (in lowest terms); also zi+q = z,+p. In
[11, § 6] it is proved that when h is continuous and satisfies (H,)-(H6), then P(U(£)
exists, is non-negative, vanishes only on Aw and is a Lipschitz function of £ with
Lipschitz constant IB.

Theorem 2.2 will be proved in § 4. Then in § 5 we will show theorem 2.1, using
theorem 2.2.
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3. Properties ofh
In this section we derive various properties of h under the sole hypotheses (H,)-(H5)
and (H6e).

First, recall from [11, § 4] that the one-sided first partial derivatives of h exist
and are locally of bounded variation. This is a consequence of (H6a) and the fact
that the one-sided derivatives of a convex function of one variable exist and are
monotone. Second, we have:

LEMMA. Ifh :R2-»R satisfies (H,)-(H5) and (H6e), then there exists a unique Borel
measure fih on U2 such that

Mt*, n x [*', n) = *(£ x') + h(x, f) - h(x, x') - h(i, f)
for any x<ij and x' < f'. Moreover, fih vanishes on every vertical or horizontal line,
is positive on non-void open sets and is finite on bounded sets.

Proof. For coordinate rectangles, i.e. rectangles R of the form [x, £] x [x1, £'] with
x<% and x'<g, we define fih(R) by the above formula. It is easily verified that
fih is an additive set function on coordinate rectangles, in the sense that if R is a
coordinate rectangle expressed as a finite union of other coordinate rectangles,
R = U,=i Ri, and /?, intersects Rj only in the boundary of /?; and Rj for i ̂ j, then
(*h(R)=T.i=i /*fc(̂ i)- The existence and uniqueness of a measure /Mh with these
assigned values on coordinate rectangles is then an exercise in measure theory [16].
We omit the details.

The fact that /tfc vanishes on every vertical or horizontal line follows from the
continuity of h. The fact that ixh is positive on non-void open sets follows from
(H5). The fact that it is bounded on bounded sets is immediate from the definitions.

•
Third, we have, for y < z,

y ,
(3.1)

d2h(z, z±) < d2h(y, z±) < d2h(y, y±) + 6(z-y),
by (H5) and (H6e). Since dxh(y±,y) and d2h(y,y±) are periodic of period 1, it
follows that each of these functions has total variation s20 over an interval of
length 1.

Fourth, by (3.1), there are unique Borel measures v\, v\ on R such that

] = e(z-y)+dMy+, y)-3Mz+, z),

] = 6(z-y) + d2h(y,y+)-d2h(z, z+).

Obviously v'h is invariant under the translation y^-y +1 and v'h(y, y +1] = 6.
Fifth, we have, for x < £

M [ * , £ ] 2 ) ^ ( £ - * K ( x , £ ) , '- = 1,2. (3.2)

For i = 2 this holds because
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Here the first equation follows from the definition of fih, the inequality is a
consequence of (H6e), and the last equation follows from the definition of v\. The
case i = 1 of (3.2) may be proved similarly.

Since v{{x, x +1] = 6 (j = 1 or 2), any interval of length <1 may be partitioned
into 2N subintervals, each of length <1/JV and v{ measure <0/ N, for any positive
integer N. Consider such a partition, x0 < x, < • • • < x2N =s xo+1.

Sixth, we have, by (3.2) and the choice of partition,

(3.3)
i=O i=0

Seventh, we have

Y I k k (3.4)
where A, is the triangle

{(y ,z) :x ,<j<zsx , t ,} or {{y, z): x,+1<z<>>sx1}

according to whether x, or x,+1 is greater. Since y*-*d2h(xi,y+) is a function of
bounded variation by (H6e), we have obviously

h(xi, x,+1) = h(xt, x,) +
J x{

dy.
J x{

To verify (3.4), it is then enough to check

d2h(Xi, y+) dy.,) = - a2fc(y, y+) dy+
J X, J X,

Let 5 = A,\U, Uj, €j+i¥, where x, = (0<-•-<^2N= xi+1 is a partition of [x,, x,+1]
(Here we assume x,<xI+1. The case x,+1<x, may be treated similarly.) From the
definitions it follows that

2N-1 |"f,+1 (**,
= - I d2h(ij,y+)dy+\

J=° Jfj Jx,

(
d2h(ij,y+)dy+\ d2h(Xi,

Jx,

Thus it is enough to verify that as the mesh of the partition tends to zero, /JLH(S)

converges to /i/,(Aj) and the first term on the right of the last formula tends to the
first term on the right of the next to last formula. The convergence of fih(S) to
/^(A,) follows from (3.3). The convergence of the first term on the right follows from

d2h(y,

by (3.1) and the definition of v\. The difference of the first terms on the right is then

which clearly tends to zero as the mesh of the partition tends to zero.
This proves (3.4).
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4. Proof of theorem 2.2
We will consider only the case w>p/g+, the case <o<p/q- being similar. First,
using the main result of [11], we show that it is enough to consider the case when
p/q = 0 and ca = l/q'. In other words, it is enough to show that there exists a positive
number C such that

(4.1)

for any h satisfying (H!)-(H5) and (H6e), any positive number q' and any £eR.
The deduction of the case w >/>/<?+ of theorem 2.2 from (4.1) proceeds in three

steps as follows. First, we consider the case at = p/q + l/qq', where q' is a positive
integer. This case may be reduced to (4.1) by use of the conjunction operation
introduced in [11, § 5]. We recall its definition: if A, and h2 are two real-valued
continuous functions on R2 satisfying (H2), then we set

h{ * h2(x, x') = min /i,(x, y) + h2(y, x').
y

It is easily verified that hx * h2 is a real-valued continuous function on U2 satisfying
(H2), and that conjunction is an associative operation on this class of functions.
More to the point for what we want to do, if h, and h2 are continuous real-valued
functions on U2 satisfying (H))-(H5) and (H69), then /i, * h2 also satisfies these
conditions (with the same 8) [11, lemma 5.3]. The proof of this is elementary but
not obvious.

Let H(x, x') = h*"(x, x'+p), where h*q = h * • • • * h (q times) denotes the q-fold
conjunction of h with itself. It is easily verified that A^h = Aqw_pH and PWth = Pq«,-P,H,
as long as w is a rotation symbol which is not a rational number, or is a rational
number whose denominator is divisible by q. As we just remarked, [11, lemma 5.3]
implies that H is continuous and satisfies (H,)-(H5) and (H69), with the same 0.
Thus we may reduce the case w =p/q + l/qq' to the case p/q = 0, o = l/q' (i.e. 4.1),
by replacing h with H.

For the second step we consider the case p/q+scj<(p + l)/q. Here we use the
main result (theorem 7.1) of [11]. Recall that it states that \P^)-Pp/q{^)\^
C0{q~l + \<i)*q-p\), where C = 1200. We apply it, however, with p/q replaced by
p/q + l/qq', where q' is the positive integer such that p/q + l/qq'<w*<
p/q + l/q(q'-l). Assuming theorem 2.2 for to=p/q + l/qq', we may then deduce
it for p/q+<a><(p+l)/q:

\ =£ \PM) - PP/q+i/qqW\ + \PP/q+i/qqW - PP/q+(€)\

<4C6\a>*q-p\.
Finally, the case p/q+<a) follows trivially from the case p/q+<a><

This shows that the case a>>p/q+ of theorem 2.2 follows from (4.1).
In the first step above, note that even if h is C°° it is not generally the case that

H is C1. Thus it seems that the mathematics forces us to consider non-differentiable
functions. Of course we could try to avoid this reduction to the case p/q = 0 and
a> = l/q', and we have tried this. However, it seems that this reduction simplifies
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matters, even taking into account the fact that it forces us to consider non-differenti-
able functions.

The rest of this section is devoted to proving (4.1).
By definition Ao is the set of xeR for which h(x, x) takes its minimum value.

For simplicity we will assume until the end of this section that the minimum value
of h(x, x) is 0. We may make this normalization, because we may add a constant
to h(x, x) without changing anything.

For each complementary interval J = [J~, J+~\ of Ao we define a number Kj as
follows. Choose a minimal configuration ( . . . , x,,.. .) of rotation symbol 0+ such
that x, -* J~ as i -* -oo and x, -> J+ as i -* +oo. Theorem 5.8 of [1] asserts the existence
of such a configuration. For such a configuration we set

(Note that h(J~, J~) = h(J+, J+) = min h(x, x) = 0.)
To show that this is well defined, we observe that we may sometimes extend (3.4)

to infinite sums. For example, if y is a monotone increasing configuration such that
)>i -* J± as i -» ±oo, we have

J J~
d2h(y,y+)dy< £ h(yhyi+l).

Here the sum on the right is well defined, although it may be +°o. This inequality
follows from (3.4) because h(y,, y ,)s0 by our assumption that min h(x, x) = 0. In
fact, we have the same inequality when we replace the sum on the right with the
same sum over any subset of Z and the integral on the left by the integral over the
corresponding subset of [J~, / + ] . This shows that the sum on the right is well
defined: the absolute value of the integral is bounded by J7- \d2h(y,y+)\ dy, and
consequently the sum of all terms on the right having negative value is bounded
below by the negative of this quantity.

We will write h(y) for X°l-co M.Vi.J'i+i) (when this is defined). Clearly
Kj = min h(y), where the minimum is taken over all monotone increasing configur-
ations which limit on / " and / + (as above). We may obtain an upper bound for
Kj by comparing it with the sequence defined by yt = J~ for i < 0 and by y, = J+

for i>0. We obtain the second inequality below:

I d2h(y,y+)dy<Kj<h(r,J+) = j d2h(y,

where A, is the triangle {(y, z): J ~ < y < z < / + } . The last equation follows from
(3.4) and our normalization h(J~,J~) = 0.

If feR, we set KM) = Kj if £<zU + Z and K,(£) = min h(y) if feJ , where the
minimum is taken over all monotone increasing configurations y limiting on 7*,
with yo= £• For any integer n we set KJ+n(^) = Kj(^). This defines Kj(g) for every
complementary interval J of Ao.
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Note that for £e J we have the following bounds on

]

- j ;
where for any closed interval [a, ft] we denote by A[a b] the triangle

These bounds may be proved in the same way as the bounds for Kj were proved
above.

We set

where in each case the sum is taken over all complementary intervals of Ao in an
interval [x, x +1] of unit length, with x e Ao. It is easy to see, as a consequence of
the bounds that we deduced on Kj, that these sums are absolutely convergent.

Next we show

P0+(£) = K(t)-K. (4.2)

The only case we need consider is when £ & Ao+, since otherwise both sides clearly
vanish. We let f_ and £+ be as in the definition of P«,(£) in [11, § 6], i.e. £_ and g+
are minimal configurations of rotation symbol 0+, and (£0-, £o+) is the complemen-
tary interval of Ao+ which contains £ By definition

Po+U) = min {G0+(x): £_< x, < £+ and x0 = f},

where

Thus, in order to prove (4.2), it is enough to prove that the configuration
x = ( . . . , x, , . . . ) which achieves the minimum in the definition of Kj(g) satisfies
£•_ < x, < ^i+. In fact, the Aubry graphs of £_, x and f + do not cross. For example,
the fact that the graphs of £_ and x do not cross is a consequence of the fact that
£_ is minimal, the fact that x is minimal, subject to the condition x0 = £ and the
fact that x and f_ are a-asymptotic, since x,-»./_ and £,_-»./_ as i-» -oo, as well as
to-asymptotic, since x,-»/+ and £_-»/+ as j"-»+oo. The proof that these conditions
imply that the graphs of £_ and x do not cross is the same as the proof of [1, lemma
3.9]. This proves (4.2).

We observed above that it is enough to prove (4.1) in order to obtain theorem
2.2. Our next step in the proof of (4.1) is to obtain an expression for P\/q{i;) similar
to (4.2).

We set

L = min h(x0,... ,xq),

= m\nh(yo,...,yq),
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where the first minimum is taken over all configurations x which satisfy xi+q- = xf +1
and the second is taken over all configurations which satisfy y,+(?. = y,•.+1 as well as
yo = £ An argument similar to the proof of (4.2), which we omit, shows

PVqW = L(t)-L. (4.3)

Next we will show

(4.4a)

(4.4b)

In view of (4.2) and (4.3), this will be enough to prove (4.1), with C = 16, and
thereby complete the proof of theorem 2.2.

To prove K < L, we consider a configuration x which satisfies xi+q. = x,: +1 and
minimizes h{x0,... ,*,•_,) subject to this condition. For each complementary interval
J of Ao we let xJ denote the configuration defined by

X* = J~ V X, A J+.

We set Lj = £°l-°o h{xJj, xJ
l+l). All but finitely many terms in this sum vanish, because

all but finitely many terms have the form h(J~, J~) = 0 or h(J+, J+) = 0. Obviously
Kj < Lj, so we have the first inequality below:

where the sums are taken over all complementary intervals of Ao in an interval
[x, x +1] of unit length, with x e Ao.

The last inequality is a consequence of (3.4). In comparing £ j L} with L, we find
that the contribution of the first two terms on the right of (3.4) is the same. In fact,
the contribution of the second term is J*+l d2h(y,y+) dy. The contribution of the
first term apparently differs by a number of terms of the form h(J , J~) or h(J+, J+)
which appear in the expression associated to Y,j Lj but not in that associated to L.
However, these all vanish by our normalization.

The only difference is the contribution of the third term. In both cases the
contribution has the form /iA(U/ A/)- For L, the / are the complementary intervals
to {x0 , . . . , x,} in the interval [x0, xo+1]; for Y,j Lj, they are the complementary
intervals to {x 0 , . . . , x,}u Ao in the same interval. Thus the contribution of the third
term to Y^j Lj is smaller than the contribution of the third term to L, because it is
the measure of a smaller set.

This proves K<L. The proof that K(f l<L(f ) is similar.
To prove t < K + 168/q', we consider xeR which minimizes h(x,x), so that,

according to our normalization, h(x, x) = 0. We let iV = (g '+l) /4 . If Af>l, we let
x = x0 < • • • < x2N = x +1 be a partition of [x, x +1] such that

Such a partition exists by (3.3). For each complementary interval J = [7 , J+] of
Ao in [x, x +1], we choose a minimal configuration fJ = ( . . . , £/ , . . . ) of rotation
symbol 0+ such that f / -* J~ as i -* -<x> and ^ -* J+ as i -* +<x>. Let B denote the set
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of y € [x, x +1] such that y e Ao or y is one of the £/. We let B' be a subset of B
with 9'+1 points such that B' contains x and x+1 and such that for 0< i<2JV we
have that B'n [x,, xi+1] contains the least and greatest point of B n [x,, x,+,], unless
the latter is empty. Such a set clearly exists. We let x = y0 <>>,<• • • <yq-\<yq=x + \
be the points of B' arranged in increasing order. We have

i=0

Here the first inequality is an immediate consequence of the definition of L. The
second inequality follows from (3.4), the definition of K and the definition of the
sequence y0,..., yq>. For, by definition of K and (3.4), we have

px+l

K= I h(y,y)+\ d2h(y,y+) dy + M,(AB)

and, by (3.4),
fx+1

Hyo,...,yq)= I Hy,y)+\ d2h(y,y+) dy + M/,(AB),
yeB' Jx

where AB (resp. AB) = u A,, the union being taken over all complementary intervals
I of B (resp. B') in [x, x+1]. As usual, A7 ={j> <z: y, ze I}. By our normalization,
h(y,y)>0, so I B . h(y,y)<IB h(y, y), as B'c B. Clearly AB.\ABc U-^" ' [*„ xi+1]2

by definition of B', so we obtain the second inequality. The third inequality is a
consequence of the choice of the partition x = x0 < • • • < x2N - x +1 of [x, x +1].
The fourth inequality follows from the definition of N. This proves L< K +166/q'
in the case that N > 1, i.e. q'>3. But, in any case,

L < r
since /ift([x, x+l ] 2 )< 0. Thus L< K + 166/q' is true in every case.

The proof that L{^)< K(€) + l60/q' is similar and will be omitted.
Clearly (4.1) follows from (4.2), (4.3) and (4.4). This completes the proof of

theorem 2.2. •

5. Proof of theorem 2.1
We may assume without loss of generality that there is a uniform lower bound B
for the amount of twisting of / For, in any case, for any compact subset K of the
infinite cylinder, there exists / ' e T0 such that f\K = / ' | K and such that there is
such a uniform lower bound for the amount of twisting of/'. If K is large enough,
any invariant circle of any small perturbation of / or / ' whose rotation number is
a) lies in K. It follows that if we can find g' near / ' with no invariant circle F
satisfying p(g, F) = a>, we can construct such a g near / by letting it agree with g'
on a sufficiently large compact set.

From now on we assume that there is such a uniform lower bound B for the
amount of twisting of /. We have verified in [11, §§ 3 and 4] that the generating
function h of the lift / or / to the universal cover satisfies (H,)-(H5) and (H6e).
Therefore we have the modulus of continuity of theorem 2.2 for such h.
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In order to prove theorem 2.1, it is enough to show that for every e > 0 and every
positive integer r, there exists h" in an e-neighbourhood of h, with respect to the
C + 1 norm, such that the Peierls's barrier P'i for h" does not vanish identically.
Here we require that h" satisfy the periodicity condition h"(x+1, x'+1) = h"(x, x'),
so that it is the generating function of the lift g of an e-perturbation g of / , with
respect to the C norm. Clearly h" satisfies (H6e) with 0'= 0+1 if r > 1 and e is
small enough. Therefore we will still have the modulus of continuity of theorem 2.2
for P", with 0 replaced by 0'. Recall that g has a homotopically non-trivial invariant
circle of rotation number <o if and only if P'i vanishes identically.

Our method of producing the perturbation h" of h consists of first choosing a
rational number p/q very close to o>. This is possible because wi£DC. Then we
choose a minimal configuration x of rotation symbol p/q and a complementary
interval J of length ^q~l to the set {xt +j: i,j e Z}. This is possible because this set
intersects each unit interval [a, a + l) in exactly q points. We choose a C°° non-
negative function u of small Cr+I norm such that u(t+1) = u(t) and « has support
\n{J + i: ieZ}. We set h'(x,x') = h(x,x') + u(x).

Since u vanishes on {xt+j: i,jeZ} and is non-negative, the Peierls's barrier P'p/q

associated to h' satisfies

where Pp/q is the Peierls's barrier associated to h.
We next explain how to construct h" when a>>p/q. We set B'(x, x') =

h'*q(x, x'-p) + const. Here h'*9 denotes the conjunction of h' with itself q times.
Note that since x is a minimal configuration of rotation symbol p/q for h, it is also
one for h' (by the choice of u), and hence it is a minimal configuration of rotation
symbol 0 for H'. We choose the constant in the definition of H' so that H'(xh xt) = 0.
Since h' satisfies (H,)-(H5) and (H69), so does H' by [11, lemma 5.3].

We may suppose u was chosen so that it is positive on the interior of J. Then
there is a minimal (for H') configuration y of rotation symbol 0+ such that y, -» 7*
as /-»±<x>, where J~ <J+ are the endpoints of /.

In order to obtain a suitable h", we need a lower bound on max, 1̂ ,+, -yt\. Such
a lower bound depends on choosing u to be large enough. In fact, we may choose
M, as above, with Cr+1 norm ^e /2 , such that

u{t)>Cre/qr+\ ieJ',

where J' denotes the middle third of J, and Cr is a constant depending only on r.
We consider an i such that yt e J'. (If no such i exists, we may take the length of

J' as our lower bound on max, \yi+] —yt\.) Since H' satisfies (H,)-(H5) and (H6e),
we may apply the results of § 3, in particular (3.4). Here we will apply (3.4) to the
infinite sum H'(y) = Y,7=-x ^'Cft. y>+\)- The fact that we can do this has been justified
in the discussion of the definition of Kj in § 4. (In fact, H'(y) is Kj for h replaced
by H'.) We will compare H'(y) with H'(y'), where y' is the configuration obtained
from y by removing yh i.e. y'j = y} for j < i and y) = y^\ for j > i. Since y is minimal,
H\y')>H'(y). On the other hand, by (3.4),

H'(y') - H'(y) = ?{*&„, yl+l])-^(^[y,, yi+l]) - M(A[y,-,, y,]) - H'(ylt y,),
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where A[a, b] = {(y, z): a<y<z<fc} and /J. = /*«•. Thus

Here the first inequality follows from the fact that yt e / ' , the second inequality is
a consequence of the definition of H\ the third inequality follows from the above
equation and the fact that H'{y') a H'(y), and the last inequality is a consequence
of (3.2) and the fact that v'Hiy,y + \)^ 0'. Obviously this lower bound on \yi+l -y^
gives a lower bound of C're/qr+x (where C'r = Cr/20') on one of \yi+l -yt\ or \y,, - j»(_,|.
To summarize,

Choose « such that |>' /+1-j / |> C're/qr+\ let / denote the interval [y*, J'.+i] and
let v by a C°° non-negative function such that v(t + l) = v(t) and u has support in
the union of the intervals I + i with ieZ. Since the length of / is >C're/qr+1, we
may choose v so that it has Cr+1 norm <e/2 and so that max u> Cre{C're/qr+1)r+1 =
C7e r + 7^ ( r ) , where -y(r) = (r+l)2 and Cr = Cr(C)r+1. We set h"(x,x') =
h'(x,x') + v(x).

Since u vanishes outside of the union of the intervals / + i with i € Z, we have
that the Peierls's barrier P"p/q+ associated to h" satisfies

If we choose £ where v takes its maximum, we then obtain

P"P/q+(€)*v(e)*C're
r+l/qylr).

Recall that Cr = Cr(Cr/2d'Y+} depends only on r and 6' =6 + 1, and y(r) =
(r+1)2. In particular, C" and y(r) are independent of the choice of p/q. In the
case that a> is Liouville, we can choose p/q so close to <o that

C0'\<oq-p\<C!er+t/q^\

where C is the constant in theorem 2.2.
Suppose <o>p/q. Then we perform the construction above, getting h" which

differs from h in Cr+1 norm by <e, with Pp/q+(£)^ Cer+7<7y(r)- Moreover, if e is
small enough, it is clear that h" satisfies (H,)-(H5) and (H6e). By theorem 2.2,

P'LU) a P"P/q+(€) - CB'\a>q -p\ > C"re
r+x/qy{r) ~ Cd'\«>q -p\ > 0.

When p/q<a), we proceed in a similar way, making P"p/q-{i;)> C"er+l/qyir). In
either case we obtain h" for which P"w does not vanish identically.

This proves theorem 2.1. •

6. A problem
Suppose ID € DC. The infinum of the set of all N for which there exists C > 0 such
that \q<o-p\> Cq~N for all q, peZ\{0} is called the Diophantine exponent of <o.
The proof of theorem 2.1 in § 5 shows that for every positive integer r there is a
number y such that if/ € 3™,f is its lift to the universal cover, and w has Diophantine
exponent >% then in any Cr neighbourhood of/ in ^°° there is a g such that g
has no homotopically non-trivial invariant circle F such that p(g, F) = w. (Here g
is the unique element of ?T° of which g is the lift to the universal cover.) Let y{r)
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be the infinum of all such y. Let a be the infinum of all positive numbers a such
that y(r) = O(ra) as r-»oo. The proof of theorem 2.1 in §5 shows that a < 2 . On
the other hand, KAM theory shows that a s 1 (see e.g. Salamon [14]).

Problem. Find a.

7. Related results and problems
Can one destroy many invariant circles by a C°° small perturbation? Given/e ^°°
and a countable set 2 of Liouville numbers, one can find g e ^°° arbitrarily close
t o / in the C°° topology such that there are no ^-invariant circles T with p(g, F) e 2.
It is enough to repeat the construction in § 5 countably many times.

J. Yoccoz has told us of the following result which he has obtained. Let / e 3^°
and let K be the closure of the union of all homotopically non-trivial C°°/-invariant
circles. By a theorem of Birkhoff [2, § 3], every homotopically non-trivial /-invariant
circle is the graph of a Lipschitz function u: R/Z -* U with Lipschitz constant which
depends only on the amount of twisting of / Consequently K is the union of
homotopically non-trivial /-invariant circles. Let p(f, K) denote the set of rotation
numbers of such circles. By Birkhoff's theorem, p(f, K) is a closed subset of R.
Yoccoz has shown that the set of Liouville numbers in p(f, K) is residual in p ( / K)
in the sense of Baire category, by simple application of KAM theory.

Yoccoz's result suggests the following problem which we have been unable to
resolve.

Problem. Let <f> be a positive function, defined on the positive integers, and suppose
<f> grows faster than every polynomial. Let A denote the set of real numbers at such
that \a> -p/q\ < <f>(q)~l for infinitely many rational numbers p/q. Let 3) denote the
set of fe a° for which no homotopically non-trivial invariant circle has rotation
number in A. Is 3) dense in J^° (with respect to the C°° topology)?
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