PROBLEMS FOR SOLUTION

P 79. Let $G=A \cup B$ be a finite group written as the union of two disjoint non-empty subsets, and let φ be a permutation of the elements of G. Prove that

$$
\mathrm{A} \varphi(\mathrm{~B})=\mathrm{B} \varphi(\mathrm{~A}) .
$$

(For example, $A B=B A$ and $A B^{-1}=B A^{-1}$. This problem arose in conversation with G. Baumslag.)

H. Schwerdtfeger, McGill University

P80. Among all partitions $n=m_{1}+\ldots+m_{k}$ of n, which maximizes $m_{1} m_{2} \ldots m_{k}$?
A. Evans, McGill University

P81. Denote by $G(n ; m)$ a graph of n vertices and m edges. Prove that every $G\left(n ;\left[n^{2} / 4\right]+1\right)$ contains at least $2[n / 2]+1$ edges which occur in some triangle of our graph.
The result is sharp. (Turán proved that every $G\left(n ;\left[n^{2} / 4\right]+1\right.$) contains at least one triangle, and Rademacher proved that it contains at least [$\mathrm{n} / 2$] triangles.)
P. Erdős

P82. (Conjecture) The Stirling Numbers S_{n}^{m} of the first kind are defined by

$$
x(x-1) \ldots(x-n+1)=S_{n}^{1} x+S_{n}^{2} x^{2}+\cdots+s_{n}^{n} x^{n}
$$

Prove that for fixed n,

$$
f(m)=\left|s_{n-1}^{m} / s_{n}^{m}\right|
$$

is monotone decreasing in m .
G. P. Patil, McGill University

P83. A group G is generated by a and x subject to the relations $x^{2}=$ axa and x is of finite order $n \neq 0$ mod 3. Show that G is Abelian.
N. Mendelsohn, University of Manitoba

P84. Nagata Masayoshi and Matsumura Hideyuki (Sûgaku 13 (1961/62), p. 161; Math. Rev., Sept. 1963, p. 457) proved that if $1 \leq a_{1}<a_{2}<\ldots<a_{n} \leq 2 n-1$ are n integers, then every $m>a_{n}$ can be written in the form

$$
\begin{align*}
& \sum_{i=1}^{n} c_{i} a_{i}=m, c_{i} \geq 0 \text { integers. } \\
& \text { If } 1 \leq a_{1}<\ldots<a_{n}=2 n \text { and }\left(a_{1}, a_{2}, \ldots, a_{n}\right)=1 \tag{1}
\end{align*}
$$

prove that (1) holds for $m \geq 2 n+2$. Determine the exact bounds if $a_{n}=2 n+1$.

More generally: Let $1 \leq a_{1}<a_{2}<\ldots<a_{n}=2 n+k$ and assume that $\left(a_{1}, a_{2}, \ldots, a_{n}\right)=1$. Define $f(n, k)$ as the smallest integer so that every $m \geq f(n, k)$ can be written in the form (1). I have not determined $f(n, k)$ for $k \geq 2$; no doubt for each fixed k it can be done, but I do not see a general solution.

P85. Denote by $f_{1}(n)$ the number of Abelian groups of order n and by $f_{2}(n)$ the number of semi-simple rings of order n (see I. G. Connell, this Bulletin 7(1964), 23-34. Prove that
$\overline{\operatorname{Lim}} \log f_{i}(n) /(\log n / \log \log n)=k_{i}, \quad i=1,2$, and determine the constants k_{i}.

P. Erdős

SOLUTIONS

P6. (Conjecture). If $a_{1}<a_{2}<\ldots$ is a sequence of positive integers with $a_{n} / a_{n+1} \rightarrow 1$, and if for every d, every residue class (mod d) is representable as the sum of distinct $a^{\prime} s$, then at most a finite number of positive integers are not representable as the sum of distinct $a^{\prime} s$.
P. Erdős

In its present generality the conjecture is false; this is shown by an example due to J.W.S. Cassels, On the representation of integers as the sums of distinct summands taken from a fixed set, Acta Sci. Math. Szeged 21(1960), 111-124 (Math. Rev. 24(1962), A103). See also P. Erdős, On the representation of large integers as sums of distinct summands taken from a fixed set, Acta Arith. 7(1961/62), 345-354 (Math. Rev. 26(1963), no. 2387).

P 27. Prove that

$$
\sum_{n=1}^{\infty} \sum_{\substack{d \mid F_{n} \\ d>1}} d^{-1 / 2}<\infty, \quad F_{n}=2^{2^{n}}+1
$$

P. Erdős

