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The remarkable advances in electron microscopy hardware in recent years include the development of 

fast and efficient spectrometers and fast, almost noise-free, cameras. The vast amount of data that can 

now be acquired brings with it the need for new software and new approaches that enable fast and 

efficient data processing. One area that has benefitted enormously from both the developments in 

hardware and software is ‘multi-dimensional’ electron microscopy, or MDEM, a collection of 

techniques in which 3D, 4D and 6D data sets may be acquired [1]. MDEM techniques allow not just the 

structure, but also the chemistry and crystallography to be investigated at the atomic, or nanoscale, with 

temporal resolution and in all three dimensions. These techniques, by their very nature, produce very 

large data sets that require new methods to enable the key salient information to be extracted [2]. These 

will be reviewed in this paper. 

Figure 1 shows examples of where electron energy loss spectroscopy has been used in conjunction with 

electron tomography to elucidate the localised surface plasmon resonances (LSPRs) of silver 

nanostructures. Figure 1a shows a single EELS spectrum acquired from a silver nanocube as part of a tilt 

series of spectrum-images. The fit to the spectrum was undertaken using machine learning and in 

particular a factor analysis called non-negative matrix factorization (NMF). The series of spectra 

recorded (ca. 100k) can be decomposed into a linear sum of eight component spectra, five of which are 

associated with LSPRs, shown in color. The loading at each pixel associated with the five components 

can be visualized as an image and used as input for a tomographic reconstruction assuming each image 

is a projection of some 3D physical quantity, in this case, to a good approximation, the squared modulus 

of a 3D surface potential associated with each LSPR. Each tilt series was composed of only five images 

and as such high reconstruction fidelity was maintained only through the application of symmetry and 

sparsity constraints and the use of a compressed sensing approach to the reconstruction [3]. In many 

cases, however, a simple projection approximation is not possible and then a model-fit approach is 

required. In Figure 1b that approach led to the reconstruction of the surface charge densities of the 

LSPRs of a silver bipyramid. This was achieved through a least squares fit comparing experimental 

NMF component spectra with computed (quasi-static) spectra and with an extra regularization constraint 

to promote parsimonious solutions [4]. 

Whilst MDEM enables materials to be interrogated in fine detail the penalty is almost always the need 

for a high total electron dose. Many materials, however, are beam sensitive and so there is a requirement 

to acquire just enough data to answer the problem. In structural biology, similar ideas are implemented 

through dose fractionation in which the total dose is divided amongst the individual TEM images. In 

materials science, where STEM is often the technique of choice, we need to develop similar ideas but 

through scanning the beam we have alternative dose fractionation methodologies from which to choose 

[5]. Figure 2 shows longitudinal and axial slices through a 3D reconstruction of a Co phthalocyanine / 

ZnO nanotube. The full reconstruction (100%, 2°) is compared with one that has been undertaken with 

images with only 30% of the pixel number of the full reconstruction and where two out of the three 

images in the tilt series is discarded (30%, 6°). Overall this is an order of magnitude reduction in data 
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but through the use of compressed sensing reconstruction and in-painting algorithms, applying 

constraints in image and gradient space, the loss in resolution was only just over 25%. 

The paper will conclude by considering possible future developments, efficient ways to record data and 

the desire for on-the-fly analysis. Such analysis would not only provide near-instant feedback but would 

also guide the microscope in an automated and unsupervised fashion to probe more profitable areas 

and/or acquire optimized signals [6]. 
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Figure 1. (a) Low loss EELS spectrum, NMF fit and 3D reconstruction of LSPRs excited in a silver 

nanocube [3]. (b) Mutually perpendicular views of a 3D tomogram of the reconstructed surface charge 

density of one dipole mode of a silver bipyramid on MoO3 (right) and a simulation of an isolated 

bipyramid for comparison (left) [4].  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Longitudinal and axial slices of a 3D 

compressed sensing reconstruction of a 

CoPc/ZnO nanowire. The full reconstruction 

(100%, 2°) is compared with one that has been 

undertaken with images with only 30% of the 

data of the full reconstruction and where two 

out of the three images in the tilt series is 

discarded [5]. 
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