# SUBSPACES OF RIEMANNIAN SPACES 

RICHARD BLUM

Summary. In this paper, results obtained by the author for Riemannian Spaces $V_{n}$ imbedded in Euclidean Spaces $E_{N}(3 ; 4)$ are extended to $V_{n}$ imbedded in $V_{N}$.

The first section is introductory. In §2 the general result is obtained. This is the establishment of a certain dependency among the three basic sets of equations of the $V_{n}$ with respect to the $V_{N}$, namely the equations of Gauss, Codazzi and Kuehne. In §3 it is assumed that $V_{N}$ is of constant curvature with $N=n+1$. This case is discussed with the help of a generalization of the type number $\tau$ introduced by Thomas (10).

Throughout the paper the conventional tensor notation has been adopted. Capital latin indices vary from 1 to $N$, small latin indices from 1 to $n$, and small greek indices from 1 to $\nu=N-n$. Whenever an index occurs twice in an expression, the summation with respect to that index has to be performed, except when otherwise stated. This summation convention is not restricted to indices with opposite (i.e. one of covariant and the other of contravariant) character.

1. Introduction. We consider a $V_{N}$ given by the positive definite metric:

$$
\begin{equation*}
d S^{2}=A_{I J} d X^{I} d X^{J} \quad\left|A_{I J}\right| \neq 0 \tag{1}
\end{equation*}
$$

in which the $A_{I J}$ are continuous functions of the $X^{I}$, having continuous partial derivatives up to the third order; and a $V_{n}$ whose metric

$$
\begin{equation*}
d s^{2}=a_{i j} d x^{i} d x^{j} \quad(n<N) \tag{2}
\end{equation*}
$$

satisfies similar conditions with respect to the $x^{i}$.
A set of necessary conditions for the $V_{n}$ to be imbedded ${ }^{1}$ in the $V_{N}$ is given by the following equations (8, no. 47), known respectively as the equations of Gauss, Codazzi and Kuehne:

$$
\begin{align*}
& G_{i j k l} \equiv r_{i j k l}-\left(b_{\alpha \mid i k} b_{\alpha \mid j l}-b_{\alpha \mid i l} b_{\alpha \mid j k}\right)-R_{I J K L} X_{, i}^{I} X_{, j}^{J} X_{, k}^{K} X_{, l}^{L}=0,  \tag{I}\\
& C_{\alpha \mid i j k} \equiv b_{\alpha \mid i j, k}-b_{\alpha \mid i k, j}-\left(t_{\beta \alpha \mid k} b_{\beta \mid i j}-t_{\beta \alpha \mid j} b_{\beta \mid i k}\right)  \tag{II}\\
& +R_{\text {IJKL }} \xi_{\alpha}^{I} X_{, i}^{J} X_{, j}^{K} X_{, k}^{L}=0, \\
& K_{\alpha \beta \mid i j} \equiv t_{\alpha \beta \mid i, j}-t_{\alpha \beta \mid j, i}+\left(t_{\gamma \alpha \mid i} t_{\gamma \beta \mid j}-t_{\gamma \alpha \mid j} t_{\gamma \beta \mid i}\right)  \tag{III}\\
& +a^{k l}\left(b_{\alpha \mid k i} b_{\beta \mid l j}-b_{\alpha \mid k j} b_{\beta \mid l i}\right)+R_{I J K L} \xi_{\alpha}^{I} \xi_{\beta}^{J} X_{, i}^{K} X_{, j}^{L}=0 .
\end{align*}
$$

[^0]Here, $r_{i j k l}$ and $R_{I J K L}$ are the components of the covariant curvature tensor in $V_{n}$ and $V_{N}$ respectively. The $\xi_{\alpha}^{I}$ are $N-n$ contravariant vectors in $V_{N}$ of unit length, perpendicular to one another and to the $V_{n}$. The $b_{\alpha \mid i j}=b_{\alpha \mid j i}$ are coefficients of the fundamental forms of the second kind and $t_{\alpha \beta \mid i}=-t_{\beta \alpha \mid i}$ are the "torsions". The index after the comma denotes covariant differentiation with respect to the tensor $a_{i j}$ given by (2).

If $V_{N}$ is of constant curvature $K_{0}$ we have

$$
R_{I J K L}=K_{0}\left(A_{I K} A_{J L}-A_{I L} A_{J K}\right),
$$

and equations (I), (II), (III) become:

$$
\begin{align*}
& G_{i j k l} \equiv r_{i j k l}-\left(b_{\alpha \mid i k} b_{\alpha \mid j l}-b_{\alpha \mid i l} b_{\alpha \mid j k}\right)-K_{0}\left(a_{i k} a_{j l}-a_{i l} a_{j k}\right)=0,  \tag{I'}\\
& \begin{array}{c}
C_{\alpha \mid i j k} \equiv b_{\alpha \mid i j, k}-b_{\alpha \mid i k, j}-\left(t_{\beta \alpha \mid k} b_{\beta \mid i j}-t_{\beta \alpha \mid j} b_{\beta \mid i k}\right)=0, \\
K_{\alpha \beta \mid i j} \equiv t_{\alpha \beta \mid i, j}-t_{\alpha \beta \mid j, i}+\left(t_{\gamma \alpha \mid i} t_{\gamma \beta \mid j}-t_{\gamma \alpha \mid j} t_{\gamma \mid i}\right) \\
\\
\quad+a^{k l}\left(b_{\alpha \mid k i} b_{\beta \mid l j}-b_{\alpha \mid k j} b_{\beta \mid l i}\right)=0 .
\end{array}
\end{align*}
$$

It can be shown that in this case the equations ( $\mathrm{I}^{\prime}$ ), ( $\mathrm{II}^{\prime}$ ), ( $\mathrm{III}^{\prime}$ ) are both necessary and sufficient conditions for the $V_{n}$ to be imbedded in the $V_{N}$. For a similar problem, see (10, pp. 178-182).

As in the case of a $V_{n}$ in an $E_{N}(3 ; 4)$ the question arises at this point whether all the equations (I), (II), (III) are independent. The following section is devoted to answering this question.
2. Independence considerations. The lefthand sides of (I), (II), (III) are obviously tensors in the $V_{n}$, which depend in general also upon the $V_{N}$. They are denoted by $G_{i j k l} ; C_{\alpha \mid i j k} ; K_{\alpha \beta \mid i j}$ and named respectively the tensors of Gauss, Codazzi and Kuehne of the $V_{n}$ with respect to the $V_{N}$ (3, p. 167f). We can now reformulate the statement in $\S 1$ in the following way:

A necessary condition for the $V_{n}$ to be imbedded in the $V_{N}$ is that the tensors of Gauss, Codazzi and Kuehne of the $V_{n}$ with respect to the $V_{N}$ should vanish.

We are thus able to consider directly the tensors just introduced and certain combinations of their covariant derivatives. This will lead us to discover in certain cases how many of the conditions (I), (II), (III) are independent.

We define (4; 6):

$$
\begin{align*}
G_{i j k l m} & =G_{i j k l, m}+G_{i j l m, k}+G_{i j m k, l},  \tag{A}\\
C_{\alpha \mid i j k l} & =C_{\alpha \mid i j k, l}+C_{\alpha \mid i k l, j}+C_{\alpha \mid i l j, k}, \\
K_{\alpha \beta \mid i j k} & =K_{\alpha \beta \mid i j, k}+K_{\alpha \beta \mid j k, i}+K_{\alpha \beta \mid k i, j} .
\end{align*}
$$

These tensors will be appropriately named the "derived tensors" of Gauss, Codazzi and Kuehne of the $V_{n}$ with respect to the $V_{N}$. If we perform the indicated calculations, we obtain:
( $\left.\mathrm{A}^{\prime}\right) \quad G_{i j k l m}=-b_{\alpha \mid i k} C_{\alpha \mid j l m}-b_{\alpha \mid i l} C_{\alpha \mid j m k}-b_{\alpha \mid i m} C_{\alpha \mid j k l}$

$$
+b_{\alpha \mid j k} C_{\alpha \mid i l m}+b_{\alpha \mid j l} C_{\alpha \mid i m k}+b_{\alpha \mid j m} C_{\alpha \mid i k l},
$$

( $\left.\mathrm{B}^{\prime}\right) \quad C_{\alpha \mid i j k l}=t_{\beta \alpha \mid j} C_{\beta \mid i k l}+t_{\beta \alpha \mid k} C_{\beta \mid i l j}+t_{\beta \alpha \mid l} C_{\beta \mid i j k}$
$-b_{\beta \mid i j} K_{\beta \alpha \mid k l}-b_{\beta \mid i k} K_{\beta \alpha \mid l j}-b_{\beta \mid i l} K_{\beta \alpha \mid j k}$

$$
+a^{m p}\left(b_{\alpha \mid m j} G_{p i k l}+b_{\alpha \mid m k} G_{p i l j}+b_{\alpha \mid m l} G_{p i j k}\right),
$$

( $\mathrm{C}^{\prime}$ ) $\quad K_{\alpha \beta \mid i j k}=\quad t_{\gamma \alpha \mid i} K_{\gamma \beta \mid j k}+t_{\gamma \alpha \mid j} K_{\gamma \beta \mid k i}+t_{\gamma \alpha \mid k} K_{\gamma \beta \mid i j}$
$-t_{\gamma \beta \mid i} K_{\gamma \alpha \mid j k}-t_{\gamma \beta \mid j} K_{\gamma \alpha \mid k i}-t_{\gamma \beta \mid k} K_{\gamma \alpha \mid i j}$
$+a^{m p}\left(b_{\alpha \mid m i} C_{\beta \mid p j k}+b_{\alpha \mid m j} C_{\beta \mid p k i}+b_{\alpha \mid m k} C_{\beta \mid p i j}\right)$
$-a^{m p}\left(b_{\beta \mid m i} C_{\alpha \mid p j k}+b_{\beta \mid m j} C_{\alpha \mid p k i}+b_{\beta \mid m k} C_{\alpha \mid p i j}\right)$.
We notice that these derived tensors ${ }^{2}$ do not depend explicitly upon the $V_{N}$, the last terms from (I), (II), (III) having disappeared. They have therefore the same form as the corresponding derived tensors of the $V_{n}$ with respect to an $E_{N}(6, \mathrm{p} .90)$. This remarkable fact enables us to extend the results of $(3 ; 4 ; 6)$ to the present case.

These results are essentially based upon the consideration of the tensors $\left(\mathrm{A}^{\prime}\right),\left(\mathrm{B}^{\prime}\right),\left(\mathrm{C}^{\prime}\right)$ and the number of their components. Thus if, for instance, the Gauss tensor $G_{i j k l}$ vanishes in $V_{n}$, then the derived Gauss tensor $G_{i j k l m}$ is also zero and ( $\mathrm{A}^{\prime}$ ) becomes a system of linear and homogenous equations in the $C_{\alpha \mid i j k}$ which reduces, of course, the number of independent components of the Codazzi tensors $C_{\alpha \mid i j k}$. It is thus possible that, under conditions to be specified below, all the components of the Codazzi tensors $C_{\alpha \mid i j k}$ vanish as a result of the vanishing of Gauss' tensor $G_{i j k l}$. Similar considerations are valid with respect to ( $\mathrm{B}^{\prime}$ ) and ( $\mathrm{C}^{\prime}$ ).

It is necessary at this point to list the number of components of the different tensors introduced so far (2; 3, pp. 170, 174; 6, p. 91):

$$
\begin{aligned}
& G_{i j k l} \ldots n^{2}\left(n^{2}-1\right) / 12 \\
& C_{\alpha \mid i j k} \ldots \nu n\left(n^{2}-1\right) / 3 \\
& K_{\alpha \beta \mid i j} \ldots \nu(\nu-1) n(n-1) / 4 \\
& G_{i j k l m} \ldots n^{2}\left(n^{2}-1\right)(n-2) / 24 \\
& C_{\alpha \mid i j k l} \ldots \nu n\left(n^{2}-1\right)(n-2) / 8 \\
& K_{\alpha \beta \mid i j k} \ldots \nu(\nu-1) n(n-1)(n-2) / 12
\end{aligned}
$$

We mention also the result by Burstin (7) that, under our assumptions, every $V_{n}$ can be imbedded in every $V_{N}$ provided that $N \geqslant \frac{1}{2} n(n+1)$ or $\nu=N-n$ $\geqslant \frac{1}{2} n(n-1)$. It is therefore sufficient to choose $n(n-1) / 2$ as the upper limit for $\nu$.

We are now in the position to enunciate the following two theorems:

[^1]Theorem 2.1 If the equations (I) are satisfied by a set of solutions for $b_{\alpha \mid i j}$, for which the ranks of the matrices of the linear systems:
$\left(\mathrm{A}^{\prime \prime}\right) \quad G_{i j k l m} \equiv-b_{\alpha \mid i k} C_{\alpha \mid j l m}-b_{\alpha \mid i l} C_{\alpha \mid j m k}-b_{\alpha \mid i m} C_{\alpha \mid j k l}$

$$
+b_{\alpha \mid j k} C_{\alpha \mid i l m}+b_{\alpha \mid j l} C_{\alpha \mid i m k}+b_{\alpha \mid j m} C_{\alpha \mid i k l}=0,
$$

$\left(\mathrm{B}^{\prime \prime}\right) \quad C_{\alpha \mid i j k l} \equiv-b_{\beta \mid i j} K_{\beta \alpha \mid k l}-b_{\beta \mid i k} K_{\beta \alpha \mid l j}-b_{\beta \mid i l} K_{\beta \alpha \mid j k}=0$,
have maximum value, ${ }^{3}$ then
(a) for $0 \leqslant \nu \leqslant \frac{1}{8} n(n-2)$, all equations (II) and (III) are a consequence of equations (I);
(b) for $\frac{1}{8} n(n-2) \leqslant \nu \leqslant \frac{1}{2} n(n-1)$, a system of

$$
\frac{1}{3} n\left(n^{2}-1\right)\left[\nu-\frac{1}{8} n(n-2)\right]
$$

of equations (II) are independent. The remainder of equations (II) and all the equations (III) are a consequence of this system and equations (I).

Theorem 2.2. If the equations (I) are satisfied by a set of solutions for $b_{\alpha \mid i j}$, for which the ranks, $r$ and $r^{\prime}$, of the matrices of $\left(\mathrm{A}^{\prime \prime}\right)$ and $\left(\mathrm{B}^{\prime \prime}\right)$ have not both maximum values, then

$$
\frac{1}{3} \nu n\left(n^{2}-1\right)-r
$$

of equations (II) and

$$
\frac{1}{4} \nu(\nu-1) n(n-1)-r^{\prime}
$$

of equations (III) remain independent.
From the table on the previous page it is seen that the matrix of $\left(\mathrm{A}^{\prime \prime}\right)$ has $\frac{1}{24} n^{2}\left(n^{2}-1\right)(n-2)$ rows and $\frac{1}{3} \nu n\left(n^{2}-1\right)$ columns and the matrix of ( $\mathrm{B}^{\prime \prime}$ ) has $\frac{1}{8} \nu n\left(n^{2}-1\right)(n-2)$ rows and $\frac{1}{4} \nu(\nu-1) n(n-1)$ columns. By comparing the two sets of numbers, Theorems 2.1 and 2.2 are readily verified.

In view of this theorem it would seem important to determine the actual ranks of the matrices of $\left(\mathrm{A}^{\prime \prime}\right)$ and ( $\mathrm{B}^{\prime \prime}$ ) in terms of certain numerical invariants of the $V_{n}$. Except for the particular case treated in the next section, the author has not succeeded in this task.

In the formation of the tensor $G_{i j k l m}$ we made use of Bianchi's identities:

$$
r_{i j k l, m}+r_{i j l m, k}+r_{i j m k, l}=0 .
$$

(Because of this, of course, the number of components of $G_{i j k l m}$ equals the number of Bianchi's identities (2).)

But Bianchi's identities are a complete set of identities of order one of the tensor of curvature (5). We have therefore the result:

Equations ( $\mathrm{A}^{\prime \prime}$ ) are the only ones between the components of $C_{\alpha \mid i j k}$, which can be obtained as a consequence of the validity of equations (I).

[^2]III．It can be seen from equations（ $\mathrm{I}^{\prime}$ ），（ $\mathrm{II}^{\prime}$ ），（ $\mathrm{III}^{\prime}$ ）that the problem of imbedding a $V_{n}$ in a $V_{N}$ with constant curvature $K_{0}$ is equivalent to the prob－ lem of imbedding a $V_{n}$ in a Euclidean $E_{N}$ ，provided that we substitute for the curvature tensor $r_{i j k l}$ of the $V_{n}$ the tensor：

$$
r_{i j k l}-K_{0}\left(a_{i k} a_{j l}-a_{i l} a_{j k}\right) .
$$

We shall also assume $N=n+1$ in which case（ $\mathrm{I}^{\prime}$ ），（ $\mathrm{II}^{\prime}$ ），（III＇）reduce to：
（I＇⿱⿰㇒一㐄 $\quad G_{i j k l} \equiv r_{i j k l}-\left(b_{i k} b_{j l}-b_{i l} b_{j k}\right)-K_{0}\left(a_{i k} a_{j l}-a_{i l} a_{j k}\right)=0$,
（ $\left.\mathrm{II}^{\prime \prime}\right) \quad C_{i j k} \equiv b_{i j, k}-b_{i k, j}=0$,
and（ $\mathrm{A}^{\prime \prime}$ ），（ $\mathrm{B}^{\prime \prime}$ ）to

$$
\left(\mathrm{A}^{\prime \prime \prime}\right) G_{i j k l m} \equiv \quad \begin{aligned}
& -b_{i k} C_{j l m}-b_{i l} C_{j m k}-b_{i m} C_{j k l} \\
& \\
& +b_{j k} C_{i l m}+b_{j l} C_{i m k}+b_{j m} C_{i k l}=0 .
\end{aligned}
$$

Let $\tau$ be the rank of the matrix

$$
\left\|r_{i j k l}-K_{0}\left(a_{i k} a_{j l}-a_{i l} a_{j k}\right)\right\|
$$

where one of the indices，say $i$ ，indicates the rows and the other three indices the columns of the matrix．

It can then be shown that，because of（ $\mathrm{I}^{\prime \prime}$ ），$\tau$ is also the rank of the matrix $\left\|b_{i j}\right\|$（10，p．184）．

The integer $\tau$ can be considered as an invariant of the $V_{n}$ with respect to a $V_{n+1}$ of constant curvature $K_{0}$（in the neighbourhood of the point under consideration）．It was introduced by Thomas（10，loc．cit．）for a $V_{n}$ with respect to an $E_{n+1}$ ．

For $\tau=0$ ，it follows from（ $\mathrm{I}^{\prime \prime}$ ）that the $V_{n}$ is of constant curvature $K_{0}$ ． $\tau=1$ is impossible．For the remaining values of $\tau$ we shall prove

Theorem 3．1．$\tau \geqslant 4$ ．All the equations（ $\mathrm{II}^{\prime \prime}$ ）are a consequence of equations （ $\mathrm{I}^{\prime \prime}$ ）．

Theorem 3．2．$\tau=3$ ．Of the equations（ $\mathrm{II}^{\prime \prime}$ ），five remain independent． The remainder of the equations（ $\mathrm{II}^{\prime \prime}$ ）are a consequence of these and equations （ $\mathrm{I}^{\prime \prime}$ ）．

Theorem 3．3．$\tau=2$ ．Of the equations（ $\mathrm{II}^{\prime \prime}$ ）， $3 n-4$ remain independent． The remainder of the equations $\left(\mathrm{II}^{\prime \prime}\right)$ are a consequence of these and equations （ $\mathrm{I}^{\prime \prime}$ ）．

Proof．For the values of $b_{i j}$ in the point under consideration we can，by a suitable coordinate transformation，obtain：${ }^{4}$

$$
\begin{array}{lr}
b_{i j}=0 & (i \neq j) \\
b_{i i} \neq 0 & (i=1,2, \ldots, \tau)  \tag{3}\\
b_{i i}=0 & (i=\tau+1, \ldots, n)
\end{array}
$$

[^3]For these values, and taking in consideration the basic identities of the tensor $G_{i j k l m}$ (which follow readily from its definition):

$$
\begin{aligned}
& G_{i j k l m}=-G_{j i k l m} \\
& G_{i j k l m}=G_{i j l m k}=G_{i j m k l}=-G_{i j k m l}=-G_{i j m l k}=-G_{i j l k m}
\end{aligned}
$$

the system ( $\mathrm{A}^{\prime \prime \prime}$ ) reduces to:

$$
\begin{gather*}
G_{i j k l i} \equiv-b_{i i} C_{j k l}=0  \tag{4}\\
G_{i j i j l} \equiv-b_{i i} C_{j j l}-b_{j j} C_{i i l}=0, \tag{5}
\end{gather*}
$$

where $i, j, k, l$ are all distinct, $i=1,2, \ldots \tau$ and $j, k, l=1,2, \ldots n$.
Proof of 3.1. $\tau \geqslant 4$. From (4) we find then

$$
C_{j k l}=0,
$$

and from (5) follows

$$
C_{j j l}=0 \quad(j=\tau+1, \tau+2, \ldots, n) .
$$

For $j \leqslant \tau$, we obtain from (5), by substituting first $i$ for $k$ and then $j$ for $k$ :

$$
\begin{align*}
& 0+b_{k k} C_{j j l}+b_{j j} C_{k k l}=0, \\
& b_{k k} C_{i i l}+0+b_{i i} C_{k k l}=0,  \tag{6}\\
& b_{j j} C_{i i l}+b_{i i} C_{j j l}+0=0
\end{align*}
$$

for distinct $i, j, k, l$ with $i, j, k=1,2, \ldots, \tau$ and $l=1,2, \ldots, n$.
The determinant of (6) being different from zero it follows that

$$
C_{i i l}=0 \quad(i \neq l ; i=1,2, \ldots, \tau ; l=1,2, \ldots, n) .
$$

This completes the proof for the case $\tau \geqslant 4$ because $C_{i j j} \equiv 0$ follows from ( $\mathrm{II}^{\prime \prime}$ ).

Proof of 3.2. $\tau=3$. From (4) we obtain

$$
C_{j k l}=0 \quad(j \neq k \neq l=1,2, \ldots, n)
$$

provided that at least one of the indices $j, k, l$, is larger than 3 . But the three remaining components of this type, namely $C_{123}, C_{231}$, and $C_{312}$, satisfy an identity (which follows easily from ( $\mathrm{II}^{\prime \prime}$ )):

$$
C_{123}+C_{231}+C_{312}=0
$$

Thus only two of these components (e.g., $C_{123}, C_{231}$ ) remain independent.
From (5) we have

$$
C_{j j l}=0 \quad(j=4,5, \ldots, n ; l=1,2, \ldots, n) .
$$

From (f) we obtain for $i=1, j=2, k=3$ :

$$
\begin{align*}
& 0+b_{33} C_{22 l}+b_{22} C_{33 l}=0, \\
& b_{33} C_{11 l}+0+b_{11} C_{33 l}=0,  \tag{7}\\
& b_{22} C_{11 l}+b_{11} C_{33 l}+0=0 .
\end{align*} \quad(l=4,5, \ldots, n) .
$$

We have therefore as above:

$$
C_{i i l}=0 \quad(i=1,2,3 ; l=4,5, \ldots, n)
$$

From (5) we obtain for $i, j, l=1,2,3$ in turn:

$$
\begin{aligned}
& b_{33} C_{221}+b_{22} C_{331}=0, \\
& b_{33} C_{112}+b_{11} C_{332}=0, \\
& b_{22} C_{113}+b_{11} C_{223}=0 .
\end{aligned}
$$

It follows from these equations that three components of the type $C_{i i l}$ ( $i \neq l=1,2,3$ ) are independent (e.g., $C_{112}, C_{223}, C_{331}$ ).

Therefore, in the case under consideration five components of the tensor $C_{i j k}$ remain independent, namely $C_{123}, C_{231}, C_{112}, C_{223}, C_{331}$.

Proof of 3.3. $\quad \tau=2$. From (4) we obtain

$$
C_{j k l}=0, \quad(j \neq k \neq l=1,2, \ldots, n),
$$

provided that at least two of the indices are larger than 2 . The remaining components of this type are $C_{12 l}, C_{2 l 1}, C_{l 12}$ among which we have (as before) the identity

$$
C_{12 l}+C_{2 l 1}+C_{l 12}=0, \quad(l=3,4, \ldots, n)
$$

It follows therefore that $2 n-4$ of these components (e.g., $C_{12 l}, C_{2 l 1}$; $l=3,4, \ldots, n$ ) remain independent.

From (5) we have

$$
C_{j j l}=0, \quad(j=3,4, \ldots, n ; l=1,2, \ldots, n),
$$

and

$$
b_{22} C_{11 l}+b_{11} C_{22 l}=0, \quad(l=3,4, \ldots, n)
$$

Thus the $n-2$ components $C_{11 l}$ (or $\left.C_{22 l}\right)(l=3,4, \ldots, n)$ are independent.
The two components $C_{112}$ and $C_{221}$ are also independent because they do not occur in any of the equations (5).

Therefore, in the case under consideration, $3(n-2)+2=3 n-4$ components of the tensor $C_{i j k}$ remain independent, namely, $C_{112}, C_{221}, C_{12 l}$, $C_{2 l 1}, C_{11 l}(l=3,4, \ldots, n)$.

The case $\tau \geqslant 4$ of Theorem 3.1 was proved by Thomas $(\mathbf{1 0}, \S 5)$ for a $V_{n}$ in an $E_{n+1}$. In its general form but also for a $V_{n}$ in an $E_{n+1}$, it was established by the present author (3, pp. 196ff). Here the same line of proof has been adopted.

It is remarkable that in the case $\tau=3$, the number of independent components of the tensor $C_{i j k}$ does not depend upon the number of dimensions of $V_{n}$.

## REFERENCES

1. C. B. Allendoerfer, Rigidity for spaces of class greater than one, Am. Journal of Math., 61 (1939), 633-644.
2. R. Blum, Anzahl der Identitaeten von Bianchi in einer $V_{n}$, Bull. Sect. Sci. Acad. Roumaine. 28 (1946) no. 6.
3. ——, Bedingungsgleichungen einer $V_{n}$ in einer $E_{N}$, Bull. Math. Soc. Roum. des Sciences, 47 (1946), 144-201.
4. ——, Sur les tenseurs dérivés de Gauss et Codazzi, C. R. Acad. Sci., Paris 224 (1947), 708-709.
5. -_, Sur les identités de Bianchi et Veblen, C. R. Acad. Sci., Paris 224 (1947), 889-890.
6. -_, Sur la classe des variétées riemanniennes, Bull. Math. Soc. Roum. des Sciences, 48 (1947), 88-101.
7. C. Burstin, Ein Beitrag zum Problem der Einbettung Riemannscher Räume in Euklidische Räume, Math. Sbornik, 38 (1931), 74-91.
8. L. P. Eisenhart, Riemannian Geometry (Princeton, 1926).
9. ${ }^{[H}$ H. Kuehne, Die Grundgleichungen einer beliebigen Mannigfaltigkeit, Arch. d. Math. u. Phys., 4 (1903), 300-311.
10. T. Y. Thomas, Riemannian Spaces of class one and their characterization, Acta Math., 67 (1936), 169-211.

University of Saskatchewan


[^0]:    Received December 31, 1954. This paper was prepared while the author attended the Research Institute of the Canadian Mathematical Congress in the summer 1954.
    ${ }^{1}$ Throughout this paper, by "imbedding" is meant local and isometrical imbedding.

[^1]:    ${ }^{2}$ The equations obtained by equating $\left(A^{\prime}\right)$ and $\left(B^{\prime}\right)$ to zero were first used by Allendoerfer (1) in the case of a $V_{n}$ in an $E_{N}$ to reduce the number of independent equations of (II) and (III).

[^2]:    ${ }^{3}$ A rectangular matrix with $s$ rows and $t$ columns has maximum rank $r$ if $r$ equals the smaller of the two numbers $s, t$.

[^3]:    ${ }^{4}$ From here to the end of this section，a repeated index does not indicate a summation．

