
SUBSPACES OF RIEMANNIAN SPACES 

RICHARD BLUM 

Summary. In this paper, results obtained by the author for Riemannian 
Spaces Vn imbedded in Euclidean Spaces EN (3; 4) are extended to Vn imbedded 
in VN. 

The first section is introductory. In §2 the general result is obtained. This is 
the establishment of a certain dependency among the three basic sets of 
equations of the Vn with respect to the VN, namely the equations of Gauss, 
Codazzi and Kuehne. In §3 it is assumed that VN is of constant curvature with 
N = n + 1. This case is discussed with the help of a generalization of the 
type number r introduced by Thomas (10). 

Throughout the paper the conventional tensor notation has been adopted. 
Capital latin indices vary from 1 to N, small latin indices from 1 to n, and 
small greek indices from 1 to v = N — n. Whenever an index occurs twice in 
an expression, the summation with respect to that index has to be performed, 
except when otherwise stated. This summation convention is not restricted to 
indices with opposite (i.e. one of covariant and the other of contravariant) 
character. 

1. Introduction. We consider a VN given by the positive definite metric: 

(1) dS2 = AIJdXIdXJ \Au\ ^ 0 

in which the Au are continuous functions of the X1, having continuous 
partial derivatives up to the third order; and a Vn whose metric 

(2) ds2 = dijdxtdx* in < N) 

satisfies similar conditions with respect to the xl. 
A set of necessary conditions for the Vn to be imbedded1 in the VN is given 

by the following equations (8, no. 47), known respectively as the equations 
of Gauss, Codazzi and Kuehne: 

( I ) Gijkl = fijkl ~~ (ba\iJcba\jl — ba\ilba\jjc) — RuKIjXt fXt jXtJcXf i = 0, 

(II) Ca\ijk — ba\ij,k ~~ ba\ik,j ~~ \ha\jfifi\ij ~ tpa\jbp\ik) 

-\~R-IJKL^aXtiXtjXtk = 0, 

(III) Ka@ I ij = ta$ \i,j — tap | j, i + (tya | ityfl | j ~ tya | jtyp | f) 

+ # (ba\kibfi\ij — ba\kjbp\u) + RijKL^a^XtiXtj = 0 . 
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t h r o u g h o u t this paper, by "imbedding" is meant local and isometrical imbedding. 
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Here, rijkl and RIJKL are the components of t he covariant curva ture tensor 
in Vn and VN respectively. T h e £i are N — n con t ravar ian t vectors in VN of 
uni t length, perpendicular t o one another and to the Vn. T h e ba\a = ba\ji are 
coefficients of t he fundamental forms of the second kind and tapn = — tpa\i 
are the " tors ions" . T h e index after the comma denotes covariant differentiation 
with respect t o the tensor atj given by (2). 

If VN is of cons tan t curva ture K0 we have 

RIJKL = Ko(AIKAJL — AILAJK), 

and equat ions (I) , ( I I ) , ( I I I ) become: 

(I ) Gijjci = Tijjd — \ba\ikba\ji — ba\uba\jk) — K${ai1caji — auajk) = 0, 

(II ) Ca\ijk = ba\ij,k ~ ba\ik,j ~~ \tpa\kbp\ij — tfia\jbfi\ik) = 0, 

( I I I ) Kap\ij = ta0\i,j — tap\j,i + \tya\ityp\j ~ tya\jtyP\i) 

+akl(ba\kibp\ij — baikjbpm) = 0. 

I t can be shown t h a t in this case the equat ions ( I ' ) , (HO» (HI ' ) are bo th 
necessary and sufficient conditions for the Vn t o be imbedded in the VN. For a 
similar problem, see (10, pp . 178-182). 

As in the case of a Vn in an EN (3 ; 4 ) the question arises a t th is point 
whether all t he equat ions (I) , ( I I ) , ( I I I ) are independent . T h e following 
section is devoted t o answering this question. 

2. Independence considerations. T h e lefthand sides of (I) , ( I I ) , ( I I I ) 
are obviously tensors in t he Vn, which depend in general also upon the VN. 
They are denoted by Gijki', Ca\nk', Kap\ij and named respectively the tensors 
of Gauss, Codazzi and Kuehne of the Vn wi th respect t o the VN (3, p . 167f ). 
We can now reformulate the s t a t emen t in §1 in the following way : 

A necessary condition for the Vn to be imbedded in the VN is that the tensors 
of Gauss, Codazzi and Kuehne of the Vn with respect to the VN should vanish. 

We are thus able t o consider directly the tensors jus t introduced and certain 
combinations of their covariant derivatives. This will lead us t o discover in 
certain cases how m a n y of the conditions (I) , ( I I ) , ( I I I ) are independent . 

We define (4; 6 ) : 

(A) G 
ijklm — Gijki,m ~T Gijim>k + Gijmk,i, 

(B) Ca 
\ijkl — \ijk,l ~T" Ca\ikl,j ~T Ca\ilj,ki 

\Ç) -KaPlijk = Kap\ij,k "T Kap\jk,i T~ Kap\ki,j' 

These tensors will be appropr ia te ly named the "derived tensors" of Gauss , 
Codazzi and Kuehne of the Vn with respect t o t he VN. If we perform t h e 
indicated calculations, we ob ta in : 
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( A ) (jTijklm — balikLaljlm ba\nLa\jmk ba\im^a\jkl 

T~ ba\jkCa\ilm T" Oa\jiCa\imk ~T ba\jmLa\ikU 

( B ) Ca\ijkl — tpa\jCp\iki + tpa\kCp\iij + tpa\lCp\ijk 

— bp\ijKpa\kl — b$\ilcKpa\ij — bp\nKpa\jk 

-\-amp(ba\mjGpiki + ba\m1cGPnj + ba\miGVijkh 

( C ) Kap\ijk — tya\iKyp\jk -\- tya\jKyp\ki + tya\k^y^\ij 

— tyP\iKya\jk — typ\jKya\ki ~ ty^\kKya\ij 

\pjk ~r ba\mjC$\Vki T" ba\mkCp\pij) 

We notice that these derived tensors2 do not depend explicitly upon the 
VNl the last terms from (I), (II), (III) having disappeared. They have there
fore the same form as the corresponding derived tensors of the Vn with respect 
to an EN (6, p. 90). This remarkable fact enables us to extend the results of 
(3; 4; 6) to the present case. 

These results are essentially based upon the consideration of the tensors 
(A'), (B'), (CO and the number of their components. Thus if, for instance, 
the Gauss tensor Gijki vanishes in Vn, then the derived Gauss tensor Gijkim is 
also zero and (A') becomes a system of linear and homogenous equations in 
the Ca\ijk which reduces, of course, the number of independent components 
of the Codazzi tensors Ca\ijk. It is thus possible that, under conditions to be 
specified below, all the components of the Codazzi tensors Ca\ijk vanish as a 
result of the vanishing of Gauss' tensor Gijki. Similar considerations are valid 
with respect to (Br) and (Cr). 

It is necessary at this point to list the number of components of the different 
tensors introduced so far (2; 3, pp. 170, 174; 6, p. 91): 

G w . . . n * ( * ' - 1)/12 

Ca\w • .vn(n2 - l ) /3 
KaHij. ..v(v- 1) n(n - l ) /4 
Gijklm...n\n* - l ) ( » - 2 ) / 2 4 

Caitjki • • • vnin1 — l)(n — 2)/8 
Kant» ...v(v-l) n{n - 1)(» - 2)/12 

We mention also the result by Burstin (7) that, under our assumptions, every 
Vn can be imbedded in every VN provided that i V > |w(n + 1) or P = N — n 
^\n{n — 1). It is therefore sufficient to choose n(n — l ) /2 as the upper 
limit for v. 

We are now in the position to enunciate the following two theorems: 

2The equations obtained by equating (A') and {B') to zero were first used by Allendoerfer (1) 
in the case of a Vn in an EN to reduce the number of independent equations of (II) and (III) . 
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THEOREM 2.1 If the equations (I) are satisfied by a set of solutions for ba\tj, 
for which the ranks of the matrices of the linear systems: 

(A ) Gijjcim = — ba\ikCa\jim — ba\iiCa\jmJc ~"~ ba\imCa\jkl 

n~ba\jlcLa\iim ~T ba\jiCa\imJc "T ba\jmGa\ikl = 0> 

(B") Ca\ijki = "" bp\ijKpa\ki ~" bp\iJcKpa\ij — bp\iiKpa\j]c = 0, 

have maximum value,* then 

(a) for 0 < v < \n(n — 2), all equations (II) and (III) are a consequence of 
equations (I) ; 

(b) for \n{n — 2) < v < \n(n — 1), a system of 

\n(n2 -l)[v- \n{n - 2)] 

0/ equations (II) are independent. The remainder of equations (II) awd a// /&£ 
equations (III) are a consequence of this system and equations (I). 

THEOREM 2.2. If the equations (I) are satisfied by a set of solutions for ba\ijy 

for which the ranks, r and r', of the matrices of (A") and (B") have not both 
maximum values, then 

\vn(n2 — 1) — r 

of equations (II) and 
\v(y — 1) n(n — 1) — r' 

of equations (III) remain independent. 

From the table on the previous page it is seen that the matrix of (A") has 
•Jtn2(n2 — l)(n — 2) rows and \vn(n2 — 1) columns and the matrix of (B") 
has \vn{n2 — l)(n — 2) rows and \v(v — 1) n(n — 1) columns. By comparing 
the two sets of numbers, Theorems 2.1 and 2.2 are readily verified. 

In view of this theorem it would seem important to determine the actual 
ranks of the matrices of (A") and (B") in terms of certain numerical invariants 
of the Vn. Except for the particular case treated in the next section, the author 
has not succeeded in this task. 

In the formation of the tensor GijJcim we made use of Bianchi's identities: 

fijkl,m \ ^ijlm,k "T~ ^ijmk,l = = U . 

(Because of this, of course, the number of components of Gijkim equals the 
number of Bianchi's identities (2).) 

But Bianchi's identities are a complete set of identities of order one of the 
tensor of curvature (5). We have therefore the result: 

Equations (A") are the only ones between the components of Ca\tjkj which can 
be obtained as a consequence of the validity of equations (I). 

3A rectangular matrix with 5 rows and t columns has maximum rank r if r equals the smaller 
of the two numbers s, t. 
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III . I t can be seen from equations (I'), (H'), (HI7) that the problem of 
imbedding a Vn in a VN with constant curvature K0 is equivalent to the prob
lem of imbedding a Vn in a Euclidean EN, provided that we substitute for the 
curvature tensor rijkl of the Vn the tensor: 

fijki ~~ Ko(dikaji — diidjic). 

We shall also assume iV = » + 1 in which case (I'), (II')> (HI7) reduce to: 

(I") Gijki = <̂y*i "~ (fitjcbji — babjjc) — K0(aikaji — auajk) = 0, 

(II ) Ĉ -fc = 0 ^ — &jA;,̂  = 0» 

and (A"), (B") to 

(A ) Gijjcim = — bixCjim — bfiCjmJc — b imCjjci 

~\~bjjcCiim + bjiCimic + bjmCiki = 0. 

Let r be the rank of the matrix 

Wijki — K0(ai]caji — auaJk)\\ 

where one of the indices, say i, indicates the rows and the other three indices 
the columns of the matrix. 

It can then be shown that, because of (I"), r is also the rank of the matrix 
\\btJ\\ (10, p. 184). 

The integer r can be considered as an invariant of the Vn with respect to a 
Vn+\ of constant curvature Ko (in the neighbourhood of the point under 
consideration). It was introduced by Thomas (10, loc. cit.) for a Vn with 
respect to an En+i. 

For r = 0, it follows from (I") that the Vn is of constant curvature Ko. 
T — 1 is impossible. For the remaining values of r we shall prove 

THEOREM 3.1. r > 4. All the equations (II / ;) are a consequence of equations 

a"). 
THEOREM 3.2. r = 3. Of the equations (II"), five remain independent. 

The remainder of the equations (II") are a consequence of these and equations 

d"). 
THEOREM 3.3. r = 2. Of the equations (II"), 3w — 4 remain independent. 

The remainder of the equations (II") are a consequence of these and equations 

Proof. For the values of btj in the point under consideration we can, by a 
suitable coordinate transformation, obtain:4 

6^ = 0 (i*fi, 
(3) bit 9*0 (i= 1,2, . . . , r ) , 

bu = 0 (i = r + 1, . . . , n). 
4From here to the end of this section, a repeated index does not indicate a summation. 
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For these values, and tak ing in consideration the basic identities of t he 
tensor Gijkim (which follow readily from its definition): 

(-Jijklm = ^ijlmk = ^ijmkl == ^ijkml = ^ijmlk = ^ijlkm 

t he system (A'") reduces t o : 

(4) Gijjcu = — baCjjci = 0, 

(5) Gijiji s — buCjji — bjjCai = 0, 

where i, j , k, I are all dist inct , i = 1, 2, . . . r and j , k, I = 1, 2, . . . n. 

Proof of 3 .1 . r > 4. F rom (4) we find then 

Cjkl = 0, 

and from (5) follows 
Cm = 0 ( j = r+ l , r + 2, . . . , * ) . 

For j < r, we obta in from (5), b y subs t i tu t ing first i for k and then j for k: 

0 + bjcjcCjji + bjjCklci = 0, 

(6) &*fcCi<! + 0 + o i iC^j = 0, 
bjjCm ~f~ baCjji + 0 = 0, 

for d is t incte , j , k, I wi th i , j , & = 1, 2 , . . . , r a n d Z = 1, 2, . . . , n. 
T h e de te rminan t of (6) being different from zero it follows t h a t 

Cm = 0 (i 9* I; i = 1, 2, . . . , r ; / = 1, 2, . . . , n). 

This completes the proof for t he case r > 4 because Cijj = 0 follows from 

ai"). 
Proof of 3.2. r = 3 . F rom (4) we obta in 

Cm = 0 (j^k 9*1 = 1,2, . . . , » ) 

provided t h a t a t least one of the indices j , &, /, is larger t h a n 3. B u t the three 
remaining components of this type , namely C m , C231, and C312, satisfy an 
ident i ty (which follows easily from ( I I " ) ) : 

C123 + C231 + C312 = 0. 

T h u s only two of these components (e.g., C123, C231) remain independent . 
F rom (5) we have 

Cjjl = 0 (j = 4, 5, . . . , n\ I = 1, 2, . . . , n). 

From (6) we obta in for i = 1, j = 2, & = 3 : 

0 + &33C22Z + &22C33Z = 0 , 

(7) ô „ C i i , + 0 + & U C„, = 0, (Z = 4 , 5 , . . . , « ) . 

&22Cin + &llC33! + 0 = 0. 
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We have therefore as above: 

Cm = 0 (i = 1 ,2 ,3 ; / = 4 ,5 , ...,n). 

From (5) we obtain for i, j , I = 1, 2, 3 in turn: 

&33C221 + &22C331 — 0, 

Ô33C112 + ^llC332 = 0, 

622C113 + &11C223 = 0 . 

It follows from these equations that three components of the type Cm 
(i 9^ I = 1, 2, 3) are independent (e.g., Cm, C223, C331). 

Therefore, in the case under consideration five components of the tensor 
Cij1c remain independent, namely C123, C231, C112, C223, C331. 

Proof of 3.3. r = 2. From (4) we obtain 

C#, = 0, (j*k^l= 1,2, . . . , » ) , 

provided that at least two of the indices are larger than 2. The remaining 
components of this type are Cm, C2zi, CU2 among which we have (as before) 
the identity 

C m + C211 + C a 2 = 0, (/ = 3, 4, . . . , n). 

It follows therefore that 2n — 4 of these components (e.g., Cm, C211; 
/ = 3, 4, . . . , n) remain independent. 

From (5) we have 

CJJI = 0, (J = 3, 4, . . . , n; I = 1, 2, . . . , «), 

and 

622C111 + &nC22* = 0, (/ = 3, 4, . . . , n). 

Thus the w — 2 components Cm (or C22z) Q = 3, 4, . . . , n) are independent. 
The two components Cm and C221 are also independent because they do 

not occur in any of the equations (5). 
Therefore, in the case under consideration, 3(n — 2) + 2 = Sn — 4 

components of the tensor CiJk remain independent, namely, Cm, C221, C12Z, 
C2H, Cm (/ = 3, 4, . . . , n). 

The case r > 4 of Theorem 3.1 was proved by Thomas (10, §5) for a Vn 

in an En+\. In its general form but also for a Vn in an En+i, it was established 
by the present author (3, pp. 196ff). Here the same line of proof has been 
adopted. 

It is remarkable that in the case r = 3, the number of independent compo
nents of the tensor CiJk does not depend upon the number of dimensions of 
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