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AN OSCILLATION ESTIMATE TO A VARIATIONAL INEQUALITY

HYEONG-OHK B A E AND H I JUN CHOE

We prove that solutions for elliptic equations and variational inequalities are contin-
uous pointwisely if the obstacle is continuous pointwisely. The continuity of weakly
monotone functions in a high Sobolev space is crucial. Also a comparison principle is
useful in estimating oscillations of solutions.

1. INTRODUCTION

In this note, we study a pointwise continuity criterion of solutions for degenerate
elliptic equations and variational inequalities.

We suppose Q C Rn is a bounded domain and the obstacle tp is in W1'P(Q). Here
we assume that n — 1 < p ^ n. We let the boundary data UQ ^ tp a n d define K = \y s
WQ'P(Q) +U0; v ^ ip}. We say u e K is a solution to the variational inequality

-div( |Vu| p ~ 2 Vu) ^ 0

with respect to K if

I |Vu|p~2 Vu • {Vv - Vu) dx

for all v S K. Obstacle problems like this arise in many area such as optimal control,
elasticity, et cetera. In fact there have been many studies on various aspects of these
problems. In the case of degenerate obstacle problems several authors have shown that
the solution is regular under various assumptions on the operators and obstacles. (See
[1, 2, 3, 4, 6, 7].) We note that a fine pointwise analysis at a contact point was done by
Michael and Ziemer [6]. Indeed they assumed that the obstacle is upper semicontinuous
and hence the solution is lower semicontinuous.

Here we estimate the oscillation of the solution u in terms of the oscillation of
the obstacle and the U energy. First we state interior oscillation estimates. Suppose
-A p u = - div(|Vu|p~2 Vu) ^ 0 with respect to K.
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448 H-0. Bae and H.J. Choe [2]

THEOREM 1 . (Interior Continuity) There exists a set S with p-capacity zero such
that for all x0 G ft\5 and BR(x0) C ft

R
r 1 / " « _ „ / • , l 1 / p

osc u ^ Cnp\—-.—j-r I rp I \vu\ dcrxdr\
Bp(x0) ' \-log(R/p) J J J

P 8Br(i0)

, n r * fl( ,YJ ] 1 / P

+ Cnn -—, r- . . / -1 osc w I dr\ ,n'pllog(R/p) J r\Br(X0y) J

for all 0 < p < R and for some CntP depending only on n and p.

The following theorem estimates the oscillation of solutions of obstacle problems at
the boundary.

THEOREM 2 . (Boundary Continuity) There exists a set S C dfi. with p-capacity
zero such that for all x0 G 9ft\5 and p < R

R
fir , \P . IVP

osc nv osc u0 + \-—."f, . / -{ osc ib) dr\
dQnBR{x0) llog(R/p) J r\sr(i0)nn / J

p

To prove our continuity theorems we employ the idea of weakly monotone functions
and estimate the oscillation of Sobolev functions in terms of their IP energy. Indeed,
this method was used by Manfredi [5] in proving that functions of bounded dilations are
continuous except on a p-capacity zero set. Here the assumption p > n — 1 is important.

2. ESTIMATE OF OSCILLATION

We define weakly monotone functions.

DEFINITION 1. Let Q be an open set in Rn and f : Q. -»• R be a function in

the space W^(fl). We say that f is weakly monotone if for every relatively compact
subdomain Q,' of SI and for every pair of constants m ^ M such that

(rn - /)+ G W0
1>p(f2') and (/ - M)+ € Wj'p(n'),

we have

(1) m ^ f(x) ^ M for almost all x E ft''.
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Since functions in Wl(£(Q) are p-quasi-continuous and two p-quasi-continuous functions

that agree almost everywhere, also agree except in a set of p-capacity zero, we see that

(1) holds for any weakly monotone function / except in a set 5 of p-capacity zero.

First we consider a Poisson type equation and prove a continuity theorem. We take

i 0 £ fi and R > 0 such that BR(x0) C 0. Suppose that v 6 WQ^^BRIXO)) + VQ is a

solution to

div(|Vw|p~2Vw) = div(|Vi/f~2 Vtf),

where tf> is the given obstacle and VQ is a boundary data on 8BR(XO).

LEMMA 1 . For all p < R we have

[ r f r l 1 / p

osc ^ osc ip + I "* . / r"-n / \Vv\p + \Vtp\p daxdr\ ,
B,{xo) Bp{xo) [l0g(R/p)J J ' ' J

P dBr(x0)

where Cn,p is an absolute constant depending only on n and p.

PROOF: A consequence of p-quasi-continuity for p > n-l is that v — rp is continuous

on dBr(x0) for r € (0, R)\E(xo,R), where the measure of E(xo,R) is zero. Take r £

E{x0, R). Let Mr = in f JM :(v-ip- M)+ G W^p(Br(x0))}. We take {v - ip - Mr)+ e

WQ'P(BT(X0)) as a test function in

div(|Vt;|p~2 Vv - | Vt/>|p~2 VT/>) = 0

and find that from the monotonicity of the operator - A p

(v — ip — MT)+ = 0 in BT(x0) and v — ip ^ MT almost everywhere.

Similarly we can prove that

v ~ip ^ mT almost everywhere,

where mr = sup<m : [m - (v — tp)]+ € WQ'T'(Br(x0)) >. Consequently v - ip is weakly

monotone and hence
osc (v - ib) ^ osc (v — tp).

Br(lo) 3flr(z0)

In fact,
m r ^ v(x) — ip(x) ^ MT

for x G BR(XO)\F(XO, R), where F(xo,R) has p-capacity zero. Therefore, the Haus-

dorff dimension of F(xo,R) is at most n — p < 1. It follows immediately that

dBr(x0)\F(x0, R) is dense in dBT(x0) and thus mr is nonincreasing and MT is nondecreas-

ing in (0, R)\E(x0, R), where E(x0, R) is of measure zero. Therefore, oscasr(I0)(t; — tp) is

nondecreasing in (0,R)\E(XQ,R)-
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As in Manfredi [5] we have Gehring's embedding theorem

( osc (v - iP)Y ^ Cn,pr"-n+1 f \\7v-VrP\"dax
V dBT(xo) I J

dBr{x0)

for n ^ p > n - 1, where Cn>p is an absolute constant depending only on n and p . This
estimate follows from the Sobolev embedding theorem on the sphere. Hence we have

R R

-( osc (v- ip)Ydr ^ CniP frp-n f \Vvf + \Vip\p daxdr.
J T \ dBr(xo) / J J
P P dBT(xo)

Thus we have

" /
P dBT(x0)

and from weak monotonicity of (v — ip)

RR , ,

r c f r I 'p
:—T I rP~n I \Vv\p + \Vip\pdadr\

J
dBR

r c f r I
o s c u ^ o s c ^ + :—TTrr^ I rP~n I \Vv\p + \Vip\pdaxdr\B BP ilog[n/p) J J J

Let S denote the set of those x0 € fi for which

R

(2) f rp-n f \Vv\p daxdr =

0 9Br(i0)

Note that 5 is empty for p = n and the p-capacity of S is zero for p > n — 1. Refer to
Manfredi [5] for the proof.

As result of this lemma we prove that if ip is continuous at xo, then v is also continu-
ous at p-capacity almost every x0. Since there are many Wl'p function for n — 1 < p ^ n

which are not continuous, the continuity assumption on tp is necessary.

Now we consider the obstacle problem. Here we employ a perturbation technique
which is used in Choe [1].

LEMMA 2 . Suppose — Apu ^ 0 with respect to K. Then for all BR(XQ) C ft, and
p < R, we have

R
I i/p

SBr(xo)

y r 1 / " I / ,\" , 1 1 / P

»,p . , D . , / - osc V dr\ .
'pllog(R p)J r\Br(x0) J J
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PROOF: Let v be the solution to Apv = Apip and v = u on dBr(x0). Since u is a
supersolution to Apu = 0, we have

inf u = inf t i ^ inf v.
Br(lo) dBT(x0) Br(xo)

Let w = u— \u— sup i) . Then w = u on dBr(xo) and 10(2;) ^ ^>(a;) for all a; G Sr(a;o).
L Br(z0) J

Hence w is a legitimate test function and

0 ^ 11 Vu|p~2 Vu • (Vw - Vu) = - /" I Vu|p do-z.

sup

Thus we have

and

Therefore, we have

and

sup u ̂  sup v
Br(x0) Br(lo)

OSC U ̂  OSC V.
Br(io) Br(io)

OSC V ̂  OSC (v — il>) + OSC •
Br(xo) 8B,(xo) Br(i0)

^ osc u + 2 osc V'
aBr(io) Br(io)

osc u ̂  osc (u — ip) + osc V
Br(x0) dBr(xo) Br(xo)

^ osc u + 2 osc T/>.
3B,(zo) Br(io)

By Gehring's theorem, we have

( osc «)" ^ Cn,pr"-"+1 /" IVu|pdax + Cn,p( osc
\Br(io) / J \B,(io)

9Br(io)

where Cn,p depends only on n and p. So integrating with respect to r from p to R

R
 R

 R

[-( osc uYdr^Cn, f rp~n f \Vu\pdaxdr + Cn,p f-( os
7 rVBr(x0) / '"Jp JdBAxo) J r\BA

and

\ \ x n,p fosc
p p

R/p)Jp J J ioscu < [ ^ / r P - f IV«r Ar, d r l + f p ^ / i ( osc
BP ^ \.log{R/p)Jp J J i l { R / ) J \ B ( )

dBr{x0) P
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D
Since the set S of x0 € Q satisfying (2) is of p-capacity zero, we have Theorem 1.

To study the boundary behaviour of solutions to variational inequalities and elliptic

equations, we need the following lemma.

LEMMA 3 . Suppose dQ is Lipschitz and x0 € d£l. Then

(aB°x°nnUY ^ Cn'"rP~n+1 [ l V u l " ^ -

Once we have the oscillation lemma we need to show weak monotonicity of solutions
to variational inequalities and elliptic equations.

LEMMA 4 . Suppose v is a solution to Apv = Apip in BR(XO) n Cl, where XQ € d£l.
Then, for all p ^ R,

F C" .P f ^p-n f ivy,, _ V7*i,\p J~ l 1 / p
osc v ^ osc i/> + \ " J / rp~n / |V« - Vip\pdox\B,nn Bpnn^ t\og(R/p) J J J

r C f^ 1 /
+ Cnp osc v +\ -—,n'p. . / - ( oscn'pBRnan i\og(R/p)Jp r\BPnan

PROOF: Let Mr = infIM : (v-il>-M)+ € Wo'p(Br(xo)nQ)\, then as in the proof
Lemma 1 we get

v — il> ^ Mr.

We also have
v -ip ^ mT,

where mT — sup {m : [m — (v - ip)]+ 6 Wl'p(Br(x0) n fi)}. So we have

osc (v — ip) ^ osc (v - ip) + osc (v — tp).

Again from Lemma 3

( osc (v - tp)Y < CUtPrp-n+1 f \Vv - Vip\p dax + ( osc (v -

Hence, dividing by r and integrating from p to R, we conclude that

R R

1 / \ p f
- ( osc (v-ip)) dr < C n o / rp~n / \Vv-Vip\Pdox
r \ Br(io)nn

P P SBr(i0)nfi

f
J

SBr

osc (
>B,(io)nan
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and since

osc (v - ip) ^ osc v + osc V
B()n8fi B ( ) n 9 n B ( ) n s n

osc v + osc \b,
BRnan Br(i0)nan

we have

W)JO '
3Br(i0)nn

osc w ̂  osc ^ . ,% , >
pR r

J. J '

osc «+[, .n*. , T - ( osc
Llog(iJ/p) 7p r V s r

D
Finally, we consider the obstacle problems on the boundary.

LEMMA 5 . Suppose u is a solution to the obstacle problem -Apu ^ 0 with respect

to K = iw : w € V70
llP(fi) + u0 and w ^ tp\. Let x0 e dQ, then

osc u ^ Cn.v osc UQ + |-—/If. / - ( osc V) dr\
(R/p) J r \ Br(i0)nn / J\.log(R/p)

p

i /p

PROOF: We know that u is a super solution and hence

inf u > inf u.
sr(i0)nn a(nnB,(i0))

We let w be the solution to Apv = Apip in Br(x0) n fi and t) = u o n 9(Br(x0) D Q).

As in the case of Lemma 2 we find that

So we have

sup u ^ sup v.
Br(io)nn Br(i0)nn

osc u ^ osc i; ^ osc u0 + osc u + 2 osc i/>.
Br(i0)nn Br(i0)nn annBr(i0) finasr(i0) nr\Br(x0)
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Notice that

OSC

Br(x0)nn

Hence we conclude that

( osc u)
V BJxo)nn J

osc u0) +Cnv( osc u)
iBr(i0) / \nn9Br(i0) /

Cn'"\nn°SC

')'
osc u0) +-—";p

nB() >

R

•In -
J r\ Br(i

ntP( osc u0) +-—; / - ( osc ip) dr

p
R

Ir"-n f \Vu\»doxdr.J J
9Br(i0)nf!
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