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AN OSCILLATION ESTIMATE TO A VARIATIONAL INEQUALITY

HYEONG-OHK BAE AND H1 JUN CHOE

We prove that solutions for elliptic equations and variational inequalities are contin-
uous pointwisely if the obstacle is continuous pointwisely. The continuity of weakly
monotone functions in a high Sobolev space is crucial. Also a comparison principle is
useful in estimating oscillations of solutions.

1. INTRODUCTION

In this note, we study a pointwise continuity criterion of solutions for degenerate
elliptic equations and variational inequalities.

We suppose ! C R™ is a bounded domain and the obstacle v is in W1?(§). Here
we assume that n — 1 < p < n. We let the boundary data uy > ¢ and define K = {v €
Wol"’ ) +up; v2 1/;}. We say u € K is a solution to the variational inequality

—div(|Vulf~? Vu) 2 0

with respect to K if
/|Vu|”_2 Vu- (Vv —Vu)dz 20

for all v € K. Obstacle problems like this arise in many area such as optimal control,
elasticity, et cetera. In fact there have been many studies on various aspects of these
problems. In the case of degenerate obstacle problems several authors have shown that
the solution is regular under various assumptions on the operators and obstacles. (See
(1, 2, 3, 4, 6, 7).) We note that a fine pointwise analysis at a contact point was done by
Michael and Ziemer [6]. Indeed they assumed that the obstacle is upper semicontinuous
and hence the solution is lower semicontinuous.

Here we estimate the oscillation of the solution u in terms of the oscillation of
the obstacle and the L” energy. First we state interior oscillation estimates. Suppose
~Apu = —div(|VulP~? Vu) > 0 with respect to K.
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THEOREM 1. (Interior Continuity) There exists a set S with p-capacity zero such
that for all zo € Q\S and Bg(zp) C 2

R

1 1/p

< Coplrr [ 7" P do

Botra) "”’[log(R/p)/ " / IVl do dr]
P

8By (z0)
R

+C / ]l/p
i log R/p T Br(szco)w ’

P

—

for all 0 < p < R and for some C, , depending only on n and p.

The following theorem estimates the oscillation of solutions of obstacle problems at
the boundary.

THEOREM 2. (Boundary Continuity) There exists a set S C 0Q with p-capacity
zero such that for all zo € IO\S and p < R

R
1 P 1/p
< e [ ) ar]
p 056 U< Cup 050 ot [mmm p0se ) dr

R

Cnp pn » 1/p
+ [log(R/P) / g . (/) » IVl d”’d"]
r\Z0

To prove our continuity theorems we employ the idea of weakly monotone functions
and estimate the oscillation of Sobolev functions in terms of their L” energy. Indeed,
this method was used by Manfredi [5] in proving that functions of bounded dilations are
continuous except on a p-capacity zero set. Here the assumption p > n — 1 is important.

2. ESTIMATE OF OSCILLATION

We define weakly monotone functions.

DEFINITION 1. Let Q) be an open set in R* and f : Q — R be a functidn in
the space VVll”’ (2). We say that f is weakly monotone if for every relatively compact
subdomain §Y of ¢ and for every pair of constants m < M such that

(m ~ f)* € WaP(Q) and (f — M)* € WpP(),
we have

(1) m< f(z) K M for almost all z € V.
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Since functions in Wl},’f(ﬂ) are p-quasi-continuous and two p-quasi-continuous functions
that agree almost everywhere, also agree except in a set of p-capacity zero, we see that
(1) holds for any weakly monotone function f except in a set S of p-capacity zero.

First we consider a Poisson type equation and prove a continuity theorem. We take
Zo € Q and R > 0 such that Br(ze) C Q. Suppose that v € Wol‘p(BR(zo)) + 1y isa
solution to

div(|VulP* V) = div(|Vy[P~? V),

where 1 is the given obstacle and v is a boundary data on dBg(zp).

LEMMA 1. Forall p < R we have

Chp

i/p
— 8P [ gpn / Voulf + V'(/)”dozdr] ,
log(R/p) J Vo + [Vl

8B, (xo)

osc v& o0sc Y+
Bp(zo) Bp(30)¢ [
where C, ,, is an absolute constant depending only on n and p.

PROOF: A consequence of p-quasi-continuity for p > n—1 is that v — is continuous
on 8B, (z,) for r € (0, R)\E(zo, R), where the measure of E(zy, R) is zero. Take r ¢
E(zo, R). Let M, = inf{M (v—Y-M)te Wol"’(B,(zo))}. We take (v—y — M)t €

Wy (B, (z0)) as a test function in
div(|VoP 2 Vu — |VyP 2 V) = 0
and find that from the monotonicity of the operator —A,
(v—1 — M;)* =0 in B,(z) and v — ¢ < M, almost everywhere.
Similarly we can prove that
v — 9 > m, almost everywhere,

where m, = sup{m cfm- (v - 1/;)]+ e w,* (B (zo)) } Consequently v — 9 is weakly
monotone and hence

0sC - £ osc (v—v).
Br(zo)(v ¥) aB,(zo)( ¥)

In fact,
m, < v(z) —Y(z) < M,

for z € Bgr(zo)\F(zo, R), where F(zo, R) has p-capacity zero. Therefore, the Haus-
dorff dimension of F(zo,R) is at most n — p < 1. It follows immediately that
9B, (z20)\F(zo, R) is dense in 8B, (z,) and thus m, is nonincreasing and M, is nondecreas-
ing in (0, R)\ E(zo, R), where E(zo, R) is of measure zero. Therefore, 0scap, (5,)(v — ¥) is
nondecreasing in (0, R}\ E(zo, R).
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As in Manfredi [5] we have Gehring’s embedding theorem

14
( osc (v—19 )) < CpprP it / Vv — VY|P do,
aBr(IO)

8B, (o)

for n = p > n— 1, where C,, is an absolute constant depending only on n and p. This
estimate follows from the Sobolev embedding theorem on the sphere. Hence we have

R R
1

P
il — - < p—n P P
/r(aé’,s(‘io)(” 1/;)) dr \c,,,,,/r / |Vol? + |Vy[ do dr.

P 14 aBr(zo)

Thus we have

R
P C
- < — P p—n P p
(ggg(v w)) < Toa(R/p) /r / \Vul? + VY| do dr,
14 aBr(Io)
and from weak monotonicity of (v — )
R

1/p

p—n p P
oscv cgcw [log(R/p /r /lel + |Vy|P do, dr
Br

p

Let S denote the set of those zo € €} for which
R

(2) /r”'" / |Vu|P dog dr = +o0.

0 8B, (zo)

Note that S is empty for p = n and the p-capacity of S is zero for p > n — 1. Refer to
Manfredi {5] for the proof.

As result of this lemma we prove that if v is continuous at zg, then v is also continu-
ous at p-capacity almost every zo. Since there are many W'? function forn—1<p < n
which are not continuous, the continuity assumption on v is necessary.

Now we consider the obstacle problem. Here we employ a perturbation technique
which is used in Choe [1].

LEMMA 2. Suppose —Apu > 0 with respect to K. Then for all Br(zo) C 2, and
p < R, we have

R
1 1/p
<C[—1 [ VuP do, d
5 ”’[log(R/P)/T / IVl do T]
» 2B, (z0)
Rl 1/
p »
*+Cop log R/p /; B,(zo) dr]

p
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PROOF: Let v be the solution to A,y = Apyp and v = u on 9B, (zp). Since u is a
supersolution to Ayu = 0, we have

inf wu= inf uw> inf wv.
Br(z0) 8B, (z0) By (x0)

+
Letw=u— [u— sup v] . Then w = u on 8B, (zq) and w(z) = ¥(z) for all z € B,(xy).
Br(zo)
Hence w is a legitimate test function and

0< /|\7u|"-2 Vu- (Vw - Vu) = — / VP do.

u2 sup v
Br(zg)
Thus we have
sup u < sup v
Br(zo) Br(TO)
and
0SC u < 0SC V.
B, (zo) B, (zo)
Therefore, we have
osc v osc (v-— SC
Br(zo) aBr(ro)( v+ Br(=0)¢
£ osc u+2 osc
= 8B, (z0) B, (zo) v
and
< osc (u—9)+ osc ¥

0SC U
B, (zo) 8B, (zo) Br(zo)

< osc u+2 osc
= 8B, (z0) Br(z0) ¥-

By Gehring’s theorem, we have

( osc u)p < Cppr? ¥ / |Vulf do, + C, ,,,( osc w)
B, (zo) i Be(z0
8B, (z0)

where C,, depends only on n and p. So integrating with respect to r from p to R

R R
R
1 P
/-1- osc u r < Cn,p/ 7"’_"/ |Vulf dog dr + Crp —( 0sc¢ z,/)) dr
T \ B(z0) P 3B, (zo) T \ Br(zo)
P

14
and
Cn R Rl 1/
P »
P p—n 14 d - )
Bou s [log(R/p)/ i / IVul dox T] [log (R/p) /r B?(SISJ)¢ ]
8Br(10) 4

https://doi.org/10.1017/50004972700031865 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700031865

452 H-O. Bae and H.J. Choe [6]

Since the set S of z4 € 2 satisfying (2) is of p-capacity zero, we have Theorem 1.
To study the boundary behaviour of solutions to variational inequalities and elliptic
equations, we need the following lemma.

LEMMA 3. Suppose 82 is Lipschitz and zo € 8Q). Then

€ CpprP ™! / |Vulf do.
8B, (z0)N02

( 0sc u)
8By (z0)NN
Once we have the oscillation lemma we need to show weak monotonicity of solutions

to variational inequalities and elliptic equations.

LEMMA 4. Suppose v is a solution to Apv = Aytp in Br(zg) N, where zo € 9.
Then, for all p< R,

R 1/
osc v £ osc i + [——C"’p ) / P / |Vv — Vy do,] ?
P

B,n0 B,N& log(R/p
8By (z0)N2

R
+Cnp ponga’ [%{L’}_E/ 1 (B,,nan 1/))pdr] 1/"_

PROOF: Let M, = inf{M (v—y-M)T € Wol"’(B,(a:o)ﬁQ)}, then as in the proof
Lemma 1 we get
v-9Y < M,.

We also have
v - w 2 mr;

where m, = sup {m : [m — (v — ¥)]* € Wy*(B,(zo) NQ)}. So we have

osc (v—¢)< osc (v—9)+ osc (v—1).

B,(zo)nﬂ 38,(10)09 B, (ZO)I'TaQ

Again from Lemma 3

P P
_ < p—n+l _ pd ( _ ) .
(Br(gigm(v w)) < Copr / Vo = Vo doz + (| o5 CEY)
aBr(Io)nﬂ
Hence, dividing by r and integrating from p to R, we conclude that

R

/ HE N C“*’/ / Vv ~ VY[ do

P p 8B, (zo)n02
R

+Cnp / : ( B,(xo)nan(v B 1‘/}))

p
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and since
osc (v—v¢)< osc v+ osc
Br(z0)N80 Br (z0)n0Q2 B, (z0)no0
< a,?ﬁ%n vt B,(gf)%an ¥,
we have

Chnp R p—n » 1/p
é:sncnv < lgsc P+ [E)g(T/p)/ T / |Vv — V| daz]
8B, (zo)N02

Cop [F1 P 1lp
G nggnv [log(R/p) / T(B.-((z)f)%aﬂ ¢) dT] '

Finally, we consider the obstacle problems on the boundary.

LEMMA 5. Suppose u is a solution to the obstacle problem —Apu > 0 with respect
to K = {w cw € WyP(Q) + up and w > ¢}- Let zy € 052, then

R
<C, 1 ) d ]1/,,
L%Srf u "pas?sgk to + log(R/p /; Br(zo():nﬂ "
p
R y
14
p-n Vul d d]
logR/p /T / IVl doz dr
P 8B, (zo)N2

PRrROOF: We know that u is a super solution and hence

inf u2 inf u
Br(zo)NQ 8(QNB- (zo))
We let v be the solution to A,v = Ay in B,(z0) N and v = u on 8(B,(zo) NN).
As in the case of Lemma 2 we find that

sup u< Ssup .
By (z0)NN By (z0)NQ

So we have

osc ug< osc v osCc U+ osc u+2 osc
B, (zo)N02 B (zo)NQ2 89N B, (z0) QN8 B, (z0) QNB; (o)
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Notice that

P p
( 0sC u) < Cy ( 0sc uo) +Chp ( 0SC u)p
Br(z0)NS2 80N B, (zo) QN3B; (o)

( NB, (z )
k 0 ,-( 0)

P
< Cnp ( osc uo) + Cppr? 1 / |VulP do,

QNB, (o)
aB,(zo)ﬂQ
P
+ Gy, ( 0SC z/)).
QﬂBr(zo)
Hence we conclude that
R
( )" < Gus( )+ [+ (e ) e
osc u osc  u =
B,(z0)NQ S YMP a0nBr(zo) log R/p T B,(zo)nn "
p
R
Pd
log R/p / / |Vul|P do, dr.
P 3B, (zo)NN
0
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