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Abstract

Gromov–Witten invariants have been constructed to be deformation invariant, but
their behavior under other transformations is subtle. We show that logarithmic
Gromov–Witten invariants are also invariant under appropriately defined logarithmic
modifications.
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1. Introduction

1.1 Main result
In this paper we answer the following question, posed by Gross. Consider two logarithmically
smooth complex projective varieties X and Y and a logarithmic modification h : Y →X between
them. How are the logarithmic Gromov–Witten invariants of X and Y related? We show in
Theorem 1.1.1 that the canonical morphism M(Y ) → M(X) between the associated spaces
of logarithmic stable maps is virtually birational, and, as a consequence, the Gromov–Witten
theories with primary insertions coming from X coincide (see Corollary 1.3.1).

If X is a proper logarithmic scheme, there is a logarithmic algebraic stack M(X)
parameterizing stable logarithmic maps from logarithmic curves into X [GS13, Che14, AC14,
Wis16]. When X is also logarithmically smooth, the underlying algebraic stack of M(X) has a
virtual fundamental class [M(X)]vir that can be used to define Gromov–Witten invariants.

A logarithmic modification is a proper, birational, logarithmically étale morphism Y → X.
By [AMW14, Theorem B.6], a logarithmic modification Y → X induces a morphism M(Y ) →

M(X).
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Theorem 1.1.1. Let h : Y →X be a logarithmic modification of logarithmically smooth schemes
inducing a projection π :M(Y ) →M(X). Then

π∗([M(Y )]vir) = [M(X)]vir.

We will work throughout this paper in the language of logarithmic schemes. Following Ogus,
we refer to the underlying scheme of a logarithmic scheme X by decoration with an underline: X.

1.2 Toroidal structures and logarithmic structures
We summarize the relationship between toroidal embeddings and logarithmic structures, giving
a brief summary of the basic definitions. For an authentic introduction we refer the reader to
[Kat89] or to [ACG+13].

Logarithmic structures are a recent addition to algebraic geometry and Gromov–Witten
theory, but logarithmically smooth varieties and logarithmic modifications between them have a
concrete classical description in terms of toroidal embeddings and toroidal modifications.

A toroidal embedding is an open subset U ⊂ X such that, if X̂ = Spec ÔX,x is the formal

completion of X at any closed point x, and Û is the preimage of U in X̂, then the pair (X̂, Û)
is isomorphic to (V̂ , T̂ ), where V̂ and T̂ are constructed in the same way at a point v of a
toric variety V with dense torus orbit T ; in other words, there is an isomorphism ÔX,x → ÔV,v
carrying IXrU ÔX,x to IV rT ÔV,v as in [KKMS73, Definition II.1.1]. The toric variety V may
depend on the choice of point in X where we perform the completion. Informally, a toroidal
variety X locally looks formally, and therefore also étale locally, like a toric variety. Similarly, a
dominant morphism Y → X of varieties with toroidal structures UY ⊂ Y , UX ⊂ X is toroidal
if it locally looks like a torus equivariant morphism of toric varieties. This notion of toroidal
morphisms was introduced in [AK00, Definition 1.3], but the birational case was already present
in [KKMS73, Definition II.2.1, Theorem II.2.1*, Definition II.2.3]. We note that sometimes one
indicates the toroidal structure on X by specifying the divisor DX := X\U instead of U .

A logarithmic structure on a scheme X is an étale sheaf of monoids MX and a homomorphism
ε : MX →OX , with OX given its multiplicative monoidal structure, such that every unit of OX is
the image of a unique element of MX . The triple X = (X,MX , ε) is called a logarithmic scheme.

If i : U ⊂ X is an open subset then MX = OX ×i∗OU i∗O∗U (the fiber product taken as
sheaves in the étale topology) along with the projection to OX gives a logarithmic structure
on X. Concretely, the local sections of MX are the sections of OX that become invertible when
restricted to U . When U ⊂X is a toroidal embedding, the logarithmic scheme X just constructed
is fine, saturated, and logarithmically smooth and U can be recovered as the open subset of X
on which the map ε : MX → OX is an isomorphism onto O∗X .

A morphism of logarithmic schemes f : Y → X consists of a morphism of the underlying
schemes Y → X, for which we use the same symbol f , and a morphism of étale sheaves of
monoids f−1MX → MY such that the diagram

f−1MX
ε //

��

f−1OX

��

MY
ε // OY

commutes. It can be seen easily from the definition that a morphism of toroidal varieties
(Y , V ) → (X,U) (in which V maps to U) induces a morphism of logarithmic schemes.
Moreover, a toroidal morphism (Y , V ) → (X,U) such that V → U is étale or smooth induces a
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morphism of logarithmic schemes Y →X that has the same property, logarithmically, by [Kat89,
Proposition (3.4)].

1.3 Implication for logarithmic Gromov–Witten invariants
If X is a projective logarithmic scheme, M(X) decomposes as a disjoint union of open and
closed substacks MΓ(X), each of finite type with a projective coarse moduli space, indexed by
combinatorial data Γ. This was proved with additional technical hypotheses in [GS13, AC14],
but those restrictions were eliminated, using some of the methods developed in this paper,
in [ACMW17]. Associated to each datum Γ one has logarithmic Gromov–Witten invariants of X,
as defined in [GS13, AC14].

Corollary 1.3.1. Let Y →X be a logarithmic modification of logarithmically smooth schemes.
Then the logarithmic Gromov–Witten invariants of X and Y with primary insertions coming
from X coincide: given numerical data ΓX on X, there is a unique choice of numerical data ΓY
with h∗ΓY = ΓX , such that

〈α1 · · ·αn〉XΓX = 〈h∗α1 · · ·h∗αn〉YΓY ,

and for all other choices Γ′Y with h∗Γ
′
Y = ΓX the invariants vanish.

We stress that our result applies only for toroidal morphisms. Suppose X = P2 with its toric
structure. Our result applies when Y is the toric blowing up of X at a torus fixed point, such
as the origin. It does not apply if Y is the non-toric blowing up of X at any point which is not
fixed by the torus.

On the one hand, this result is to be expected: consider the case of a toroidal degeneration
π : X → B, where B is a curve with toroidal divisor DB = {b0} ∈ B and DX = π−1DB. Suppose
given a birational modification Y → X such that Y → B is also toroidal. This implies that over
a general point b 6= b0 of B we have Yb = Xb, so they have identical Gromov–Witten invariants.
This implies that the most important Gromov–Witten invariants of X and Y , namely those
with fiberwise curve classes and global insertions, automatically coincide, whether or not the
morphism Y → X is toroidal.

On the other hand, this result may be somewhat surprising. There are curve classes on Y
which are not present on X, for instance an exceptional curve E. The corollary says in particular
that all logarithmic Gromov–Witten invariants on Y with curve class dE vanish. In fact in this
case the moduli spacesMΓ′Y

(Y ) are empty, in dramatic contrast to conventional Gromov–Witten
invariants.

1.4 Gromov–Witten invariants and birational invariance
Algebraic Gromov–Witten invariants are virtual curve counts on a complex projective variety X,
thus are biregular invariants. The formalism of virtual fundamental class shows that they are
automatically deformation invariant: ifX appears as a fiber of a smooth family, then its invariants
coincide with the invariants of other smooth fibers. This property is fundamental in Gromov–
Witten theory.

By contrast, the behavior of Gromov–Witten invariants under a birational transformation
Y → X is generally subtle. Many have studied this subtlety and found that good behavior can
be obtained in special situations. Here is a non-exhaustive list:

(a) Gathmann [Gat01, Theorem 2.1] provided a procedure for calculating the behavior of genus-
0 invariants under point blowing up;
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(b) Hu [Hu00, Theorem 1.2] showed the birational invariance of Gromov–Witten numbers of

genus less than or equal to 1 under blowing up a point or a smooth curve, as well as arbitrary

genus invariants when dimX 6 3;

(c) Lai [Lai09, Theorem 1.4] showed the birational invariance in genus 0 if Y → X is the

blowing up of a smooth subvariety Z with convex normal bundle with enough sections, or

if Z contains no images of P1;

(d) Manolache [Man12, Proposition 5.14] showed birational invariance in genus 0 if Z is the

transversal intersection of X with a smooth subvariety of an ambient homogeneous space.

A number of authors, including Maulik and Pandharipande [MP06] and Hu, Li, and Ruan

[HLR08], considered the behavior of invariants under blowing up using the degeneration formula.

Theorem 1.1.1 shows that logarithmic Gromov–Witten invariants are well suited to questions

of birational invariance. It would be interesting to understand how Gromov–Witten invariants

with primary and descendant insertions from Y behave. It would also be interesting to obtain

comparison mechanisms between logarithmic and usual invariants similar to the results of

[MP06]. Such a mechanism should allow a comparison of Gromov–Witten invariants of X and

Y even if Y → X is not a toroidal morphism.

1.5 Artin fans

Let Log denote the stack of logarithmic structures introduced in [Ols03]. As explained in that

work, a logarithmic variety X is logarithmically smooth if and only if the associated map X →

Log is smooth. As we show in § 2 below, this map factors as X → X → Log where X → X is

a strict smooth map and X is a ‘locally toric stack’, meaning it has an étale cover by finitely

many stacks of the form [V/T ], where V is a toric variety and T its dense torus. The stack X is

logarithmically étale over a point. We show in Corollary 2.6.7 that the map Y → X is obtained

as the pullback of a toric modification Y → X . In the local picture, this means that V ′ = Y×X V
is a toric variety for the same torus T .

We intended to name the stack X the ‘Olsson fan of X’; however, the name ‘Artin fan of X’

seems to have stuck, and we will use it here.

The construction of X has its origin in unpublished notes on gluing Gromov–Witten

invariants by Chen and by Gross. Those notes showed that a solid treatment of Artin fans

would require a significant amount of pain. Having endured it, we hope we have managed to hide

this pain and present in this paper a pleasant theory.

A precursor of Artin fans in a special case was given in [ACFW13]. (A further generalization

of our treatment here, allowing arbitrarily singular logarithmic schemes, is given in [ACMW17,

§ 3.1].) Since then Artin fans have taken on a life of their own: Ulirsch [Uli15] shows that

the Berkovich analytification X i of the Artin fan of X provides an analytic structure on the

tropicalization of X. Ranganathan [Ran17a] shows that superabundance of tropical geometry is

explained by obstructions to lifting curves from X to X. In [Ran17b] Ranganathan uses Artin

fans as a tool in giving a toroidal description of the space of logarithmic stable maps of genus 0

in the toric case.

1.6 Outline of proof

The structure of the proof is very similar to that of the main theorem in [AMW14].

In § 3 we construct moduli stacks of pre-stable logarithmic maps M(Y) and M(X ) with

maps ψX :M(X) → M(X ) and ψY :M(Y ) → M(Y) constructed in § 4. We show the following

proposition.
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Proposition 1.6.1 (See Propositions 3.1 and 3.2). The stacks M(Y) and M(X ) are algebraic
and are logarithmically smooth.

In order to compare the moduli spaces we construct another stack M′(Y → X ) in § 3, as
well as morphisms ψ′Y :M(Y ) → M′(Y → X ) and α : M′(Y → X ) → M(Y) in § 4, such that
ψY = α ◦ ψ′Y . We show the following proposition.

Proposition 1.6.2 (See Corollary 3.5, Lemma 4.1, and § 5.1). The stack M′(Y→ X ) is algebraic
and the morphism α is étale and strict.

We construct M′(Y → X ) with a morphism M(h) : M′(Y → X ) → M(X ). We obtain a
diagram

M(Y )
M(h)

//

ψ′Y
��

M(X)

ψX
��

M′(Y → X )
M(h)

//M(X )

(1)

and prove the following propositions.

Proposition 1.6.3 (See § 4). Diagram (1) is cartesian.

Proposition 1.6.4 (See Proposition 5.2.1). The morphism M(h) is of pure degree 1.

We construct obstruction theories EX relative to ψX and EY relative to ψY and prove the
following proposition.

Proposition 1.6.5 (See Proposition 6.3.1). We have

[M(X)]vir = (ψX)!
EX [M(X )], [M(Y )]vir = (ψ′Y )!

EY [M′(Y → X )],

and M(h)∗EX = EY .

Theorem 1.1.1 then follows from Costello’s result [Cos06, Theorem 5.0.1]; see also [Man12,
Proposition 5.29] and [Lai09, Proposition 3.15].

1.7 Conventions
We work over an algebraically closed field k of characteristic zero. With one exception (in
Proposition 2.6.2) all logarithmic structures in this paper are fine and saturated.

2. Construction of X and Y

We construct Artin fans only for logarithmically smooth logarithmic schemes. A more general
construction appears in [ACMW17]. The general case is also treated in [Uli17], where it is
connected to Kato fans, polyhedral complexes and Berkovich analytic spaces.

We construct the stack X as a universal object depending on X. First, there is a canonical
morphism X → Log; its image is an open substack of Log, but it is too coarse an object because
different strata of X can map to the same point of Log. The idea is to correct this deficiency
in a universal way. We then construct Y by repeating the same construction, this time working
relative to Log(X ).
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2.1 Connected components of the fibers of a smooth morphism
Let f : X → Y be a smooth, quasicompact morphism of schemes. Let π0(X/Y ) be the étale
Y -space defined in [LM00, § (6.8)]. A point of π0(X/Y ) lying above a geometric point y of Y
corresponds to a connected component of the fiber Xy. We will generalize the construction of
π0(X/Y ) to a smooth, quasicompact morphism of algebraic stacks.

Remark 2.1.1. This section is closely related to, and overlaps somewhat with, [Wis16, § 4.1].
As in loc. cit., one could eliminate the smoothness requirement and replace it with local finite
presentation, flatness, and reduced geometric fibers, but that generality is not necessary here.

Proposition 2.1.2. Let X → Y be a smooth morphism of schemes. Then π0(X/Y ) is the initial
factorization of X → Y through an étale Y -space.

Proof. It will be sufficient to show that for any other such factorization X → Z → Y , there is
an inclusion X ×π0(X/Y ) X ⊂ X ×Z X as open subschemes of X ×Y X. For this it is sufficient
to show there is an inclusion on the level of points. Since everything in sight commutes with
base change in Y , we may assume Y is the spectrum of a separably closed field. In this case, the
inclusion reduces to the well-known universal property of π0(X) = π0(X/Y ). 2

As the formation of π0(X/Y ) commutes with base change in Y , the definition extends to a
smooth, quasicompact morphism f : X → Y that is representable by schemes. We show it can
be extended to an arbitrary morphism of algebraic stacks.

First, let f : X → Y be a smooth morphism from an algebraic stack to a scheme Y . Regard
Φ : X ′ 7→ π0(X ′/Y ) as a functor from the category of smooth X-schemes to the category of étale
Y -spaces. By the universal property of π0(X/Y ), this functor respects colimits where defined.
Therefore it can be extended to the category of all smooth X-spaces, and in particular to X, by
the following formula:

π0(X/Y ) = lim−→
schemes X′

X′→X smooth

π0(X ′/Y ).

Note that the colimit is taken in the category of étale Y -spaces, which is equivalent to the
category of étale sheaves on the small étale site of Y [Mil80, Theorem V.1.5]. Since colimits of
étale sheaves exist, so does the colimit defining π0(X/Y ), and it is automatically étale over Y .

Corollary 2.1.3. The conclusion of Proposition 2.1.2 is valid for smooth morphisms from
algebraic stacks to schemes.

Proof. Suppose that X → Y ′ → Y is a factorization of X → Y through an étale Y -scheme Y ′.
Then for each smooth X ′ over X, we obtain a factorization X ′ → Y ′ → Y of the map X ′ → Y .
By the universal property of π0(X ′/Y ), this factors uniquely as

X ′ → π0(X ′/Y ) → Y ′ → Y.

The universal property of the colimit used to define π0(X/Y ) now gives the required map
π0(X/Y ) → Y ′. 2

Proposition 2.1.4. Let X → Y be a smooth morphism of an algebraic stack to a scheme. The
formation of the étale Y -space π0(X/Y ) commutes with base change in Y .
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Proof. Let Y ′ → Y be a morphism of schemes and let X ′ be the base change of X. Choose a

presentation of X as a colimit of smooth X-schemes Xi. Let X ′i = Xi×Y Y ′. Then X ′ = X×Y Y ′
is the colimit of the smooth X ′-schemes X ′i and so

π0(X ′/Y ′) = lim−→π0(X ′i/Y
′) = lim−→(π0(Xi/Y )×Y Y ′) = (lim−→π0(Xi/Y ))×Y Y ′

using the commutation of π0 with base change for schemes and the fact that colimits of sheaves

commute with pullback. 2

The proposition allows us to extend the definition of π0(X/Y ) to an arbitrary smooth

morphism of algebraic stacks. Let Y ′ → Y be a smooth cover by a scheme and put X ′ = X×Y Y ′.
Then π0(X ′/Y ′) is an étale Y ′-space, and this construction is functorial in the Y -scheme Y ′.

Therefore π0(X ′/Y ′) descends to an étale Y -space π0(X/Y ).

Proposition 2.1.5. The map X → π0(X/Y ) has connected fibers.

Proof. Since the formation of π0(X/Y ) commutes with base change in Y , it is sufficient to treat

the case where Y is the spectrum of an algebraically closed field. In that case π0(X/Y ) = π0(X)

and the assertion is immediate from the definition of π0. 2

2.2 Artin cones

Suppose that σ is a fine, saturated, sharp monoid. For a logarithmic scheme (X,MX), define a

contravariant functor Aσ from logarithmic schemes to sets:

Aσ(X,MX) = Hom((X,MX),Aσ) := Hom(σ∨,Γ(X,MX)).

When σ = N is the monoid of natural numbers, we write A = AN.

We record two key results of Olsson (recall that, by convention, all logarithmic structures

are fine and saturated in this paper).

Proposition 2.2.1. (i) The functor Aσ is representable by the logarithmic stack [V/T ] where

V is the toric variety associated to σ and T is its dense torus [Ols03, Proposition 5.17].

(ii) The stacks Aσ, with their natural maps to Log, form a representable étale cover [Ols07,

Corollary 5.25 and Remark 5.26].

Lemma 2.2.2. The stabilizer group of a logarithmic structure over a field is the semidirect

product of a finite group and a torus. In particular, it is affine.

Proof. Let k be a field and let M be a logarithmic structure over k. The automorphisms of M

are the semidirect product of the automorphism group of the characteristic monoid M and the

torus Hom(M
gp
,Gm). 2

Definition 2.2.3. A logarithmic algebraic stack isomorphic to [V/T ], where V is a toric variety

and T is its torus, is called an Artin cone.
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2.2.1 Maps of Artin cones. Observe that we have Γ(Aσ,MAσ) = σ∨, so that

Hom(Aσ,Aτ ) = Hom(σ, τ)

for any fine, saturated, sharp monoids σ and τ . In particular, Hom(A,Aσ) = σ and Hom(Aσ,A)
= σ∨.

Definition 2.2.4. We call a coherent logarithmic scheme X atomic if its logarithmic structure
has Zariski charts, there is a unique stratum in its stratification by the isomorphism type of
the stalks of its characteristic monoid that is closed and connected, and the restriction of the
characteristic monoid to the closed stratum is a constant sheaf.

Lemma 2.2.5. (i) Every coherent logarithmic scheme whose strata are locally connected (in
particular, every logarithmically smooth logarithmic scheme) has an étale cover by atomic
logarithmic schemes.

(ii) If X is an atomic logarithmic scheme and x is a point of the closed stratum of X then
Γ(X,MX) → MX,x is an isomorphism.

Proof. For every geometric point x of X, there is an étale neighborhood U of x such that MX

has a chart by MX,x, lifting the identity map on MX,x. The first assertion is local on X, so we
can assume this is in fact a global chart. Removing all components of the closed strata other
than the one containing x, we can assume that the closed stratum is connected. The global chart
then gives a trivialization of MX over the closed stratum.

For the second claim, observe simply that to give a section of MX , we must give a section over
each stratum in a way that is compatible with generization. But every stratum is a generization
of the closed stratum, so every section of MX over the closed stratum extends to a global section.
But MX has no monodromy on the closed stratum, so the sections of MX on the closed stratum
are the same as the sections at any point. 2

Proposition 2.2.6. An étale sheaf on Aσ is constructible with respect to the stratification of
Aσ associated to its finitely many points, and is constant on each stratum.

Proof. Write Aσ = [V/T ], and stratify V =
∐
Vi, with orbits Vi ' T/Ti. Then Aσ is stratified

as Aσ =
∐

[Vi/T ] =
∐

BTi. Since we are working over an algebraically closed field k we have
Ti ' Gr

m, so each stratum of Aσ is isomorphic to BGr
m for some r. It thus suffices to show that

all étale covers of BGr
m split. Indeed, an étale cover of BGr

m corresponds to a Gr
m-equivariant

étale cover W → Spec k. This is a scheme of the form W =
∐
W Spec k with W a finite set.

Since Gr
m is connected it acts trivially on W , hence any w ∈W provides an equivariant splitting

Spec k →W. 2

Corollary 2.2.7. Let Fσ be the set of faces of σ, partially ordered by inclusion. Then the
category of étale sheaves on Aσ may be identified with the category of presheaves on Fσ.

Proof. We may identify the elements of Fσ with the strata of Aσ. Under this identification,
inclusion of faces corresponds to specialization. We now apply the standard description of sheaves
that are constructible with respect to a fixed stratification (see [SGA4, Théorème 9.5.4] for the
case of two strata; the general case is an immediate induction). 2

602

https://doi.org/10.1112/S0010437X17007667 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007667


Birational invariance in logarithmic Gromov–Witten theory

Corollary 2.2.8. Let z be the unique closed point of Aσ. If Y → Aσ is étale and representable
then the restriction map

Γ(Aσ,Y) → Γ(z,Y)

is a bijection.

Proof. Under the identification from the last corollary, Aσ itself corresponds to the presheaf with
constant value a singleton. Therefore Γ(Aσ,Y) is determined by its value on the initial object of
the category Fσ, which corresponds to the closed stratum of Aσ. 2

2.3 Artin fans
Lemma 2.3.1. If X is an algebraic stack that is representable and étale over Log then X has a
strict étale cover by Artin cones.

Proof. Let x be a point of X . By Proposition 2.2.1 there exist an Artin cone Aσ and a map
Aσ → Log that takes the closed point z of Aσ to the image of x. Let Y be the base change of
X → Log to Aσ. Then Y → Aσ is étale and representable and contains a point y of Y lying over
x in X and over z in Aσ. By Corollary 2.2.8, there is a section of Y over Aσ passing through y.
The image of this section in X is an étale map whose image contains x. Therefore X has a strict
étale cover by Artin cones. 2

Definition 2.3.2. (i) We will say that a logarithmic algebraic stack is an Artin fan if it has
a strict, representable, étale cover by Artin cones.

(ii) Let X be a logarithmically smooth logarithmic scheme. Then the tautological map X → Log
is smooth. Let X = π0(X/Log). We call X the Artin fan of X.

Remark 2.3.3. Since Artin cones are étale over Log, so are Artin fans. As Artin cones are
representable by algebraic spaces over Log, every strict étale morphism from an Artin cone
to an Artin fan is representable by algebraic spaces. In fact, it follows from this observation and
Proposition 2.3.11, below, that all morphisms from Artin cones to Artin fans are representable
by algebraic spaces.

Remark 2.3.4. The Artin fan of a logarithmic scheme X is representable over Log so by
Lemma 2.3.1, it is an Artin fan in the sense of the first part of the definition.

Remark 2.3.5. In [ACMW17] we give a more general construction of Artin fans for logarithmic
schemes that are not necessarily logarithmically smooth. While these satisfy the same universal
property as the Artin fans introduced here, the Artin fan of a general logarithmic scheme X
cannot be interpreted in general as π0(X/Log). In fact, the morphism from X to its Artin fan
need not even be surjective.

Lemma 2.3.6. Let X be a connected Artin fan. Then X has a unique open point, up to
isomorphism.

Proof. As X is connected, any two open points can be linked by a chain of generizations and
specializations. If u and v are open points of X with a common specialization z, then the images
of u and v in Log would be open points with a common specialization. But X → Log is étale,
and Log has a unique open point, so u and v have the same image in Log. Generizations lift
uniquely under étale maps, so this implies u = v. 2
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The Artin fan of an atomic (Definition 2.2.4) logarithmically smooth scheme is an Artin
cone.

Lemma 2.3.7. Let X be an atomic logarithmically smooth logarithmic scheme and let X be its
Artin fan. The natural map X → AΓ(X,M)∨ is an isomorphism.

Proof. Let Y =AΓ(X,M)∨ . The map X → Y factors uniquely through X by the universal property
of X . The fibers of the map X → X are precisely the connected components of the stratification
of X by isomorphism type of the characteristic monoid. The closed stratum of X is connected
by assumption, so X has a unique closed point. This maps to the unique closed point of Y.
Therefore, by Corollary 2.2.8, there is a unique section of X over Y. Let X ′ be the image of this
section. This is an open substack of X containing the closed point so its preimage in X is an open
subscheme containing the closed stratum. This means the preimage is all of X, and as X → X
is surjective, this means the section Y → X is surjective, and is therefore an isomorphism. 2

Lemma 2.3.8. (i) An Artin fan is quasicompact if and only if it has finitely many points.

(ii) An Artin fan that is representable over Log is quasiseparated.

Proof. It is immediate that an Artin fan with finitely many points is quasicompact. Conversely,
a quasicompact Artin fan has an étale cover by finitely many Artin cones, and an Artin cone
has only finitely many points. This proves the first assertion.

Now suppose that X is an Artin fan whose canonical projection to Log is representable. We
wish to show that the diagonal of X is quasicompact. This is a local assertion on X × X , and
X has an étale cover by Artin cones, so it is sufficient to show that Aσ ×X Aτ → Aσ × Aτ is
quasicompact when Aσ and Aτ are étale over X . We note that Aσ is quasiseparated since it can
be presented as [V/T ] where V is a toric variety and T is its dense torus. Therefore it suffices to
demonstrate that Aσ ×X Aτ is quasicompact.

We argue that Aσ ×LogAτ has finitely many points. Indeed, the fiber over a geometric point
of Aτ , of which there are only finitely many, corresponds to the fiber of Aσ over a geometric
point of Log. But if s is the spectrum of an algebraically closed field, a morphism s → Log is
a logarithmic structure Ms on s, and the lifts to Aσ correspond to homomorphisms σ∨ → M s

that can be lifted to charts. These are in bijection with isomorphisms between M s and ρ∨ for a
face ρ of σ, and there are only finitely many of these. 2

Corollary 2.3.9. The Artin fan of a quasicompact, logarithmically smooth logarithmic scheme
is quasicompact and quasiseparated.

Proof. If X is the Artin fan of a quasicompact, logarithmically smooth logarithmic scheme X
then X → X is surjective, so X is quasicompact. By definition, X is representable over Log, so
it is quasiseparated as well. 2

Remark 2.3.10. It is not true that every algebraic stack that is strict and étale over Log has
an étale cover by Artin cones. For example, let Gm act on A1 by t.x = t2x. The quotient Y is
étale over Log when given its natural logarithmic structure. The map Y → Log factors through
X := A, the Artin fan of Y, as a µ2-gerbe. This gerbe is non-trivial because it is the stack of
square roots of the tautological bundle on X , and Pic(X ) = Z. Therefore it has no section.

On the other hand, if Aσ → Y were a strict étale map whose image contains the closed point
then Aσ → X would be a strict étale cover. But the only strict étale cover of A by an Artin cone
is the identity, so if Y had a cover by an Artin cone, the cover would be a section of Y → X ,
and we have just seen there is no such section.
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Proposition 2.3.11. Let X be an Artin fan and let Aσ → X be a morphism of Artin fans. Then
there is an initial example of a strict étale map Aτ → X and a factorization of the morphism
Aσ → X through a morphism u : Aσ → Aτ .

Proof. Pick a strict, étale map Aτ → X whose image contains the image of the closed point
of Aσ. Pulling back to Aσ, we get an étale cover Y of Aσ, which necessarily has a section by
extending any section over the closed point. We can then replace τ with its smallest face that
contains the image of σ.

Now we argue that the factorization is initial. Suppose that Aσ → Aτ ′ → X is another
factorization. Then we obtain a commutative square of solid arrows:

Aσ
γ
//

u

��

Aτ ′

��

Aτ //

φ
==

X

We seek a dashed arrow completing the diagram. As the closed point of Aσ maps to the closed
point of Aτ by assumption, the strict map Aτ ′ → X covers the image of Aτ . Therefore $ :
Aτ ′ ×X Aτ → Aτ is an étale cover with a given section ξ = (γ, u) over Aσ.

Note that the composite morphism Aτ ′ → X → Log is the tautological morphism, which is
representable (Lemma 2.2.1). Hence Aτ ′ → X is necessarily representable.

The closed point pσ ∈ Aσ maps to the closed point u(pσ) = pτ ∈ Aτ . It follows that the point
ξ(pσ) lies over pτ , hence by Corollary 2.2.8 there is a unique section ς = (φ, id) of $ sending
pτ 7→ ξ(pσ). Moreover, the pullback ς ◦ u of ς to Aσ is determined by its restriction to pσ, and
thus coincides with ξ. Therefore φ extends γ, as needed. 2

Corollary 2.3.12. Let Y be an Artin fan, φ : Aτ → Y a strict étale map and b : A→ Aτ its
barycenter. Then AutY(φ) = AutY(φb).

Proof. We have

AutY(φ) =


Aτ
φ
��

Aτ

==

φ
// Y

 =


A b //

b
��

Aτ
φ
��

Aτ

==

φ
// Y

 =


A b //

b
��

Aτ
φ
��

Aτ
φ
// Y

 = AutY(φb).

In the first equality, we identify AutY(φ) as the set of dashed arrows making the triangle 2-
commute. For the second equality, we observe that every automorphism of τ commutes with the
inclusion of the barycenter. The third equality is Proposition 2.3.11. And the fourth equality is the
identification of AutY(φb) with the set of 2-commutative squares as implied by the diagram. 2

Example 2.3.13. Consider the open substack Y of Log parameterizing those logarithmic
structures that admit charts by N2. This is the Artin fan of the Whitney umbrella [ACMUW,
§ 4.6.2]. For any pair of natural numbers (a, b) we have a map N2

→ N. Viewing N as the set
of global sections of the characteristic monoid of A, this induces a logarithmic structure M(a, b)
on A with a chart by N2.

If a = b = 0 then the A→ Y factors through the open point. If one of a or b is zero but the
other is not then A→ Y is strict, hence is its own initial factorization. If a 6= b and neither is zero
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then we have two factorizations A→ A2 corresponding to the two maps (a, b), (b, a) : N2
→ N.

There is a unique isomorphism γ : A2
→ A2 (induced from the automorphism N2

→ N2 sending
(x, y) to (y, x)) making the diagram

A (a,b)
//

(b,a)
��

A2

��

A2 //

γ
>>

Y ⊂ Log

commute.

The final case is where a = b 6= 0. In this case we have a single map A (a,a)−−−→ A2 inducing
M(a, a) by pullback. However, a commutative square of solid lines

A (a,a)
//

(a,a)
��

A2

��

A2 //

γ
>>

Y ⊂ Log

involves the specification of an isomorphism between M(a, a) and itself, commuting with the map
to N. There are two choices of this isomorphism, the identity and the map that exchanges the
generators. Each of these is induced from a unique dashed arrow making the diagram commute.

2.4 Proper morphisms of Artin fans

We note that the formation of Aσ is functorial in σ. In particular, if σ is a face of τ then Aσ →Aτ
is an open embedding. If Σ is a fan then we can define AΣ by gluing the Aσ associated to the
σ ∈ Σ along their common faces. If V is the toric variety associated to Σ then AΣ ' [V/T ] where
T is the dense torus of V .

We observe that Hom(A,AΣ) = |Σ|, where, by definition, |Σ| = ⋃
σ∈Σ σ.

If a fan Σ is a subdivision of τ then we call the map AΣ → Aτ a subdivision. If Y → X is
a morphism of Artin fans such that Aτ ×X Y → Aτ is a subdivision for every strict logarithmic
map Aτ → X then we call Y a subdivision of X .

Theorem 2.4.1. Let f : Y → X be a representable morphism of connected Artin fans. The
following are equivalent:

(i) f is proper;

(ii) for any strict logarithmic map Aσ → X , the map Y ×X Aσ → Aσ is proper;

(iii) for any strict logarithmic map Aσ → X , the map Y ×X Aσ → Aσ is a subdivision;

(iv) f is a subdivision;

(v) every map A → X lifts uniquely along f : any commutative diagram of logarithmic
morphisms

Y
f
��

A //

??

X
(2)

admits a unique completion by a dashed arrow.
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Proof. Item (iii) is the definition of subdivision, hence equivalent to (iv). The equivalence of (i)

and (ii) follows by étale descent from the fact that the strict logarithmic maps Aσ → X form an

étale cover.

For the equivalence of (ii) and (iii), it is sufficient to assume X = Aσ. Present Aσ as [V/T ],

where V is a toric variety and T is its dense torus. Pulling back via V → Aσ, we obtain a map

W → V whose properness is equivalent to that of Y over X , as well as an action of T on W

whose quotient is Y. But Y has a unique open point by Lemma 2.3.6, which corresponds to a

dense orbit of T . Therefore Y → X is proper if and only if W → V is a proper morphism of toric

varieties with the same dense torus. By [KKMS73, § I.2, Theorem 8] or [Ful93, § 2.4, Proposition]

this is equivalent to the condition that the fan of W subdivides σ.

We check that (iii) implies (v). As any map A → X factors through some strict Aσ → X
(see Proposition 2.3.11), it is sufficient to assume that X = Aσ. We can thus assume Y = AΣ

for some subdivision Σ of σ. Consider a diagram of solid lines, (2). A lift completing the upper

triangle in (2) amounts to giving a map A→ AΣ, which, as we observed above, is equivalent to

giving a point of |Σ|. But |Σ| → |σ| is a bijection, by definition of a subdivision, so there is a

unique such completion making the triangle commute.

Now we show that (v) implies (iii). Suppose that Y → X satisfies the lifting criterion of (v).

We assume without loss of generality that X = Aσ. Let Aτ → Y be a strict map. We argue that

the map τ → σ induced from the composition Aτ → Y → X = Aσ is an injection. Let τ◦ denote

the interior of τ , viewed as the set Nσ∩σR of lattice points of a rational polyhedral cone σR. It is

sufficient to show that τ◦ → σ is injective. Suppose that t, u ∈ τ◦ have the same image in σ. These

correspond to maps t, u : A→ Aτ with the same image in X . But Hom(A,Y) → Hom(A,X ) is

a bijection, so t and u induce the same map A → Y. In other words, we have a commutative

square of solid arrows:

A t //

u

��

Aτ

��

Aτ //

==

Y

But t and u are interior points of τ , so Aτ → Y is the minimal strict factorization of either of

the compositions

A t,u−→ Aτ → Y

so that Proposition 2.3.11 implies there is a unique automorphism of Aτ over Y sending u to t

(the dashed arrow in the diagram). By Corollary 2.3.12,

AutY(Aτ ) = AutY(b),

where b denotes the barycenter of τ and the corresponding map A→ Aτ . But AutY(b) injects

into AutX (b), because Y → X was assumed to be representable. Therefore this automorphism

is the identity and t = u.

We conclude that Aτ → Y is injective. As it is also strict, it is an open embedding and τ ⊂ σ
is a subcone. A strict family of maps Aτ → Y therefore corresponds to a family of subcones

τ ⊂ σ. Each lattice point of σ must be contained in at least one τ . By Proposition 2.3.11, there

is a minimal such cone, up to inclusion of faces. It follows, therefore, that Y is representable by

a subdivision of σ. 2
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2.5 A substitute for functoriality
By construction the map X → X is strict if we give X the logarithmic structure associated to the
map X → Log. The universal property characterizing X implies that X , and the map X → X ,
are functorial in X with respect to strict morphisms. The same functoriality does not hold for
arbitrary morphisms (see [ACMUW, § 5.4.1]) and we do not know in what generality Artin fans
should be functorial. We demonstrate a weaker sort of functoriality below.

Suppose that Y → X is a logarithmically smooth morphism of logarithmically smooth
schemes. Let X be the Artin fan of X. Then the morphism of logarithmic algebraic stacks Y → X
corresponds to a smooth morphism of algebraic stacks Y → Log(X ). Let Y = π0(Y/Log(X )).
Then by composition we have a map from Y to X :

Y → Log(X ) → X .
We verify below that Y is an Artin fan. First, note that there is a map Log(X ) → Log,

defined by taking a scheme S with logarithmic structure MS and morphism (S,MS) → X and
forgetting the map.

Lemma 2.5.1. For any Artin cone Aσ, the map Log(Aσ) → Log is strict and étale.

Proof. Strictness is immediate from the definitions of the logarithmic structures. The fiber of
Log(X ) → Log over (S,MS) is the space of logarithmic maps (S,MS) → Aσ, which may be
identified with Hom(σ∨,Γ(S,MS)). Since MS is a constructible étale sheaf, these maps may be
identified with the sections of the espace étalé of the étale sheaf Hom(σ∨,Γ(S,MS)) on S. 2

Corollary 2.5.2. Suppose Y is logarithmically smooth over an Artin cone X . Then
π0(Y/Log(X )) ' π0(Y/Log).

Proof. Since Log(X ) is strict and étale over Log, these stacks have the same universal property.
2

Corollary 2.5.3. Let X be an Artin fan and Y → X a logarithmically smooth morphism.
Then π0(Y/Log(X )) is an Artin fan.

Proof. Let Y = π0(Y/Log(X )). We must show that Y has a strict étale cover by Artin cones.
Since X has a strict, étale cover by Artin cones, and π0(Y/Log(X )) commutes with base change
in X , we may assume that X = Aσ. In this case, it follows from the previous corollary. 2

Definition 2.5.4. Let Y → X be a logarithmically smooth morphism and let X be the Artin
fan of X. We call π0(Y/Log(X )) the relative Artin fan of Y over X.

We record the following lemma for later reference.

Lemma 2.5.5. Let f : Y → X be the morphism of Artin fans associated to a logarithmically
smooth morphism of logarithmically smooth logarithmic schemes. Then f is quasiseparated,
locally of finite presentation, and its fibers over field-valued points have affine stabilizers.

Proof. We note that all of these properties are étale local in X . We can therefore assume that X
is an Artin cone and therefore that Y is the Artin fan of a logarithmically smooth logarithmic
scheme. Then Y is quasiseparated by Corollary 2.3.9 and it is locally of finite presentation because
it has an étale cover by Artin cones by Definition 2.3.2. In this case, Y is representable over Log,
so if k is a field, the stabilizer group of y ∈ Y(k) is a closed subgroup of the automorphism group
of the image of y in Log. The kernel of the map AutY(y) → AutX (f(y)) is a closed subgroup of
this finite group, hence is affine. 2
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2.6 Modifications
We will only consider logarithmic modifications of logarithmically smooth logarithmic schemes
here, so we are content to define logarithmic modifications only in that generality. Kato has given
a more general definition in [Kat99, Definition 3.14].1

Definition 2.6.1. A logarithmic modification of a logarithmically smooth logarithmic scheme
X is a proper, representable, birational, logarithmically étale morphism Y → X.

The main purpose of this section is to prove Corollary 2.6.7, which says that all logarithmic
modifications are deduced by base change from modifications of Artin fans. The proof is by
reduction, via logarithmic base change, to the case of a logarithmic modification of a logarithmic
scheme whose logarithmic structure is the one associated to a smooth Cartier divisor. As all
logarithmic modifications of such logarithmic schemes are isomorphisms, the result is trivial in
this case.

We frequently make use in this section of logarithmic changes of base. Consistent with our
assumption that all logarithmic structures are integral and saturated, these fiber products will all
be taken in the category of integral, saturated logarithmic schemes. In order to emphasize this,
we refer to ‘fine and saturated logarithmic base change’ in the sequel. Notably, the underlying
scheme of a fine and saturated fiber product of logarithmic schemes need not coincide with the
fiber product of the underlying schemes in the diagram, unless at least one of the morphisms in
the diagram is strict (or, more generally, saturated).

Proposition 2.6.2. Let p : Y → X be a proper morphism of logarithmic schemes and X ′ → X
an arbitrary morphism of logarithmic schemes. Then the map p′ : Y ′ → X ′ deduced from p by
fine and saturated logarithmic base change is also proper.

We thank the referee for the following proof, which is significantly simpler than our original
argument.

Proof. Consider the scheme-theoretic base change Z ′ := X ′ ×X Y and the natural morphism
Y ′ → Z ′. Since properness of morphisms of schemes is stable under base change we have that
Z ′ → X ′ is proper. It is shown in [Ogu17, III, Corollary 2.1.6] that Y ′ → Z ′ is finite, hence
proper. Therefore Y ′ → X ′ is proper, as required. 2

Corollary 2.6.3. Suppose that X ′ → X is a morphism of logarithmically smooth logarithmic
schemes and Y → X is a logarithmic modification. Let Y ′ → X ′ be the morphism deduced by
fine and saturated base change. Then Y ′ is a logarithmic modification of X ′.

Proof. The schemes X,X ′, Y and Y ′ are logarithmically smooth, hence the loci UX , UX′ , UY
and UY ′ where the logarithmic structure is trivial are dense. The morphism UY → UX is an
isomorphism, and UX′ maps to UX , hence the pullback UY ′ → UX′ is an isomorphism. It follows
that Y ′ → X ′ is birational, and, by Proposition 2.6.2, it is proper. The morphism Y ′ → X ′ is
logarithmically étale by base change, hence it is a logarithmic modification, as required. 2

Proposition 2.6.4. Suppose that X is logarithmically smooth with the logarithmic structure
associated to a smooth Cartier divisor. Then X has no non-trivial logarithmic modifications.

1 One may extend Definition 2.6.1 in a manner analogous to [Kat99, Definition 3.14] by including morphisms
that, étale locally in the target, are fine and saturated base changes of logarithmic modifications in the sense of
Definition 2.6.1. We will not need this generality.
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Proof. Let Y → X be a logarithmic modification with X as in the statement of the proposition.
We may work locally in X and therefore we may assume that there is a strict map X → A1,
where A1 is given its standard toric logarithmic structure. By Kato’s criterion [Kat89, (3.5.2)],
Y is étale over Z ×A1 X for some toric map Z → A1 with dimZ = 1. All such Z are quasifinite
over A1, so Y must be quasifinite over X. On the other hand, Y → X is proper and birational.
It is therefore an isomorphism, by Zariski’s main theorem. 2

Corollary 2.6.5. Suppose that Y is a logarithmic modification of a logarithmic scheme X and
X ′ is logarithmically smooth with logarithmic structure associated to a smooth Cartier divisor
in X. For any logarithmic morphism X ′ → X the X ′-scheme Y ′ deduced from Y by fine and
saturated logarithmic base change is isomorphic to X ′.

Corollary 2.6.6. Let Y → X be a logarithmically étale modification with Y → X the
associated morphism of Artin fans. Then the map Y → X is proper.

Proof. Recall that by Theorem 2.4.1, a representable morphism of Artin fans Y → X is proper if
and only if it has the right lifting property with respect to the inclusion of the open point in A.
For a given instance of diagram (2), we may verify the existence of a lift after changing base via
the given map A→ X . Set X ′ = A and write X ′, Y ′, and Y ′ for the logarithmic algebraic spaces
and stack obtained by fine and saturated base change from X, Y , and Y, respectively. We will
conclude by showing that Y ′ → X ′ is an isomorphism.

As X → X is strict, the fine and saturated pullback respects underlying schemes: X ′ =
X ×X X ′. Therefore X ′ → X ′ is smooth and surjective with connected geometric fibers. In
particular, X ′ is the Artin fan of X ′. For the same reasons, Y ′ is the relative Artin fan for
Y ′ → X ′.

We have Y ′ = Y ×XX ′, so Corollary 2.6.3 implies that Y ′ →X ′ is a logarithmic modification.
But X ′ is smooth over X ′ = A, so the logarithmic structure on X ′ is the one associated to a
smooth Cartier divisor (namely, the pullback of the distinguished divisor of A). Therefore, by
Corollary 2.6.5, the map Y ′ → X ′ is an isomorphism. Thus the universal property of the relative
Artin fan implies Y ′ → X ′ is an isomorphism as well. 2

Corollary 2.6.7. If Y → X is a logarithmically étale modification then Y → Y ×X X is an
isomorphism.

Proof. First of all, Y ×X X is a modification of X, so Y → Y ×X X is a modification. On the
other hand, Y → Y×X X is strict and both Y and Y×X X are logarithmically étale over X, so Y
is étale over Y ×X X. Thus Y → Y ×X X is étale, proper, and birational, hence an isomorphism
by Zariski’s main theorem. 2

3. Algebraicity

Let S be a logarithmic scheme and let X be an algebraic stack over S, equipped with a logarithmic
structure. We write M(X/S) for the stack whose T -points are commutative diagrams

C //

��

X

��

T // S

in which C → T is a family of pre-stable logarithmic curves. We write M(X ) for M(X/S) when
S is a point and we write M for M(X/S) when both X and S are points.
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Proposition 3.1. If X is a quasicompact, quasiseparated Artin fan (for example, if X is
the Artin fan of a quasicompact, quasiseparated, logarithmically smooth logarithmic scheme,
or the relative Artin fan of a logarithmically smooth morphism of logarithmically smooth,
quasicompact, quasiseparated logarithmic schemes), then M(X ) is represented by an algebraic
stack with a logarithmic structure.

Proof. In view of Lemma 2.5.5, this is immediate from [Wis16, Corollary 1.1.1]. 2

We remark that the underlying stack M(X ) represents pre-stable maps with minimal
logarithmic structure.

Proposition 3.2. Let Y → X be a logarithmically étale S-morphism of logarithmic algebraic
stacks that are locally of finite presentation over S. Assume that M(Y/S) and M(X/S) are
representable by algebraic stacks with logarithmic structures. Then M(Y/S) → M(X/S) is
logarithmically étale.

Proof. First we verify that M(X/S) is locally of finite presentation. We must show that, for any
cofiltered system of affine S-schemes Ti with limit T , the morphism

lim−→M(X/S)(Ti) → M(X/S)(T )

is an equivalence. An object of M(X/S)(T ) is a logarithmic curve C over T and a T -morphism
C → X . Since the stack of logarithmic curves is locally of finite presentation, C is induced from
a logarithmic curve Ci over some Ti, uniquely up to unique isomorphism and enlargement of i.
As X is locally of finite presentation, the map C → X is induced from Ci → X for some, possibly
larger, value of i, again uniquely up to unique isomorphism and further enlargement of i. This
proves that M(X/S) (and likewise M(Y/S)) is locally of finite presentation.

To prove that M(Y/S) → M(X/S) is logarithmically étale, it remains to verify the
infinitesimal lifting property. Consider a strict infinitesimal extension T ⊂ T ′ and a lifting
problem:

T //

��

M(Y/S)

��

T ′

;;

//M(X/S)

(3)

We must show that this diagram has a unique lift.
This corresponds to a lifting problem

C //

��

Y

��

C ′

>>

// X

in which C → Y and C ′ → X are, respectively, the families of maps over T and T ′ classified by
the diagram (3). As C ⊂ C ′ is a strict infinitesimal extension, this diagram has a unique lift. 2

Remark 3.3. If Y → X has logarithmically quasifinite diagonal then the conclusion of the
proposition is valid, even without the assumption that M(Y/S) and M(X/S) be algebraic,
in the sense that M(Y/S) → M(X/S) is representable by étale morphisms of algebraic stacks.
As we do not need the additional generality, and the proof is more involved, we have omitted it.
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Proof of Proposition 1.6.1. By Proposition 3.1, the stack M(X ) is algebraic. Since X → Spec k is
logarithmically étale, Proposition 3.2 implies that the morphism M(X ) → M to the stack of pre-
stable curves is logarithmically étale. As M is logarithmically smooth, M(X ) is logarithmically
smooth as well, as needed. 2

Our arguments require another stack M(Y → X ), the moduli space whose objects over a
logarithmic scheme T are diagrams

C //

��

Y

��

C //

��

X

T

(4)

in which C and C are pre-stable logarithmic curves; arrows over a logarithmic morphism T ′ → T
are given by fiber diagrams. We write M′(Y → X ) for the open substack of M(Y → X ) where:

(a) the automorphism group of (4) relative to its image C → X in M(X ) is finite; and

(b) the stabilization of the map C → C is an isomorphism (that is, it is a contraction of unstable
rational components).

Proposition 3.4. Let Y → X be the morphism of Artin fans associated to a logarithmically
smooth morphism of logarithmic schemes. Then the morphism from M(Y → X ) to M(X ) is
representable by algebraic stacks.

Proof. Working relative to M(X ), we may assume that a diagram

C0

��

// X

S

is given. Then we are to prove that the stack of all logarithmically commutative diagrams

C

��

// Y ×X C0
//

��

Y

��

C //

��

C0
//

��

X

T // S

where the bottom left square is cartesian, is algebraic. We may identify this as the space of pre-
stable logarithmic maps M(Y×X C0/S). But by Lemma 2.5.5, the map Y→ X is locally of finite
presentation, quasiseparated, and has affine stabilizers, so the same applies to Y ×X C0 → C0

by base change; as C0 is a family of pre-stable curves, we conclude that Y ×X C0 is also locally
of finite presentation, quasiseparated, and has affine stabilizers. We may therefore apply [Wis16,
Corollary 1.1.1], from which it follows that M(Y ×X C0/S) is algebraic. 2

612

https://doi.org/10.1112/S0010437X17007667 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007667


Birational invariance in logarithmic Gromov–Witten theory

Corollary 3.5. Let Y → X be a logarithmic morphism between Artin fans. Then the stack
M′(Y → X ) is algebraic.

Proof. By Proposition 3.1, we know that M(X ) is algebraic. By Proposition 3.4, we deduce that
M(Y → X ) is relatively algebraic over M(X ), hence is algebraic. But the stability condition
defining M′(Y → X ) inside M(Y → X ) is open, so it now follows that M′(Y → X ) is algebraic.

2

This gives the algebraicity statement of Proposition 1.6.2.

4. The cartesian diagram

Let Y → X be a logarithmic modification of proper logarithmic schemes. Section 2 provides us
a cartesian diagram of logarithmic stacks

Y

��

// X

��

Y // X
(5)

in which:

(a) X and Y are Artin fans;

(b) the vertical arrows are strict, smooth, and surjective; and

(c) X and Y are proper logarithmic schemes.

We consider the diagram

M(Y ) //

��

M(X)

��

M′(Y → X ) //M(X )

(6)

with the following definitions:

(a) M(X) and M(Y ) are, respectively, the moduli stacks of stable logarithmic maps into X
and Y ;

(b) M(X ) is the moduli space of pre-stable logarithmic maps into X ; and

(c) M′(Y → X ) is the moduli space of diagrams (4) described in § 3 above, with the relative
stability condition described there.

The map M(X) → M(X ) is defined by composition of C → X with X → X . The map
M′(Y → X ) → M(X ) is obtained by sending a diagram (4) to the map C → X . The map
M(Y ) →M(X) is defined using [AMW14, B.6]: an object C → Y of M(Y ) induces a stable
map C →X by stabilization of the composition C → Y →X; it comes along with a commutative
diagram

C //

��

Y

��

C // X
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Since Y = X ×X Y, this extends uniquely to

C //

��

Y

��

// Y

��

C // X // X

This gives us the map M(Y ) → M(Y → X ). We argue that it takes values in M′(Y → X ).

Suppose that C → Y is an object of M(Y ), let H be the automorphism group of its image in

M(Y→ X ), and let H ′ be the subgroup of H fixing C → X . Let G be the automorphism group of

C → Y and let G′ be the subgroup fixing C →X. By the universal property of fiber products, G′

and H ′ are isomorphic; as G is finite, so is G′, and therefore so is H ′. ThusM(Y ) → M(Y → X )

takes values in M′(Y → X ), as claimed.

Lemma 4.1. The maps

(i) M(X) → M(X ),

(ii) M(Y ) → M′(Y → X ), and

(iii) M′(Y → X ) → M(Y)

are strict.

Proof. For the mapM(X) → M(X ) we consider an S-point f : C →X ofM(X). Let g : C → X
be the induced S-point of M(X ). The minimality condition defining the logarithmic structures

of M(X) and M(X ) depend, respectively, only on the morphisms of logarithmic structures

f∗MX → MC and g∗MX → MC on C. As X → X is strict, these data coincide.

For the mapM(Y ) → M′(Y → X ), first note thatM(Y ) → M(Y) is strict by the previous

paragraph. It is therefore sufficient to show that M′(Y → X ) → M(Y) is strict. The definition of

minimality for M(Y) at an S-point f : C → Y depends, as above, on the morphism f∗MY →MC .

The definition of minimality for M′(Y → X ) at an S-point

C
f
//

τ
��

Y

��

C
g
// X

depends on the maps f∗MY → MC and g∗MX → MC . However, the latter of these may be

constructed from the former as the composition

g∗MX → τ∗f
∗MY → τ∗MC 'MC

taking into account the isomorphism τ∗MC ' MC of [AMW14, Theorem B.6]. Therefore the

minimality conditions depend on the same data, so they yield the same logarithmic structures.

2

Proof of Proposition 1.6.3. We verify that diagram (6) is logarithmically cartesian. As its vertical

arrows are strict by Lemma 4.1, this will imply that the underlying diagram of algebraic stacks

is cartesian as well.
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Suppose that we are given maps S → M′(Y → X ) and S → M(X) along with an

isomorphism between the induced maps S → M(X ). These data correspond to a diagram of

solid lines

C

��

&&
// YS //

��

YS

��

C // XS
// XS

(7)

of logarithmic algebraic stacks over S. We obtain a map C → YS completing the commutative

diagram by the universal property of the fiber product.

It remains to verify that C → YS is stable. Fixing diagram (7), we let H denote the

automorphism group of the induced object of M(Y → X ). We let H ′′ be the automorphism

group of the induced object C → XS of M(X ) and we take H ′ to be the kernel of H → H ′′,

that is, the subgroup of H fixing C → XS . We define G to be the automorphism group of the

left-hand square in diagram (7), thought of as an object of M(Y → X) as in diagram (4). We

take G′′ to be the automorphism group of C → XS as an object of M(X), and we take G′ to be

the kernel of G → G′′. Then G′′ is finite, because C → XS is in M(X) by hypothesis, and H ′

is finite, because the outer square of (7) is in M′(Y → X ), by hypothesis. But H ′ ' G′ by the

universal property of the fiber product, so we conclude that G is finite.

Now, C →XS is stable, it must be the stabilization of C →XS . In particular, it is determined

functorially from C → YS , so that the automorphism group of the object of M(Y → X) induced

from (7) coincides with the automorphism group of C → YS as an object of M(Y ). Thus C → YS
has finite automorphism group and lies therefore in M(Y ). 2

5. The universal logarithmic modification

Let Y → X be the morphism of Artin fans associated to Y → X constructed in § 2.5. We obtain

a correspondence

M′(Y → X )

xx &&

M(Y) M(X )

where M′(Y → X ) is the moduli space of minimal logarithmic diagrams (4) constructed in § 3.

5.1 The arrow M′(Y → X ) → M(Y): proof of Proposition 1.6.2

Algebraicity was shown in Corollary 3.5 and strictness was shown in Lemma 4.1. All that is

left is to show that M′(Y → X ) is logarithmically étale over M(Y). A logarithmic infinitesimal

lifting problem

S //

��

M′(Y → X )

��

S′ //

99

M(Y)
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corresponds to a logarithmic extension problem

C //

��

C ′ //

��

��

Y

��

C

��

//
%%

C
′

��

// X

S // S′

Now, C → C is a contraction of unstable components so we may apply [AMW14, Appendix B]

to obtain C
′

uniquely. All that is left is to produce the map C
′
→ X and show it is unique. This

follows from the lemmas below.

Lemma 5.1.1. C
′
is the pushout of the maps C → C and C → C ′ in the category of logarithmic

schemes.

Proof. As C → C ′ and C → C
′

are homeomorphisms, the underlying topological space of C
′

is the pushout of the maps underlying C → C and C → C ′. As in [AMW14, Lemma B.1] the

structure sheaf of C
′

is the pushforward of the structure sheaf of C ′, hence C
′

is the pushout of
underlying schemes. Also the logarithmic structure on C

′
is constructed as the pushforward of

the logarithmic structure on C ′. This implies the result. 2

Lemma 5.1.2. C
′
is the pushout of the maps C → C and C → C ′ in the 2-category of logarithmic

stacks.

Proof. The construction of C
′

is local in the étale topology of C, so we may work étale locally
in C. We may therefore assume that given maps C → X and C ′ → X factor through a smooth,
strict chart X → X . But then these maps extend uniquely in a compatible way to C

′
→ X by

the previous lemma. The uniqueness of this extension guarantees that the induced map C
′
→ X

is independent of the chart and therefore descends. 2

5.2 Birationality: proof of Proposition 1.6.4
Proposition 5.2.1. Suppose that Y → X is a logarithmic modification of Artin fans. Then the
maps M′(Y → X ) → M(X ) and M′(Y → X ) → M(Y) are birational.

Proof. All of the stacks M′(Y → X ), M(X ), and M(Y) are logarithmically smooth. Therefore
they have dense open substacks where their logarithmic structures are trivial. We show that
these dense open substacks are all isomorphic to one another by the given maps.

Consider an S-point of M′(Y → X ), where S has the trivial logarithmic structure. We have
a commutative diagram

C //

��

Y

��

C // X
(8)

with both C and C logarithmically smooth. This implies first that the underlying curves of C and
C are smooth, and second that the map of schemes underlying C → C is a branched cover. But
the stabilization of C → C must also be an isomorphism, so its degree must be 1 and therefore

616

https://doi.org/10.1112/S0010437X17007667 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007667


Birational invariance in logarithmic Gromov–Witten theory

C → C is an isomorphism. This proves that M(Y → X ) → M(Y) is an isomorphism over the
loci with trivial logarithmic structures.

Now consider an S-point C → X of M(X ), where S is still assumed to have trivial logarithmic
structure, so the underlying curve of C is smooth. Consider the fine and saturated base change
C = C ×X Y. The fibers of C over S are logarithmically smooth and the logarithmic structure
of each is associated to a smooth Cartier divisor. Therefore C = C by Corollary 2.6.5. This
immediately yields a section of M′(Y → X ) over the locus where the logarithmic structure is
trivial. It remains only to verify that if (8) is an S-point of M′(Y → X ) then C = C ×X Y.
However, this follows from the fact that C → C is an isomorphism, as we saw above. 2

6. Obstruction theories

6.1 The arrow M(X) → M(X )
First we show that the natural obstruction theory for M(X) over M(X ) agrees with the one
over Log(M) defined in [AC14, Che14, GS13]. Let S ⊂ S′ be a strict square-zero extension over
M(X ) with ideal J and assume given an S-point of M(X). We have a diagram of solid lines

X

��

C //

f ..

��

C
′

//

>>

��

X

S // S′

(9)

Note that because X is étale over Log, lifts of this diagram are precisely the same as lifts of the
diagram

X

��

C //

f ..

��

C
′

//

>>

��

Log

S // S′

Since X is smooth over X , the logarithmic lifts of either of these diagrams form a torsor on C
under the sheaf of abelian groups f∗TX/X ⊗J = f∗T log

X ⊗J . Therefore if we define E(J) to be the

stack on S of f∗T log
X ⊗ J-torsors on C we obtain an obstruction theory in the sense of [Wis11]

for M(X) over M(X ) or over Log(M). The latter of these is the one defined in [AC14, Che14,
GS13].

6.2 The arrow M(Y ) → M′(Y → X )
A similar argument will apply to give the obstruction theory for M(Y ) over M(Y). Since
M′(Y → X ) → M(Y) is étale this also serves as an obstruction theory over M′(Y → X ).
Explicitly, a lifting problem

S //

��

M(Y )

��

S′

99

//M′(Y → X )
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corresponds to the lifting problem

Y

��

C //

τ
��

g ..

C ′

>>

//

��

Y

��

C //

��

C
′

//

��

X

S // S′

(10)

As before, the lifts form a torsor under g∗TY/Y ⊗ J = g∗T log
Y ⊗ J . Taking E ′(J) to be the stack

on S parameterizing torsors on C under g∗T log
Y ⊗ J therefore gives a perfect relative obstruction

theory.
We now demonstrate that the obstruction for M(X) considered in § 6.1 pulls back to the

same obstruction theory for M(Y ) over M′(Y → X ).

Recall that E(J) was defined in § 6.1 to be the stack of f∗T log
X ⊗ J-torsors on C and the

obstruction was the torsor of lifts of the diagram below:

C
f
//

��

X

��

C
′

//

??

X

(11)

To identify E(J) with E ′(J) we note that because C → C is a contraction of chains of rational
curves and Y → X logarithmically étale,

Rτ∗(g
∗T log

Y ⊗ J) = Rτ∗(τ
∗f∗T log

X ⊗ J) = f∗T log
X ⊗ J

so that g∗T log
Y ⊗ J-torsors on C may be identified with f∗T log

X ⊗ J-torsors on C by pullback.
Moreover, the compatibility of the lifting problems

C //

��

C //

��

X

��

C ′

77

// C
′

??

// X

ensures that the torsors of lifts of (10) and (11) are identified. This shows that the obstruction
theories coincide.

6.3 Conclusion
We have therefore proved the following precise restatement of Proposition 1.6.5.

Proposition 6.3.1. Let E denote the perfect relative obstruction theory forM(X) over Log(M)
and let E ′ denote the perfect relative obstruction theory for M(Y ) over Log(M). Then:

(a) E is also a perfect relative obstruction theory for M(X) over M(X ), and in particular
[M(X)]vir = (ψX)!

E [M(X )];
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(b) E ′ is also a perfect relative obstruction theory forM(Y ) over M′(Y→ X ), and in particular
[M(Y )]vir = (ψ′Y )!

E ′ [M
′(Y → X )];

(c) M(h)∗E = E ′.

We may now combine Propositions 5.2.1 and 6.3.1 with Costello’s theorem [Cos06,
Theorem 5.0.1] to deduce M(h)∗[M(Y )]vir = [M(X)]vir.
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