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1. INTRODUCTION 

Stars, which contain more than 90% of the visible matter of the Universe, are 
organized into systems comprising a hierarchy of different masses and scales: from 
galactic stellar clusters to clusters of galaxies themselves. Most of the systems in 
this hierarchic sequence are collisionless: the characteristic time between collisions is 
much more than typical dynamical times (e.g., the period of oscillations). Various 
conditions of formation of collisionless gravitating systems leave traces on their 
main characteristic parameters—such as the angular momentum, the degree of 
anisotropy, the kind of dependence of the stellar density on coordinates, and so on. 
The lifetime of a system with a certain set of parameters depends essentially on 
whether these parameters belong to a region in which the system is stable, or not. 
If they do, the system may then exist practically without changes for an arbitrarily 
long time (in terms of the dynamical time scale); if they do not, it must quickly 
adjust to another, stable state. 

Thus, the main question for each special system of whether it is stable or in 
a state of dynamical relaxation is answered by asking whether the parameters of 
the system belong to stable or unstable regions. Determination of the boundaries 
between these two regions is the main problem for stability theory. The importance 
of the problem is sufficiently evident when studying various collisionless systems, in 
particular, elliptical galaxies, which have determined in many respects the develop-
ment of contemporary astrophysics. It is important to note that the requirement 
of stability imposes actually very essential limits on permissible stationary models 
of collisionless gravitating systems (it follows from the results below; for details see 
Fridman & Polyachenko 1984, hereafter FP) . 

2. REVIEW OF EARLIER W O R K 

Many of the main results on the stability of collisionless ellipsoidal systems are 
already published in English and so are easily accessible to Western readers (first of 
all, see FP) . I shall briefly remark on these results and the history of the problem at 
the beginning of the talk, and devote the main part of the talk to some new results 
which are not yet available in English translation. 
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Studies of the stability of stellar systems already have a sufficiently interesting 
history of their own. But when we discuss the origins of such work, we should 
keep in mind the theory of figures of equilibrium and the stability of different 
geometrical shapes of an incompressible fluid (sphere, ellipsoid, ring, etc.) which 
was created by many outstanding scientists. The results of their research have been 
summarized in a large number of reviews and monographs. It is clear, however, 
that the incompressible fluid approximation (and the corresponding mathematical 
formalism), generally speaking, is not suitable for describing collisionless systems. 

It is quite natural that some concepts and methods used in the equilibrium 
and stability theory of gaseous gravitating systems proved to be relevant for de-
scribing stellar clusters. We should mention here, first of all, the concepts connected 
with the name of Jeans, who was the first to investigate the stability of a homoge-
neous distribution of compressible matter: the Jeans instability, the Jeans critical 
wavelength, etc. The similarity between stellar and gaseous systems was confirmed 
in the pioneering investigations of collective effects in a collisionless gravitating 
medium carried out by Antonov (1960), Lynden-Bell (1962), and others. For ex-
ample, the search for stationary states of stellar systems is equivalent in some cases 
to solving the corresponding problem in the equilibrium theory of gaseous spheres. 
Moreover, it turns out that the problem of the stability of such collisionless systems 
can also be reduced to the stability of certain analogous hydrodynamical systems. 
However, it should be noted that this "hydrodynamical analogy" (strictly proved 
by Antonov 1962, and Lynden-Bell & Sanitt 1969) occurs only for a very special 
class of isotropic collisionless systems with distribution functions depending on the 
total energy of a star only. In such a case it is really possible to draw an analogy 
between the characteristics of the two systems under consideration (for instance, 
the stellar velocity dispersion then is analogous to the thermal particle velocity of 
the gaseous system, etc.). 

But the uniqueness of collisionless systems consists just in the possibility of 
anisotropy: the velocity dispersions along different directions may differ strongly 
from each other. Anisotropy often arises in a natural way—for instance, at the 
origin of a system; it is typical for various real systems (stellar clusters, galaxies, 
clusters of galaxies). At the same time, a tradition of applying the hydrodynamical 
analogy had led to the opinion that stellar clusters are as stable or even more stable 
than gaseous systems. However, this is correct only for isotropic distributions where 
the "collisionlessness" reveals itself in the behaviour of perturbations on very small 
scales only. In real (anisotropic) collisionless systems, not only "old" instabilities 
(characteristic also of the gaseous medium—for instance, the Jeans instability) are 
strongly modified, but also new types of instabilities appear which are due to the 
anisotropy of the velocity distribution of particles, the occurrence of beams, etc. 

In the late sixties, after the discovery of quasars, there arose the idea to 
construct models of spherical stellar clusters with a large redshift. In this connection 
Mikhailovsky, Fridman and others have carried out a series of investigations on the 
study of the stability of stellar systems with purely circular orbits (Michailovskii, 
Fridman & Epel'baum, 1970; Fridman & Shukhman 1972; Shukhman 1973; Synakh, 
Fridman & Shukhman 1972). Those systems were apparently the first examples of 
essentially anisotropic systems whose stability was investigated in detail and for 
which in some cases exact spectra of oscillations were obtained. It follows from 
these papers that stellar clusters with circular orbits and an outwardly decreasing 
density are probably stable. 

The situation with respect to stability theory of stellar systems in the early 
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seventies may be summarized as follows (restricting ourselves to the example of 
spherical systems). By that time the stability of systems with isotropic distribution 
functions had been proved and, besides, it had been shown that systems with 
circular orbits were apparently also stable (excluding a few unphysical ones). Thus 
there emerged the opinion that all spherical systems should be stable. Such an 
opinion looked natural, especially if we recall the traditional view that the spherical 
shape is the most stable one. 

However, in 1972 Schukhman and I noticed that systems with nearly radial 
orbits should be unstable and stated the following problem: to derive the critical 
anisotropy separating stable and unstable clusters (Polyachenko& Shukhman, 1972; 
Polyachenko 1972). That problem was resolved in our subsequent papers, the main 
results of which were presented in FP. The instability is due to the lack of velocity 
dispersion in transversal directions and, consequently, has the Jeans nature. If we 
consider any narrow cone with its center in the center of a sphere and imagine that 
at the initial time we have slightly compressed it into a new cone by bringing its 
generatrices together, the inevitability of further Jeans contraction is evident if one 
takes into account that the particles cannot escape from the perturbation region. 
A study of the stability of systems with such an anisotropy is important since, on 
the one hand, it arises naturally at the center of stellar systems, and, on the other 
hand, stellar orbits in spherical and elliptical galaxies are actually strongly radially 
elongated. 

Due to the importance of these problems I shall return to them below in order 
to consider the radial instability in a new light and to present more exact stability 
computations for certain realistic models of spherical stellar clusters, and to outline 
possible further work in this field. 

All the problems mentioned above are concerned with the stability of sta-
tionary spherical collisionless systems. But it is no less interesting to ask what 
role possible instabilities may play in the evolution of systems initially far from 
equilibrium. For example, one of the most important problems in the theory of 
galaxy or cluster formation is that of the collapse of a spherical cloud of collision-
less particles. In the case of a cloud that is sufficiently cold at the initial moment, 
practically all the energy released during the contraction converts into radial mo-
tion. Consequently, a strong radial orbit instability may develop. As a matter of 
fact, the conclusion that an ellipsoidal deformation should arise during the collapse 
of such a cloud was trivial after the "bar-like" instability of corresponding station-
ary systems were proved; it was made earlier in the author's paper (Polyachenko 
1981), dealing, mainly, with instabilities of stationary systems (some more details 
are presented in Polyachenko 1985). Dr. D. Merritt has recently determined the 
minimum dispersion of initial transverse velocities in a collisionless cloud that is 
necessary to ensure its stability (see his paper in this volume). 

Then I shall consider the stability of spherical systems with the opposite kind 
of anisotropy (i.e., with nearly circular orbits). Investigations of such systems were 
at the beginning mainly of methodological interest. However, the situation has 
now changed. For instance, it is important to study the processes occurring in 
the stellar component of dense galactic nuclei, collapsed objects (e.g., black holes), 
whose vicinities should, evidently, be rich with stars having nearly-circular orbits: 
stars with elongated orbits having been "absorbed" by a central body. For these 
systems it was possible to obtain the dispersion relation describing short wavelength 
perturbations (of the type of the well-known Lin-Shu dispersion relation for disk-
like galaxies). The physical mechanism of instability which is evident for systems 
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with nearly radial orbits (of course, of the Jeans nature) is not yet so evident for the 
nearly-circular orbits systems. One may give some arguments that this instability 
has a "beam" nature. 

The above listed results were obtained by the same method, using the re-
duction procedure which will now be proved. This procedure reduces the stability 
problem for arbitrary spherical collisionless systems to a more simple problem on 
the stability of the corresponding cylindrical systems relative to flute-like perturba-
tions (when the component of the wave vector along the axis of the cylinder equals 
zero). 

3. REDUCTION PROCEDURE 

The kinetic equation in the variables r, 0, <£>, vr, v± and α (where r, 0, φ are 
the standard spatial spherical coordinates, vr is the radial velocity component, 
v± ~ νθ + νφ w ^ h v$, νφ are the velocity components in the 0 and φ directions, 
and α = a r c t a n ^ / i ^ ) ) has the form: 

df , v± \ df s ina df . df 
— sin a cot 0—— 

oj v± r dj 
— + — c o s a — + 
dt r i ΘΘ sin θ dp da 

r\dr r dv± / \ r dr I dvr 

1 / άΦ β ίηαθΦχ df 1 / . #Φ cosadΦ\df 

- - \ c o s a - ^ X + ^~Ξ^ΤΙ^ l s i n a ~ ^ — — 1 — = 0. 
r V ¿70 sm0 dip / öv± rv\ \ ου 

sin θ dp Jdv± rv± V dO sin θ dp / da 

Consider small perturbations of the sphere with the equilibrium distribution func-
tion /o = fo(E,L2), where E is the stellar energy, E = \(vr

2 + νφ

2) + Φο{τ), 
with Φο the gravitational potential, L2 — r2v\ is the square of the stellar angular 
momentum. Such a system is evidently non-rotating. Then the linearized kinetic 
equation can be presented as 

— + —Lfi + Dfi = - ^ - ^ v r + - Χ Φ , ( — v± + —22vLr j , (1) 

where we introduced the operators: 

* 3 sina 3 . Λ d 
L = c o s a — + — τ - - sm a cos 0—-, (2) 

dd sin 0 dp da 

υ = ν'1-—^ + ( — - Ί Γ ) τ Γ - & 
or r σν± \ r or / ovr 

The operator L has the standard form of the infinitesimal rotation about the y-
axis (being expressed through the Euler angles). 1 In the case of full spherical 

1 Possibly, it was first noted, in the aspect interesting to us, in the unpublished 
work: M.Ya. Pal'chik, A.Z. Patashinskii, V.K. Pinus and Yu.G. Epel'baum, Institut 
Yudarnoi iziki Sibir Otd. Akad. Nauk SSSR, 99-100, Novosibirsk, 1970 (In Russian). 
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dfs v d/s Vtpdfs^ _ #Φρ\ dfs _ νΓνφ df8 

dt r dr r dip \ r dr J dvr r dv^ d<p χ , 

dr dvr r dip 3νφ 

(9) 

Thus, for solving the initial "spherical" problem, it is sufficient to find solutions of 
the corresponding "cylindrical" problem (9) for all integers s with —¿<s<¿ that 
are even or odd (see below). 

symmetry, the angular part of the potential may be separated in a form proportional 
to the spherical harmonics: Φι ~ Y £

m (0 ,<p) . The following calculations may also 
be considered as the formal justification of this natural statement. 

It is natural to solve the kinetic equation in a system of coordinates in which 
the operator L is diagonal, i.e., corresponds to a rotation around the z'-axis of 
the turned coordinate system. In this system we present the perturbation of the 
distribution function in the form of the expansion: 

/ ι = ^/.{τ,υ^Τ^.^',θ',α'), (4) 
a 

where the functions 

TL(<PU°><P2) = e - i m ^ - ' ^ P l ( c o s 0 ) , (5) 

are introduced, and the Pma(cos6) are the three-index functions (Vilenkin, 1968; 
see also FP) , in particular the P ^ o ( c o s 0 ) functions, identical (except for constant 
coefficients) to the associated Legendre functions. Therefore it is convenient to 
write the potential in the form 

Φ1 =x{r,t)T^0(<p,e,a), (6) 

or, in the "primed" system, 

Φ ι = χ ( Μ ) Σ α Ά ^ ' ' * ' ' α ' ) , (7) 

where the al

8 are the coefficients of the rotation transforming the y-axis into the 
2-axis. Thus, in the "primed" system we have an independent equation for each 
function of the expansion (4). Taking into account the relation Lf8 — isf8, these 
equations can be written as 

dfs · , \ r\ r θ φ * dfo _ L * * * * a/o 

— + —isfs + Dfs = ^— + ^ — . 8) 
at r or övr r ονφ 

Equation (8) can be presented in a form identical to the standard equation for the 
response of a cylindrical (or disk) system fs to the flute-like perturbation of the 
potential, Φ8(τ,φ) = <&8(r)el8<p (where r and <p are the corresponding cylindrical 
coordinates); if we denote for uniformity νφ ξ V±, then 
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All the above forms the first part of the reduction procedure considered in 
this section. The second part of this procedure consists in the recipe for calculating 
the full density perturbation p\. 

Let us suppose that equations (9) for fs are solved. Then for the calculation of 
Pi, it is convenient to turn in the expansion (4) again to the initial ("non-primed") 
system, which may be done by means of the formula 

TL(<p',e',«') = Y,TL>(<pA<*)äi. (10) 
8' 

Since the expression for the density perturbation p\ — f fiv±dv±dvrda includes 
the integration over the angular variable a, only one term (corresponding to s' = 0) 
remains from each sum (10), and we obtain the desired formula in the form 

Pi¿) = r L ( ^ , Ö , a ) ^ a i £ ) / fs{r,vr,v±)v±dv±dvr, (11) 

s J 

where we have defined 
« i " = l^/(o)| 2. (12) 

In order to derive, e.g., the dispersion relation (in the self-consistent problem) we 
need only to solve the Poisson equation. This gives the potential that corresponds 
to the density p\. A comparison with the initial expression will then give the 
dispersion relation. 

I shall illustrate this reduction procedure with a few examples. 

4. SPHERES WITH RADIAL ORBITS 

Let us derive, with the help of the reduction procedure, the equations describing 
the Jeans instability of a spherical system with radial orbits only. In this case, it 
is possible to derive a simpler set of equations. Since the equilibrium distribution 
function has the form 

/ ο = 6(Σ2)φ0(Ε) = ±6(υΙ)φ0(Ε), (13) 

i.e., contains a delta-function (E is the energy of radial motion, Ε = ν2/2 + ΦΟ(Γ)), 
the perturbation of the distribution function may be written 2 

fs = aa6{v±

2)+bav±6'{vl)i (14) 

where 6r is the derivative of the ^-function, and the a3 and b8 functions depend 
only on r and vr (and, of course, on the time t): as — a Ä(r, vr,t), b3 = b8(r,vr,t). 
For these functions we obtain the set of equations: 

da da 2vr <9Φ0 da 1 db _ 1 # Φ Β d<f)0 ( . 

ât r dr r dr dvr r d<p r2 dr dvr ' 

2 An analogous procedure of ^-expansions was first applied by Michailovskii, 
Fridman and Epel'baum (1970). 
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where v0 ΞΞ χ/2Ε0 - 2Φ 0(Γ ) and 0 O ( £ ) = / φ0{Ε0)δ{Ε - E0)dE0. This gives 

da± da± , , 36± £(£ + 1) „ 

±v0

d4±±2v>b± = ^ , (23) 36± 

~dT dr 2υ 0 dr 

In particular, for the WKBJ-perturbations with ί » r(d/dr) the following sym-
metric set of equations can be obtained from (22)-(24) (Antonov, 1973): 

ò ± ì ± = ( ± ± ^ ± ì ( 2 5 ) 

^ + v ™ + ^ b _ ̂ 0 =

 2 ί 3 φ ' φ Ό (16) 
dt r dr r dr dvr r3 

The density perturbation is 

pi = 4 π £ α Μ / <fo ra s . (17) 

If we substitute b3 = 2isF\ and take into account that 

then we obtain the following set of equations for the functions Fi , αϊ Ξ Y^a a f a g 

and x ( r ) [with Φ β = x(r)e"«» and î> Ξ » r d / d r - {d90/dr)d/dvr]: 

da, - 2vr , 1 ( 1 + ! ) „ 5χ 1 # 0 

~dT 1 " Γ β 1 + F l = T r V ^ ( 1 8 ) 

^ + Μ + (19) 

1 d , 2 d x , £ (£+ 1) „ / , 

^ ' i * " ± ^ 2 X = ^ J a 1 d v r , (20) 

coinciding with the set in FP (derived in another way). 
Further standard transformation of the set (18)-(20) consists of the natural 

substitution air2 — a and F i r 3 = F in the expansions 

a = a+6(vr - v0) + a-6(vr + v0) + b+6'(vr - v0) + b-6'(vr + v 0 ) , , . 

F = F+6(vr - vq) + F-6(vr + v0), 
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0+ζ+ = D-ς- = 2nGr j dEoPEoiU + (26) 

where D± = (d/dt) ± vo(d/dr) = (d/dt)± are the operators of the derivative 
over time along the unperturbed radial orbits of the particle "flow" with energy 
Eo, PE0 = <f>o{Eo)/vor2, ζ± = —voF± and £± = j¿rvoa±. For perturbations of 
the form φ ~ Υ™(θ, <f>)x{r) the quantities £± and ζ± may be thought of as the 
corresponding linear displacements in the equatorial plane in the azimuth <p and 
the angular momentum (τνφ) of the particle. Proceeding from the system (25)-
(26), instability is proved by constructing the Lyapunov functional (Antonov, 1973; 
in English see FP) . 

The principal point in the derivation of the set of equations (25)-(26) was 
the use of the WKBJ-approximation in the angular variables [the condition ί ;» 
r(d/dr)\. Such an approximation would be justified if the eigenfunctions of such 
a type exist. Strictly speaking this point requires an additional justification. One 
may recall, for example, that eigenfunctions of such a kind are absent in the case 
of the exactly solved problem of perturbations of uniformly rotating disks with 
arbitrary elliptical orbits. On the qualitative level, the basis for the existence of 
such solutions in the case of systems with radial orbits requires a repetition of the 
arguments similar to those given above under the qualitative description of the 
instability mechanism. 3 

Proofs of the instability based on the application of equations (25)-(26) de-
scribing the short-wavelength perturbations say nothing about how systems with 
nearly radial orbits evolve in reality. For instance, the answer to the question of 
whether the initial spherical shape of the system changes depends on the stabil-
ity or instability of just the largest scale modes. The answer to this question was 
obtained in the paper of the author mentioned above (Polyachenko 1981). It was 
shown that an initially spherical system with radial orbits converts in its non-linear 
evolution into an ellipsoidal one. At the same time in that paper (and also in those 
of our works where the boundary between stable and unstable systems was found) 
the radial-orbit instability itself was finally proved (without any approximations). 

The problem of finding the eigenmodes (~ e~tujt) in analytic form is in the 
general case rather complicated, even for the simplified set (25)-(26). However, in 
the particular case (important from the point of view of astronomical applications) 
when the system of particles is in a given external field (created, for example, by a 
more massive central condensation or by the "halo" which itself is not subjected to 
perturbations of such a type) , 4 we can advance rather far in the way of an analytical 
solution. The point is that in this case the first approximation is evidently the 
perturbation of the radial-orbit system in the given external potential, which can 
easily be determined. The gravitational interactions of particles with each other 
(their self-gravitation which causes the instability) may be accounted for in the next 
approximation. Thus, there appears the possibility of a good perturbation theory 

3 Possibly all the systems may be separated into two classes: 1) those with 
nearly circular orbits (and "joining" to them) and 2) systems "joining" to those 
with radial orbits. For systems of the first class, the WKBJ-eigenfunctions with 
ί <C rd/dr occur, and for systems of the second class, the eigenfunctions with 
ί » rd/dr. 

4 For example, the role of a "halo" may be played by a massive spherical system 
with an isotropic velocity distribution function of stars. 
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in the small ratio M/Mh <C 1 where Mh is the "halo" mass, and M is the mass of 
the radial-orbit system. Let us consider perturbations for which particles from one 
radial orbit (more exactly, a certain "flow" of particles with a fixed energy E) pass 
onto a nearby identical radial orbit. It is obvious that without taking into account 
the self-gravitation such perturbations correspond to a certain new equilibrium, 
i.e., in this approximation their frequency ω — 0. But the consistency condition for 
the solutions of the first and second (with self-gravity) approximations of the set 
(25)-(26) leads to the integral equation 

where 

Jo vo(r9Jb) 

In this case, the displacement £(r,E) is proportional to the radius: £ = r£#, with 
TE the maximal radius for a particle with the energy Ε: ΦΟ(ΓΕ) = E. Thus, F (E) 
(or £E) must be a solution of the integral equation (27), and the square of the 
eigenfrequency, ω 2 , is the eigenvalue of the corresponding integral operator. 

Equation (27) can be easily transformed to the standard form of an integral 
equation with a symmetric kernel 

Ç Emax 

ω2Ε{Ε) = / K{E,Eo)F{E0), 
^ Φ ο(Ο) 

(28) 

where we introduced the new function 

F(E) = F(E)VWh m^2-?^1), (29) 

and the symmetric kernel is 

dr 

K(E,E0) = VfMfW J°frE ^ - · Ο ( Γ ) ^ Ο - · Ο ( Γ ) ' 

£ o < E, 

, Eo > E. 
\/E-<!>o{r)VEo-*o{r) 

(30) 
In particular, it follows from (28)-(30) that for sign-definite eigenfunctions (for 
instance, F(E) > 0 everywhere), ω2 < 0 and ω2 ~ -GM/R3, i.e., instability with 
a growth rate of such an order takes place. For the simplest case of a homogeneous 
halo, F = VÏGy/ME)/E)F{E) and 
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where the potential of a halo was taken as Φ h — r 2 / 2 . The integral equation 
(30) with kernel (31) was solved numerically for systems with various distribution 
functions φ0(Ε). For instance, for φ0{Ε) oc E(Emax -E)2 the growth rate of the 
most unstable mode (which corresponds to sign-constant £ E with the maximum at 
E = 0) proved to be η ~ 2.0by/GM/R3. 

The integral equation (28) can be solved easily numerically for an arbitrary 
potential of a "halo" Φ&(Γ ) ; when the external field is that of a point mass, the 
integral equation (28) reduces to the following form (assuming GM ~ 1): 

-ω2Χ(χ) = J K{x,y)X(y)dy, (32) 

yo 

where 

K{x,y) = 

and 

with 

_8TTG_ 

CX 2J/ 2 

χ2_+ y2
 ι χ + y _ 1 

2xy y - χ ' 

, χ 2 + y2 ι η

 x + y 
{ 2xy χ - y 

1, 

y > χ, 

χ > y, 

Χ{Χ) = \J V Φο{χ)χ9/2Χ{χ), 

7 t*dt 

J (i + ¿ 2 ) 4 

15π 

~Ϊ6' 

5. SPHERICAL SYSTEMS WITH A FINITE DISPERSION OF TRANSVERSE 
VELOCITIES 

Stability criteria for spherical stellar systems with general distribution functions 
were considered first in the papers by the author and Shukhman (1981; the main 
results are described in detail in FP) . In these works the supposition was made that 
the stability (or instability) of systems with radially elongated orbits is determined 
by the value of the parameter of "global anisotropy" £ = 2Tr/T± where Tr and T± 
are the total kinetic energies corresponding to the radial and transversal degrees of 
freedom. For several series of distribution functions which differed greatly from each 
other, critical values of £ = £ c proved to lie in a rather narrow interval: between 1.4 
and 2.0. The most interesting result is the fact that the anisotropy necessary for 
instability need not be too large: already for ξ > 2 the system is usually unstable. 
(By the way, one sometimes considers models with a mean anisotropy ζ ~ 5-8, for 
instance, in some models of the stellar surroundings of massive black holes). 

However, it is obvious that for a system immersed in a "halo" or containing a 
massive central cluster, i.e., in essence, compound systems, the criterion needs some 
improvement: this requires introducing the energy of interaction between an inner 
cluster (or a "halo") and surrounding stars in which the instability may develop. 
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It is analogous to the necessity of accounting for the energy of interaction between 
disk stars and a "halo" in the Ostriker-Peebles criterion. Taking into account the 
Jeans nature of the instability, one may postulate a generalized instability criterion 
of the form: 

Tr > ξ(Τ±/2) + ηϋ, (33) 

where U is the modulus of the interaction energy between the stars in a "corona" 
and a central condensation or a halo (a more accurate definition of which is given 
below), £ is the critical anisotropy determined earlier, and η is a number of order 
unity. Inequality (33) is, in essence, the condition for the transverse Jeans instability 
(jÜQ ~ AnGp > κ\νλ , slightly transformed by using the virial theorem, for the largest 
scale mode (/c ~ 1/·#), which may be written in energetic terms as 

T± < a |Ui| , (34) 

where U\ is the gravitational energy of the system under consideration ("corona"), 
and a is some constant. The gravitational interaction between the "corona" and 
the external gravitational field having been accounted for, the virial theorem gives 

p{r-^-)dV, (35) 

where ρ is the mass density of the system, Φο is the external potential, and dV — 
4nr2dr. U in the inequality (33) is, strictly speaking, simply the magnitude of 
the second term on the right hand side of the last formula (the "external" part of 
the virial): U — f ρτ(άΦ$Ι dr)dV. Particularly, for a homogeneous "halo", writing 
Φ 0 = Ω£Γ 2 / 2 (with U\ = const.) we have U = 2 f ρΦοαΎ, and for a point mass in 
the center, when Φο = —GM/r, U = f ρ\Φ0\αΎ. Expressing |Γ7Ί| in equation (35) 
in terms of T r , T± and f/, we obtain 

2Tr > {^-2)T± + U, (36) 

i.e., the inequality (33), with £ = ( 1 /α ) — 2, and η = 1. 
It should be kept in mind that the simplest criteria for compound systems, 

such as inequality (33), operate with the kinetic energies Tr and T± of the "corona" 
stars only, i.e., by our definition, of the component of a whole system that is re-
sponsible for the instability: only this component responds effectively to the most 
important perturbations (the fundamental mode, first of all—see footnote 3). If a 
finite—not necessarily massive—subsystem with nearly radial orbits may be distin-
guished in the whole system, it may be unstable, while the mean anisitropy of the 
whole compound system may be negligible (e.g., the ratio 2T}ot/Tj°l for the total 
system happens to be arbitrarily close to unity). This follows clearly from physical 
arguments, and, formally, from the inequality (34). In this case, the growth rate 
must be small, being of order of the Jeans frequency ω0 determined by the "corona" 
matter density. 

We always have adopted just this interpretation of the instability conditions. 
This may be seen, for instance, in our critical comments on the paper by Duncan & 
Wheeler (1980), who examined models of spherical systems with large anisotropy 
(see FP, Vol. 2, p. 151-153). Given a sufficiently small mass for the central 
anisotropic part of the system, the anisotropy of the whole system may be very 
small, 2TJ:ot/Tj°l — 1. Nevertheless, perturbations localized near the centre (with 
a radial scale of order the size Ar of the anisotropic region) must be unstable. 5 

5 This is valid with some reservations—see F P. 
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This conclusion has recently been confirmed by Merritt and Aguilar (1985). 
Thanks to Dr. Merritt, the paper by Palmer and Papaloizou presented at this 

Symposium became available to me. In essence, their result, which seems plausible, 
is that small angular momentum stars can form a distinct unstable subsystem—in 
the sense discussed above—if the distribution function fo(E,L2) of the whole sys-
tem becomes unbounded as L —> 0, for all E. However, the numerical results for the 
generalized polytropes given in this paper become invalid for the most interesting— 
fundamental—mode, as they lie far beyond the framework of the approximations 
used. The stability of these models was studied earlier by us (Polyachenko 1983; 
in more detail, see FP): we showed that a pronounced instability, which develops 
in a few crossing times and leads to an easily perceptible ellipsoidal deformation 
of the whole system (and not only a small portion of it), occurs for anisotropics 
2Tr/T± > 1.4. This result was obtained both by solving the corresponding matrix 
eigenvalue problem, and by N-body simulations. The latter have recently been 
repeated by Barnes, Goodman and Hut (1986), using a different technique, and 
showing the same result. 

It should be remarked that the last paper—as well as the paper by Palmer 
and Papaloizou—contains some critical comments resulting from the same misun-
derstanding, discussed above. These criticisms arise from a somewhat too blunt 
application of the instability criterion for the parameter £ = 2T r

¿°*/Tj_ o í , which is 
assumed to be absolutely rigorous. Of course, this criterion is not valid in some 
cases, which we have already seen from general, reasonable considerations. One 
should realize that even physically more relevant criteria, like (33), may have only 
a preliminary, and very approximate character. They are useful, in our opinion, 
as a first step. Rigorous criteria are still absent. It is clear, however, that, when 
present, such criteria will be very complex, so that their applicability to the general 
case will still be questionable. Our criteria are simple, and cannot be "strongly" 
incorrect, since they are based on a simple and fairly obvious physical picture of 
the instability. 

A way for isolating an "unstable subsystem" may be evident in some cases 
from the structure of the system considered. In other cases, this can be done only 
with some degree of uncertainty. However, for systems with a sufficiently smooth 
phase-space structure, one may apply the instability criterion (£ > 2) directly for 
the value £ = 2T¿ot/T]ot without any substantial error. 

Concerning real star clusters and galaxies, they often have a strongly inho-
mogeneous structure, with a high concentration of matter in the center. The ve-
locity distribution of stars in the central region is usually assumed to be isotropic. 
Such an isotropic region plays—roughly speaking—the role of a central mass which 
(cf. equation [33]) exerts a stabilizing influence on perturbations in an anisotropic 
"corona". 6 

6 One may consider an isotropic (or any other) subsystem as an immovable halo 
when the stellar density response of this subsystem is negligible in comparison with 
that of an "unstable subsystem" of stars with elongated orbits. It is easy to write 
down the corresponding condition suitable for rough estimates. Conceptually, this 
problem is quite similar to that of the derivation of the condition under which it 
is possible to neglect perturbations in the spherical and other non-flat components 
of spiral galaxies when studying waves in the disk component (see, e.g., Marochnik 
Sz Suchkov 1974). By analogy, here we may write down a similar condition in the 

form: {p^ / p^) · [c2^ / c2^) <C 1, where p(h) and p^ are the densities of a halo 
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6. SPHERICAL SYSTEMS WITH NEARLY CIRCULAR ORBITS 

In the above we considered the systems with radially elongated orbits. The opposite 
type of anisotropy is that of clusters with nearly circular orbits. For such systems, 
one can obtain the dispersion relation describing short wavelength perturbations 
(like the well-known dispersion relation by Lin-Shu for disk galaxies): 

ux = 1 - Vial U k 7 [ Fx(vk), 
k 

where 

«4 = l ^ ( 0 ) | 2 = {t + kW- fc)!/[(^±*)!(ÍZ*)!2«]a, 

and P£ are the associated Legendre functions, uk = ν — μ&/2, ν — ω / κ , ω is the 
eigenfrequency, /c the epicyclic frequency, μ — 2Ω/κ , Ω is the angular velocity of the 
circular orbit, po is the density, u — κ2/AnGpo — 4 /(4 — μ2) for the self-consistent 
equilibrium, 

7Γ 

Fx{u) = — ί e - * ( 1 + c o s s ) cos vsds, 
2π J 

— π 

x — k2 c21 AC2 , c is the radial velocity dispersion, and k is the radial wavelength 
number. In the derivation of equation (37) the distribution function over vr was 
assumed to be Maxwellian. Branches of oscillations described by equation (37) for 
various ί resemble very much the cyclotron branches of plasma oscillations. There 
is a separate set of branches for each pair of (£,μ) . 

and a "corona", and are the transverse velocity dispersions. One might 
expect that this condition would be weakened if the "halo" occupied only a small 
central region. 

(37) 

It is natural in such a situation to expect different critical values of anisotropy 
than for most of the models studied by us earlier. The simplest and rather re-
alistic density distribution gives the well-known Plummer-Schuster law p(r) — 
p ( 0 ) / ( l + r 2 / f o ) 5 / / 2 . The corresponding phase models were suggested by Kuzmin 
and Veltmann (1968). Their stability was investigated by us earlier, but the results 
presented, for example, in FP, had a rather large dispersion. The value £ c ~ 1.6 for 
three series of these models was obtained by means of a too-great extrapolation be-
yond the "large" growth rate values which were determined with confidence. At the 
same time, a smaller extrapolation, but taking into account rather small growth 
rates determined with less confidence, had led to values of £ c closer to £ c ~ 2 
(however, with a large dispersion). The restriction on £ c from above in the form 
Xc < 1.95 arose just as a consequence of the latter determinations. Here we present 
the results defined more precisely (to be published in more detail elsewhere). It 
turned out that all the £ c values lie within the narrow interval between ~ 2.05 
and 2.10 for all physically acceptable models by Kuzmin-Veltmann (with phase 
densities positive everywhere). 
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Considering systems with small values of χ and μ ~ 4/3 for £ = 3 one can 
find the small root: ν2 ~ cx(p — 4 /3 ) , with the constant c equal to j ^ , which 
implies instability if μ < 4 /3 . Analogous resonant conditions are fulfilled also for 
other values of ί. Moreover, generally speaking, layers with arbitrary μ are unstable 
for one or another i. Thus, there exist mechanisms for isotropisation not only in 
systems with an increasing function Ω(Γ) when μ < 1 (this was known earlier) but 
also in normal systems with decreasing Ìì(r). 
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