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Simulation-based study of turbulent aquatic
canopy flows with flexible stems
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Large-eddy simulation (LES) is performed to investigate the dynamics of flow and canopy
motions and the energy transfer in turbulent canopy flows. Different from the traditional
approach that models the canopy as a continuous medium with a drag coefficient
prescribed a priori, an immersed boundary method together with a beam model is
employed to explicitly capture the dynamics of individual stems and resolve monami. The
simulation cases cover a broad range of stem flexibilities from rigid stems to oscillatory
stems to stems yielding to the flow. For highly flexible canopies, the stem fluctuation is
small such that the canopy behaves like a rigid canopy, which is used to explain the
similarities of the flow features between rigid and highly flexible canopies. Analyses of the
turbulent kinetic energy (TKE) budget show that, in the flexible canopy cases, the waving
term associated with the canopy drag–flow velocity correlation can be as large as one-half
of the shear production term near the canopy top. Spectral TKE budget analyses further
reveal dominant effects at two characteristic scales: the monami scale associated with the
coherent structures in the mixing layer and the wake scale associated with the interval
between adjacent stems. For the TKE in flexible canopies, the waving term is found to
play an important role in the interscale and wall-normal transport terms. Our LES data
show that the spectral shortcut mechanism proposed by previous studies is caused by the
waving term.

Key words: turbulent boundary layers, flow–structure interactions, channel flow

1. Introduction

Research on canopy flows originated from the study of flows interacting with natural
organisms such as trees, grasses and coral reefs (Raupach & Thom 1981; Finnigan 2000;
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Monismith 2007; de Langre 2008; Belcher, Harman & Finnigan 2012; Nepf 2012; Lowe
& Falter 2015; Chen, Chamecki & Katul 2019), and its scope has been expanded to many
engineering and environmental applications, including wind farms (Calaf, Meneveau
& Meyers 2010; Stevens & Meneveau 2017; Ali et al. 2019) and urban atmospheres
(Fernando 2010). A canopy flow features coherent turbulent structures that develops from
the Kelvin–Helmholtz instability induced by the difference in velocity between the inside
and outside the canopy owing to the canopy drag (Naudascher & Rockwell 1994; Bailey
& Stoll 2016; Luminari, Airiau & Bottaro 2016; Singh et al. 2016; Zampogna et al. 2016;
Monti, Omidyeganeh & Pinelli 2019; Monti et al. 2020; Sharma & García-Mayoral 2020b;
Chung & Koseff 2021). In flexible canopies, the coherent turbulent structures in the mixing
layer interact with the canopy, thereby propagating the wavy deformation of the canopy, a
phenomenon known as monami (Inoue 1955; Ghisalberti & Nepf 2002; Tschisgale, Meller
& Frohlich 2017b; Tschisgale et al. 2021; Mandel et al. 2019; O’Connor & Revell 2019;
Wong, Trinh & Chapman 2020; Houseago et al. 2022), which influences both the transport
of momentum into the canopy and the momentum mixing inside the canopy (Ackerman &
Okubo 1993; Okamoto & Nezu 2009; Caroppi et al. 2019, 2021).

Nevertheless, the energy flux within the canopy flow remains poorly understood. The
presence of the canopy complicates the flow of energy because the spatial inhomogeneity
caused by the stems inside the canopy and the correlation between the canopy drag and
flow velocity lead to several new terms in the budget equation for the turbulent kinetic
energy (TKE) and a dispersive component of the kinetic energy known as dispersive
kinetic energy (DKE) (Finnigan 2000). Although a few pioneering studies have attempted
to investigate these terms (Finnigan 1979; Raupach & Thom 1981; Dwyer, Patton & Shaw
1997; Finnigan 2000; Poggi et al. 2004; Yue et al. 2008), the current understanding of
the flow field and its underlying mechanisms is still insufficient. For example, owing to
the difficulty of experimentally measuring the canopy drag–flow velocity correlation, the
role of the waving term, which is associated with this correlation, remains unclear and
thus has usually been neglected in previous modelling efforts (Finnigan 1979; Raupach &
Thom 1981; Finnigan 2000). In addition, field and laboratory experiments have observed
the direct flow of energy from large scales to small scales, also known as the ‘spectral
shortcut’ (Allen 1968; Seginer et al. 1976; Kaimal & Finnigan 1994; Brunet, Finnigan
& Raupach 1994), which has been considered to develop turbulence models for canopy
flow simulations (King, Tinoco & Cowen 2012). However, previous experiments measured
only the frequency energy spectra and then derived the wavenumber energy spectra using
Taylor’s frozen hypothesis, whereas direct evidence derived from the spatial energy spectra
is lacking. Furthermore, the detailed mechanism responsible for the spectral shortcut
remains elusive.

The spectral analysis of the energy budget is a valuable tool for investigating turbulent
energy processes, including the production, dissipation and transport of energy among
different locations, across different scales and between different velocity components
(Lumley 1964). Recently, such spectral analyses have been successfully employed in
several channel flow studies. Cho, Hwang & Choi (2018) studied the spanwise spectra
of energy transfer for a friction Reynolds number Reτ = 1700. They revealed two scale
interaction processes (in addition to the normal energy cascade) in the near-wall region:
one is the interaction between the energy-containing scales that generate skin friction, and
the other interaction is the downward energy transfer from small to large scales related to
the formation of wall-reaching motions containing inactive energy. Lee & Moser (2019)
studied the streamwise and spanwise spectra of energy transfer for Reτ = 5200 and showed
that TKE is produced in the streamwise velocity component at streamwise-elongated
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modes, transferred to the modes with higher spanwise wavenumbers, and redistributed
to the vertical and spanwise velocity components by pressure intercomponent transport
across a broad band of wavenumbers. They also found that the streamwise-elongated
modes modulate the near-wall dynamics by wall-normal turbulent transport, which was
also discovered by Mizuno (2016). Both Cho et al. (2018) and Lee & Moser (2019)
observed an inverse energy cascade where TKE flows from small to large scales, which was
not detected in earlier studies by Domaradzki et al. (1994) and Bolotnov et al. (2010), who
studied channel flows with Reτ = 210 and 180, respectively. Wang et al. (2020) performed
spectral energy budget analyses for turbulent winds over a flat surface, a slow water wave
and a fast water wave, and found that waves contribute energy to the dominant wavelength
scale close to the wave surface via the production term and enhance the spatial transport
of turbulence towards the surface. For the cases with waves, an inverse energy cascade was
observed to transport energy from small-scale motions to turbulent scales at the dominant
wavelength scale close to the wave surface. In the present study, a spectral analysis of the
energy budget of canopy flows is performed for the first time to understand the transfer of
turbulent energy in canopies.

In recent years, substantial advancements in canopy flow simulations have been
reported. The Reynolds-averaged Navier–Stokes equations were first simulated using the
k-ε, k-ω and Spalart–Allmaras turbulence models (López & García 1998, 2001; Li & Yan
2007; King et al. 2012), all of which require a priori parameter values for the simulation
cases. With the increase in computational capabilities in recent years, the large-eddy
simulation (LES) technique, which is computationally more expensive but requires less
modelling effort, has become quite popular. Li & Xie (2011) simulated a free-surface
flow over a flexible canopy using a very large eddy simulation (LES) where the filter
size in the Smagorinsky model was one-tenth of the water depth. More recently, Yan et al.
(2017) studied the flow and mass transfer in an open-channel canopy flow by applying the
dynamic Smagorinsky model and introducing an additional diffusivity to model the effect
of stem wakes.

Most previous simulations modelled the canopy as a continuous medium for which
the drag coefficient needed to be prescribed. However, the assumption of a constant
drag coefficient has a poor performance for deformable canopies, and the existing drag
coefficient prediction models are complex and have achieved only limited success for
specific cases (Okamoto & Nezu 2010; Pan, Chamecki & Isard 2014a). Therefore, new
simulation approaches that explicitly resolve the flow–canopy interaction are desirable. For
instance, the immersed boundary (IB) method solves fluid–structure interactions on fixed
Cartesian grids, making it a powerful tool for problems with complex structural geometries
and kinematics (Peskin 1972; Kim et al. 2003; Mittal & Iaccarino 2005; Sotiropoulos &
Yang 2014; Tschisgale, Kempe & Fröhlich 2017a; Calderer et al. 2018; Kim & Choi 2019;
Huang & Tian 2019; Monti et al. 2020; Sharma & García-Mayoral 2020a; He et al. 2022;
Zeng, Bhalla & Shen 2022). Hence, by resolving the stems in the canopy with the IB
method, the drag on the stems can be obtained directly; i.e. no a priori drag coefficient is
required. Moreover, the details of the correlation between the drag force and flow velocity
can be obtained to analyse the waving term in the energy budget.

In this study, we simulate turbulent aquatic canopy flows with LES and resolve the
stems in the canopy with an IB method. The simulation cases cover a broad range of
stem flexibilities from rigid stems to oscillatory stems to stems yielding to the flow.
Consequently, monami is also resolved. Conditional averaging with respect to the stem
kinematics is performed to quantify the correlation between the flow features and monami
wave phase. In addition, the spectral TKE budget is analysed for the first time to
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Figure 1. Configuration of the simulation set-up. The flow is driven by a pressure gradient along the
streamwise direction over an evenly spaced 40 × 5 array of stems. Here h stands for the height of an undeformed
stem.

comprehensively understand the energy fluxes in canopies. In particular, the role of the
waving term in the energy transfer in the canopy is resolved, and the canopy drag–flow
velocity correlation is studied to understand the mechanism responsible for the waving
term. Furthermore, a triadic analysis is conducted to investigate the energy transfer among
different scales.

The remainder of this paper is organized as follows. The numerical algorithms
employed for the LES and the parameters of the computational cases are described in
§ 2. An overview of the flow field, including the instantaneous flow velocity and canopy
kinematics, the vertical profiles of the flow statistics, the monami statistics and the
conditional averages of the flow velocity and canopy drag, is described in § 3. Spectral
analyses of the TKE and DKE budgets are presented in § 4. Finally, the conclusions are
given in § 5.

2. Simulation methods

2.1. Flow simulation
In this study, we consider a three-dimensional (3-D) turbulent flow over a periodic
array of flexible canopy stems, as shown in figure 1. Details of the dimensions of the
computational cases are given in § 2.5. Here, we focus on the mathematical formulation
and numerical method. In the Cartesian coordinate system, xi(i = 1, 2, 3) = (x, y, z), x, y
and z indicate the streamwise, vertical and spanwise directions, respectively. The resolved
velocity components in the LES are denoted by ui(i = 1, 2, 3) = (u, v, w), which are
governed by the following continuity and momentum equations:

∂ui

∂xi
= 0, (2.1a)

∂ui

∂t
+ ∂uiuj

∂xj
= 1

ρf

(
− ∂p

∂xi
+ μ

∂Sij

∂xj
+ ρf gi − ∂τsgs,ij

∂xj

)
+ fi, (2.1b)

where t denotes time, ρf is the volumetric fluid density, p is the resolved modified pressure
in the LES, μ is the dynamic viscosity of the fluid, Sij = (∂ui/∂xj + ∂uj/∂xi)/2 is the
resolved strain rate tensor, gi is the gravitational acceleration constant, fi is the resolved
drag force exerted by the canopy and τsgs,ij is the subgrid-scale (SGS) stress, which is
modelled by the dynamic Smagorinsky model (Smagorinsky 1963; Germano et al. 1991;
Lilly 1992).
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Our flow simulation is performed on a staggered Cartesian grid (Harlow & Welch
1965). Equation (2.1b) is spatially discretized by a second-order central difference scheme
and temporally integrated by the second-order Runge–Kutta (RK2) method. During each
substep of the RK2 method, the fractional-step approach (Kim & Moin 1985) is employed
to enforce the continuity equation (2.1a), where the pressure is solved by a Poisson
equation,

∂

∂xi

(
1
ρf

∂p
∂xi

)
= 1

α�t
∂u∗

i
∂xi

, (2.2)

where α is 1.0 and 0.5 in the first and second substeps of RK2, respectively; �t is the time
step of the simulation; and u∗

i is calculated by

u∗
i = ui + �t

[
1
ρf

(
μ

∂Sij

∂xj
+ ρf gi − ∂τsgs,ij

∂xj

)
+ fi − ∂uiuj

∂xj

]
. (2.3)

Equation (2.2) is solved by the Portable, Extensible Toolkit for Scientific Computation
math library (Abhyankar et al. 2018). The details of the numerical schemes of our code, its
applications to various flows and validations can be found in Liu (2013), Xie et al. (2016),
Yang et al. (2017), Yang et al. (2018a) and Liu et al. (2021).

2.2. Stem simulation
The stems are modelled following Huang, Shin & Sung (2007) as inextensible nonlinear
Euler–Bernoulli beams. The governing equation for the deformation of each stem is

ρd
∂2Xi

∂t2
= ∂

∂s

(
T

∂Xi

∂s

)
− ∂2

∂s2

(
γ

∂2Xi

∂s2

)
+ ρdgi + Fi, (2.4)

where s is the local coordinate along the stem, Xi = Xi(s, t) is the displacement of the
stem in the i direction, T is the tension coefficient, γ is the bending rigidity, Fi is the
hydrodynamic force on the stem and ρd = ρs − ρf , where ρs is the volumetric density of
the stem. For a stem whose cross-section is rectangular, γ = Ed2/12, where E is Young’s
modulus and d is the stem thickness. Note that the density is the linear density in the
original equations in Huang et al. (2007). But in (2.4), the density is the volumetric density.
Therefore, γ = EI = Ebd3/12 in Huang et al. (2007), where b denotes the stem width,
should be divided by the cross-section area bd to obtain γ in (2.4). The first three terms on
the right-hand side are successively the tension force, the bending force and the summation
of the gravity and buoyancy forces. Also, note that the density in the left-hand side term
is ρd instead of ρs, because the stem thickness is too small to be resolved in the flow
simulation. As a result, the buoyancy force is included in the third right-hand side term
instead of being resolved in the hydrodynamic force on the stem. Detailed derivation can
be found in the appendix of Huang & Sung (2009). We further assume that the stem is
inextensible such that

∂Xk

∂s
∂Xk

∂s
= 1. (2.5)

To solve the above equations, we first obtain the tension coefficient T from the Poisson
equation derived from (2.4) and (2.5),

∂Xk

∂s
∂2

∂s2

(
T

∂Xk

∂s

)
= 1

2
∂2

∂t2

(
∂Xk

∂s
∂Xk

∂s

)
− ∂2Xk

∂t∂s
∂2Xk

∂t∂s
− ∂Xk

∂s
∂

∂s

(
Fb,k + Fk

)
, (2.6)
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where Fb,k = −(∂2/∂s2)(γ (∂2Xk/∂s2)) is the bending force. Then, the tension coefficient
is substituted into (2.4) to solve for Xi. The stem is modelled with a free end and a clamped
end. The boundary conditions for the free end are

T = 0,
∂2Xi

∂s2 = 0,
∂3Xi

∂s3 = 0, (2.7)

and the boundary conditions for the clamped end are

Xi = X0,i,
∂Xi

∂s
= ∂X0,i

∂s
, (2.8)

where X0,i(s) = Xi(s, t = 0) is the initial condition. Details of the numerical algorithms
employed for the stem simulation can be found in Huang et al. (2007).

In this study, we use a nonlinear Euler–Bernoulli beam model, which is based on the
assumptions that a cross-section remains plane after deformation, and the neutral axis
keeps perpendicular to the cross-section during deformation. As a result, the effects of
transverse shear deformation and rotational bending are omitted (Bauchau & Craig 2009).
This treatment requires that the structure thickness is much smaller than the length and
width, which is the case in this study. The beams in this study can only bend in the
streamwise–vertical plane (see the discussions in § 2.5). We note that the canopy flow
simulation by Tschisgale & Fröhlich (2020) used a Cosserat rod model, where the rod
elements can have both translational and rotational degrees of freedom to allow rod
twisting. For thick beams where the transverse shear deformation and rotational bending
need to be considered, the Timoshenko–Ehrenfest beam theory can be applied (Hutchinson
2001). For structures undergoing significant two-dimensional (2-D) deformation, a shell
model should be applied, such as the Kirchhoff–Love thin shell theory (Elishakoff 2020),
which is a 2-D extension of the Euler–Bernoulli beam model and is often applied to
thin shells. It is based on the assumption that the straight lines initially normal to the
midsurface keep straight and perpendicular to the midsurface after deformation. Another
shell model is the Uflyand–Mindlin plate theory, which is often employed when the plate
is thick enough to have prominent shear deformation along the shell thickness (Elishakoff
2020).

2.3. Coupling fluid and stem dynamics by an IB method
The one-dimensional (1-D) filaments in the streamwise–vertical plane introduced in § 2.2
are expanded in the spanwise direction to form the 2-D stems with finite width. The
dynamics of the fluid and canopy stems are coupled through the force terms, namely, fi
in (2.1b) and Fi in (2.4), by an IB method (Mittal & Iaccarino 2005). As the original
Lagrangian grid on the filaments is 1-D and is relatively coarser than the background
Eulerian grid, we use an additional 2-D structural Lagrangian grid, which is uniformly
distributed on the stem surface and has the same resolution as the background Eulerian
grid, to obtain the coupling between the stems and flow.

We use the penalization approach developed by Goldstein, Handler & Sirovich (1993),
where the hydrodynamic force on the 2-D Lagrangian grid on the structure, F2D,i(s1, s2, t),
is calculated by

F2D,i(s1, s2, t) = α

∫ t

0

[
Uf ,i(s1, s2, τ ) − Ui(s1, s2, τ )

]
dτ

+ β
[
Uf ,i(s1, s2, t) − Ui(s1, s2, t)

]
, (2.9)
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where (s1, s2) is the coordinate of the 2-D structural Lagrangian grid nodes, Uf ,i is the
interpolated fluid velocity on the structure, Ui = dXi/dt is the Lagrangian velocity of the
structure, and α and β are two parameters with dimensions of ML−3T−2 and ML−3T−1,
respectively, for numerical simulation purposes. Suppose that Fi is the only hydrodynamic
force on the structure, Fi = ρf d(Uf ,i − Ui)/dt; then, (2.9) describes the behaviour of a
mass–spring–damper system about the relative velocity between the flow and the structure,
Uf ,i − Ui, as

ρf
d
(
Uf ,i − Ui

)
dt

− β
(
Uf ,i − Ui

) − α

∫ t

0

(
Uf ,i − Ui

)
dt′ = 0. (2.10)

The natural frequency ωn and the damping ratio of this system ζ are expressed as

ωn =
√

−α

ρf
, ζ = − β

2
√−αρf

. (2.11a,b)

Therefore, as the parameters of this system, α and β have physical significance in
controlling its response behaviour. The frequencies of the energetic flow structures must be
lower than ωn to be resolved, which requires a large value of −α. However, if the −α value
is too large, numerical instability arises (Goldstein et al. 1993). A moderate α value should
therefore be selected to balance the numerical stability and the resolution of the energetic
flow structures. Additionally, a large −β value can strengthen the numerical stability, but
to avoid overdamping, −β should not be too large (Goldstein et al. 1993). While α and β

have physical significance, usually they are still obtained by tuning and testing (e.g. Huang
et al. 2007, figure 13). Details on the selection and testing of the α and β values in our
simulations are given in § 2.5.

After F2D,i(s1, s2, t) is obtained, it is averaged in the spanwise direction and then
assigned to the nearest 1-D Lagrangian grid node on the stem to obtain Fi(s, t), which
is then used in (2.4) to update the stem deformation.

The interpolated fluid velocity on the stem, Uf ,i, is calculated by integrating the
surrounding fluid velocity weighted by a Dirac delta function,

Uf ,i(s1, s2, t) =
∫

Ω

ui(x1, x2, x3, t)
3∏

j=1

δj
(
Xj(s1, s2, t) − xj

)
dx1 dx2 dx3, (2.12)

where Ω indicates the computational domain and the Dirac delta function δj is defined as

δj(r) = 1
�xj

φ

(
r

�xj

)
, no Einstein’s summation notation on j, (2.13)

where the function φ is (Peskin 2002)

φ(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
8

(
3 − 2|r| +

√
1 + 4|r| − 4r2

)
, 0 ≤ |r| < 1

1
8

(
5 − 2|r| −

√
−7 + 12|r| − 4r2

)
, 1 ≤ |r| < 2

0, |r| ≥ 2.

(2.14)

The delta function is also used to spread the Lagrangian hydrodynamic force on the
structure, F2D,i(s1, s2, t), to the Eulerian force on the background flow, fi(x1, x2, x3, t),

fi(x1, x2, x3, t) = − d
ρf

∫
Γ

F2D,i(s1, s2, t)
3∏

j=1

δj
(
xj − Xj(s1, s2, t)

)
ds1 ds2, (2.15)
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Cases Oscillation amplitude Period

Huang et al. (2007) 0.423L 3.09L/U0
Zhu et al. (2014) 0.368L 3.11L/U0
Present 0.377L 3.25L/U0

Table 1. Present simulation results for the flapping of a filament in a uniform flow compared with Huang
et al. (2007) and Zhu et al. (2014).

where Γ indicates all the stems. Note that in this algorithm, the fluid grid needs to be
evenly spaced around the stem to conserve momentum (Yang et al. 2009).

In summary, the coupling process between the flow and the stems for every time step is
as follows.

(i) Expand the 1-D stem model (2.4) in the spanwise direction to form the 2-D stems.
(ii) Generate the 2-D structural Lagrangian grid on the stems.

(iii) Calculate the hydrodynamic force on the 2-D grid F2D(s1, s2, t) using (2.9).
(iv) Average F2D(s1, s2, t) to calculate the force on the 1-D Lagrangian grid on the stems

F(s, t).
(v) Update the deformation of the stems using (2.4).

2.4. Algorithm validation
We have performed extensive tests on these algorithms. The flow solver has been used
in previous studies of various problems (Cui et al. 2017; Yang et al. 2017; Yang, Deng
& Shen 2018b; Kan et al. 2021; He 2022). For the flow–stem interaction problem
considered herein, three representative test cases are presented below. The first case is
the flapping of a filament in a uniform flow following the numerical simulation in § 4.2
of Huang et al. (2007). In the test case, the Reynolds number is Re = ρf U0L/μ = 200,
where ρf , U0, L and μ are the fluid density, incoming flow speed, filament length and
fluid dynamic viscosity, respectively. Bending rigidity is γ = 0, dimensionless gravity
along the streamwise direction is g/(U2

0/L) = 0.5 and density ρdd/ρf L = 1.5, where d
is the filament thickness. Note that we exclusively use volumetric density while Huang
et al. (2007) used linear density for the filament density, which causes different ways of
normalization for the density. The computational domain size is [0, 8L] × [0, 8L], and
the grid number is 512 and 250 along the streamwise (x) and vertical directions (y),
respectively. The grid is uniformly distributed in the streamwise direction, and clustered
in the vertical direction for y ∈ [3L, 5L] with a grid resolution of �y = 0.015625L. The
Dirichlet boundary condition with u = U0 and v = 0 is applied at the inflow and far-field
boundaries, and the convective boundary condition is applied at the outflow. There are 64
Lagrangian nodes along the filament. The filament is hinged at the upstream end. Initially,
the filament is straight with an inclination of 0.1π relative to the streamwise direction.
We select α = −106, β = −103 and �t = 0.0002. Our result for the steady oscillation
amplitude and period of the filament is compared with Huang et al. (2007) and Zhu, He &
Zhang (2014) in table 1. It is shown that our result agrees with the previous studies.

The second case is the deformation of a flexible stem in a uniform water current
following the experiment of Luhar & Nepf (2011), where the stem is clamped on the
bottom wall. The Young’s modulus of the stem is E = 500 kPa, the stem length h is
0.05 m, the stem width b is 0.01 m and the stem thickness d is 1.9 × 10−3 m. The current
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Figure 2. Comparison of the horizontal hydrodynamic drag Fx on the stem as a function of the inflow water
current speed U in the first validation case of § 2.4: �, the result from the experiment by Luhar & Nepf (2011);
�, the result from the present simulation.

velocity U varies from 0.036 m s−1 to 0.32 m s−1. In our simulation, the domain size
is (1.0 m, 0.3 m, 0.1 m) in the streamwise, vertical and spanwise directions. Inlet and
outlet boundary conditions are applied on the two boundaries in the streamwise direction,
respectively, and a free-slip boundary condition is applied on the other boundaries.
The plate is placed 0.2 m from the inlet and at the centre of the spanwise direction.
The coordinate origin is located at the centre of the clamp line at the base of the stem. The
x, y and z axes point to the downstream, upward and spanwise directions, respectively. The
grid is refined within ([−0.05 m, 0.2 m], [0 m, 0.1 m], [−0.025 m, 0.025 m]) with a grid
resolution of h/40. The total grid number is 384 × 120 × 60. Figure 2 plots the horizontal
drag force on the stem as a function of the current velocity. Our result compares well with
the measurement data of Luhar & Nepf (2011).

The third test case concerns a rigid canopy flow following the experimental study of
Nezu & Sanjou (2008). This case was also used as a validation case by Tschisgale &
Fröhlich (2020) and Tschisgale et al. (2021). A 10 × 3 array of rigid stems is placed on
the bottom, and the computational domain size is (3.2h, 3h, 1.92h) in the streamwise,
vertical and spanwise directions. The length h, width b and thickness d of each stem are
0.05 m, 0.008 m and 0.001 m, respectively. The flow has a friction velocity at the bottom of
u∗ = 0.0253 m s−1. The same as the first test case, the grid resolution is h/40 for all three
dimensions. Figure 3 compares our vertical profiles of the mean streamwise velocity and
the Reynolds shear stress with the measurements of Nezu & Sanjou (2008). Both curves
agree with the experimental results.

2.5. Parameters of simulation cases
The simulation set-up is visualized in figure 1. The physical parameters and corresponding
dimensionless numbers are given in table 2. The channel dimensions are (Lx, H, Lz) =
(20h, 3h, 2.5h) in the streamwise (x), spanwise (y) and vertical (z) directions, where h is the
height of the undeformed stem. Therefore, the submergence ratio H/h is 3, which can be
categorized as shallow submergence (H/h < 5) where most submerged aquatic canopies
are found (Nepf 2012). An array of aligned stems clamped on the bottom of an open
channel is considered. The array has five rows parallel to the streamwise direction, and
each row has Nx = 40 stems. The stem density ρs is 1.5 times the fluid density ρf , which
is within the range of the relative density of polyvinyl chloride to water and close to the
set-up of previous studies, such as Tschisgale et al. (2017b) where ρs/ρf = 1.4 was used.
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Experiment by Nezu & Sanjou (2008)
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(a) (b)

–〈u ′ν ′〉/u∗2〈u〉/Um

Figure 3. Comparison of the horizontally averaged (a) mean streamwise velocity 〈ū〉 normalized by the
channel mean streamwise flow velocity Um and (b) Reynolds shear stress −〈u′v′〉 normalized by u∗2 as
functions of the vertical height y normalized by the canopy height h in the second validation case of § 2.4:
�, the result from the experiment by Nezu & Sanjou (2008); ——, the result from the present simulation.

Domain size (Lx, H, Lz) (20h, 3h, 2.5h)

Number of stems Nx × Nz 40 × 5
Reynolds number Reτ 1000
Density ratio ρs/ρf 1.5
Stem length l h
Stem width b 0.25h
Cauchy number Ca 0, 5, 30, 80
Buoyancy number 0
Roughness density λf 1.00 (Ca = 0), 0.688 (Ca = 5),

0.354 (Ca = 30), 0.296 (Ca = 80)

Table 2. Physical parameters and dimensionless numbers in the present simulation.

The stem width b is 0.25h. A similar set-up was adopted by Nezu & Sanjou (2008) in
their case A-10. The roughness density is defined as λf = bhc/Ss, where hc is the canopy
height and Ss is the floor area occupied by each stem (Wooding, Bradley & Marshall
1973; Nepf 2012). The canopy height is different for each Ca and must be obtained a
posteriori; see § 3.3 for the statistics of and discussions on the different definitions of
the canopy height. Here, the hydrodynamic canopy height is used, and the result for each
case is shown in table 2. One can see that the canopy is dense, i.e. the value of λf is
high, for low-flexibility canopy and becomes transitional as Ca increases, according to
the definitions by Nepf (2012). The buoyancy number B = ρdbdgh3/EI is 0 for all the
cases (Pan et al. 2014b; Tschisgale et al. 2021). The bottom and top boundary conditions
of the open channel are no-slip and free-slip, respectively, and the boundary conditions
in the streamwise and spanwise directions are periodic. The flow is driven by a constant
pressure gradient dp/dx. The friction velocity u∗ satisfies u∗ = √

(1/ρf )(dp/dx)(H − h).
The Reynolds number defined by the canopy height and friction velocity is Reτ = u∗h/ν =
1000. The grid resolution Δ is h/40 for all three dimensions such that grid number is
800 × 240 × 100. Note that the submergence ratio, the Reynolds number and the grid
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resolution in our simulation set-up are the same as, or close to, those in Nezu & Sanjou
(2008), whose set-up we use to validate our algorithm in § 2.4. However, our simulation
cases account for stem flexibility, which substantially increases the computational cost.

The stem flexibility is quantified by the dimensionless Cauchy number Ca, which
denotes the ratio between the hydrodynamic force on the stem and the stem restoring force
(Luhar & Nepf 2016; Jin et al. 2018a,b),

Ca = ρf u∗2bh3

EI
, (2.16)

where I = bd3/12 is the second moment of area of the stem cross-section. In our
simulation cases, we consider Ca = 0, 5, 30 and 80, where Ca = 0 corresponds to rigid
stems and increasingly larger values of Ca signify stems with greater flexibility. We notice
that in Pan et al. (2014b), the Cauchy number is defined as Ca = ρCDbU2l3/2EI, where
CD is the drag coefficient, l is the filament length and U is the characteristic velocity
scale, which is selected as the mean bulk velocity ū in this study. The present definition
is similar to their definition, except that CD is not treated as an a priori drag coefficient,
and the characteristic velocity is u∗ instead of ū because u∗ is closely correlated with the
canopy drag. Therefore, we keep the physical significance of Ca that it represents the ratio
between the stem drag and restoring force, while adapting the mathematical expression for
Ca such that it fits better the present simulation set-up. Regarding the choice of the Cauchy
number, our stem flexibility covers a broad range from rigid stems (Ca = 0) to oscillatory
stems (Ca = 5) to stems yielding to the flow (Ca = 30 and 80) for the study of different
monami scenarios.

We restrain the stem kinematics to the streamwise–vertical plane and neglect motions
such as twisting that cause spanwise displacement. This simplification is based on
the following considerations. First, the flow features, such as the coherent vortices in
the mixing layer and the classification of different zones in the flow, are dominant in the
vertical and streamwise directions, and these features interact with the stem kinematics in
these two directions. Second, the streamwise–vertical displacement model for this array
of stems is simpler and computationally more affordable than a general 3-D displacement
model. We notice that the simulation by Fröhlich’s group resolved the spanwise motion
of the stem with a Cosserat rod model, but their visualizations of the instantaneous stem
deformation did not show prominent spanwise deformation (e.g. Tschisgale et al. 2017a,
figure 6; Tschisgale & Fröhlich 2020, figure 21; Tschisgale et al. 2021, figures 16 and 17).
Considering that the stems in our simulation are wider than their stems, the stems in the
present study are more rigid in the spanwise direction and are even less prone to spanwise
motion. Therefore, we believe that limiting the stem motion in streamwise–vertical planes
is an acceptable approximation with reduced computational cost.

For the values of α and β in (2.9), we select α/[ρf (u∗/h)2] = −105 and β/[ρf u∗/h] =
−102, respectively, leading to ωn = 316.2u∗/h and ζ = 0.158 according to (2.11). This
selection ensures that the dominant energetic flow structures are captured and that a
reasonably large time step can be adopted without triggering numerical instability. To
compare different values of α and β, we analysed a series of test cases involving two
aligned stems with Ca = 30 and the same shape and interval distance as described
above. We tested α/[ρf (u∗/h)2] ranging from −103 to −105.5 and β[ρf (u∗/h)] ranging
from −100 to −102.5. Higher absolute values of α and β were not considered
because the time step would be excessively small. The resulting mean streamwise
displacements at the tips of the upstream stem, du, and the downstream stem, dd,
are listed in table 3. The results are insensitive to α and β when their magnitudes
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α/[ρf (u∗/h)2] β/[ρf u∗/h] du/h dd/h

−103 −100 0.802 0.664
−103.5 −100.5 0.787 0.632
−104 −101 0.731 0.589
−104.5 −101.5 0.730 0.594
−105 −102 0.737 0.598
−105.5 −102.5 0.727 0.589

Table 3. Mean streamwise tip displacements of two tandem stems normalized by the stem length (du/h, dd/h)
for a range of α and β values. The stems have Ca = 30, and their interval follows the simulation set-up
described in § 2.5.

–〈u ′ν ′〉/u∗2
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Figure 4. Vertical profiles of the (a,c) mean streamwise velocity 〈ū〉/u∗ and (b,d) Reynolds shear stress
−〈u′v′〉/u∗2 for Ca = 5 in the (a,b) grid convergence test and (c,d) spanwise domain size independence test.

are large. Between (α/[ρf (u∗/h)2] = −104, β/[ρf u∗/h] = −101) and (α/[ρf (u∗/h)2] =
−105.5, β/[ρf u∗/h] = −102.5), the relative differences in du and dd are small, both
within 2 %. Hence, in our simulation cases presented below, α/[ρf (u∗/h)2] = −105 and
β/[ρf u∗/h] = −102 are used.

For every case, the characteristic wavenumber of monami, kxh, is no less than 0.63,
which corresponds to wavelength λ < 10.0h. Therefore, the present streamwise domain
size of 20h can ensure that at least two complete monami waves are captured. To test
the present grid resolution and spanwise domain size, we performed a grid convergence
test and a spanwise domain size independence test for the case Ca = 5. In the grid
convergence test, we tested the grid sizes of 512 × 160 × 64 and 1200 × 360 × 150 and
compared the vertical profiles of streamwise velocity 〈ū〉/u∗ and Reynolds shear stress
−〈u′v′〉/u∗2 with the present grid size 800 × 240 × 100 in figure 4(a,b). It shows that
all the cases have similar profiles, which indicates that our present grid resolution is
adequate. In the spanwise domain size independence test, we tested the domain sizes
(Lx, H, Lz) = (20h, 3h, 1.5h) and (20h, 3h, 5h) and compared the vertical profiles of
streamwise velocity and Reynolds stress with the present domain size (Lx, H, Lz) =
(20h, 3h, 2.5h) in figure 4(c,d), which shows that the results converge as the spanwise
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domain size increases. In conclusion, the test result supports the present grid resolution
and spanwise domain size.

In §§ 3 and 4, the statistics are obtained when the total TKE in the computation domain
is statistically stable for at least 20 monami turnover times (see § 3.3 for the monami
celerity). The simulation ran for at least 40 monami turnover times from the initial
condition. We checked the convergence of the results by comparing the statistics of two
consecutive time windows of 2.5 monami turnover times and found only negligible small
differences in the statistics.

2.6. Definitions of symbols
For the discussion of the results below, we define the following symbols for the statistics.
For a variable φ(x, y, z, t), its time average φ̄(x, y, z) and horizontal spatial average
〈φ〉( y, t) are defined as

φ̄(x, y, z) = 1
T

∫ T

0
φ(x, y, z, t) dx, (2.17a)

〈φ〉( y, t) = 1
LxLz

∫ Lz

0

∫ Lx

0
φ(x, y, z, t) dx dz, (2.17b)

where T is the sampling time duration. The time fluctuation φ′(x, y, z, t) and horizontal
spatial fluctuation φ′′(x, y, z, t) are defined as

φ′(x, y, z, t) = φ(x, y, z, t) − φ̄(x, y, z), (2.18a)

φ′′(x, y, z, t) = φ(x, y, z, t) − 〈φ〉( y, t). (2.18b)

By definition, φ′ = 0 and 〈φ′′〉 = 0. Here φ(x, y, z, t) can be decomposed into a mean
component 〈φ̄〉, a dispersive component φ̄′′ due to horizontal inhomogeneity, and a
turbulent component φ′ as

φ(x, y, z, t) = φ̄(x, y, z) + φ′(x, y, z, t) = 〈φ̄〉( y) + φ̄′′(x, y, z) + φ′(x, y, z, t). (2.19)

Furthermore, 〈φ1(x, y, z, t)φ2(x, y, z, t)〉 can be decomposed as

〈φ1φ2〉 = 〈φ̄1〉〈φ̄2〉 + 〈φ̄′′
1 φ̄′′

2 〉 + 〈φ′
1φ

′
2〉. (2.20)

The right-hand side of (2.20) consists of the mean term, dispersive term and turbulent term
(from left to right). The dispersive term does not exist in a pure channel flow; instead,
this term represents the spatial correlation in the time-averaged flow field and exists in
the canopy flow owing to the spatial inhomogeneity induced by the stem array (Finnigan
2000).

3. Overview of the flow field

In this section, we report the overall features of the canopy flow from our simulation
results. First, in § 3.1 the instantaneous flow field and canopy deformation are depicted to
visualize the canopy flow. Then, the vertical profiles of flow velocity and Reynolds shear
stress are presented in § 3.2. The stem deformation and the wave properties of monami are
illustrated in § 3.3. Finally, in § 3.4 the conditional averaging according to stem kinematic
events is conducted to study the flow patterns associated with monami wave phases.
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Figure 5. Snapshots of the flow field and canopy deformation for (a) Ca = 0, (b) Ca = 5, (c) Ca = 30,
(d) Ca = 80. The x–y and y–z planes show the streamwise velocity u normalized by u∗.

3.1. Instantaneous flow field and canopy deformation
Figure 5 shows snapshots of the flow field and canopy deformation for each of the four
simulation cases. As the Cauchy number Ca increases, the stem flexibility increases
such that the deformation of the canopy stems increases. We notice that for the cases
with highly flexible stems, such as Ca = 30 and 80, the stems experience very large
deformation, and the adjacent stems can be close to each other so as to have the potential
risk of collision. However, in the simulation where the stem kinematics is restrained to
the streamwise–vertical plane, the diffused IB method produces a repulsive force if two
stems are very close to each other, thus preventing contact. Specifically, in (2.12), the flow
velocity on the stems Uf ,i is calculated by integrating the surrounding fluid velocity in a
stencil. Therefore, when two stems are close to each other such that the flow around one
stem is in the range of the velocity interpolation stencil of the other stem, the stem velocity
is reflected in the Uf ,i of the other stem, which results in a repulsive force between the two
stems by (2.9).

The streamwise velocity in the channel increases as Ca increases because stems with
greater flexibility are more prone to reduced drag owing to the reconfiguration of the
stem (Vogel 1984; Gosselin, De Langre & MacHado-Almeida 2010; Shelley & Zhang
2011; Pan et al. 2014b). For flexible canopies (Ca /= 0), the canopy top has a wave
shape that propagates downstream; this phenomenon is known as ‘monami’ (Inoue 1955;
Ackerman & Okubo 1993; Ghisalberti & Nepf 2002). The streamwise velocity contours in
figure 5(b–d) reveal coherent structures in the flow. The distribution of these coherent flow
structures and the monami wave phase appear to correspond to one another. As marked in
figure 5(b), the location where the streamwise velocity is high (low) corresponds to stems
with large (small) deformation. These observations are consistent with the common view
that monami is generated by the interaction between coherent structures in the mixing
layer and the deformable canopy (Ikeda & Kanazawa 1996; Ghisalberti & Nepf 2002;
Nepf 2012). While the coherent structures cannot be observed via canopy deformation in
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Figure 6. Vertical profiles of the (a) mean streamwise velocity 〈ū〉 normalized by u∗ and (b) Reynolds shear
stress −〈u′v′〉 normalized by u∗2 for Ca = 0, 5, 30 and 80. The inflection points on the velocity profiles are
denoted by dots.

the rigid canopy case, they can still be observed from the flow field. Note that in figure 5(a),
there are two centres of low-speed velocity regions over the canopy and located at x/h ∼ 7
and x/h ∼ 17, respectively, which indicates coherent structures.

3.2. Velocity and Reynolds shear stress profiles
Figure 6 shows the vertical profiles of the mean streamwise velocity 〈ū〉 and Reynolds
shear stress −〈u′v′〉. All the mean velocity profiles have inflection points, which is
characteristic of the velocity profiles in plane mixing layers (Pope 2000). Table 4 provides
the location of the inflection point for each Ca case. Considering that the inflection
point triggers flow instability in the plane mixing layer, we use the location of this
inflection point to define the hydrodynamic canopy height, hc, which we utilize to partition
the regions inside and outside of the canopy. In the following discussion of canopy
flow, we use hc as the default canopy height unless otherwise specified. Figure 6(b)
demonstrates that the Reynolds shear stress follows the line −〈u′v′〉/u∗2 = 1 − y/H above
the maximum value near hc, indicating that the transport of momentum by molecular
viscosity is relatively small compared with the turbulent transport; below the maximum
value, −∂〈u′v′〉/∂y > 0 due to canopy drag.

3.3. Stem deformation and monami
We quantify the standard deviations of the stem tip displacements in the horizontal
and vertical directions, (σx, σy), for flexible canopies. The results are shown in table 4.
As Ca increases, the stems clearly fluctuate with a smaller amplitude, a behaviour that
increasingly resembles a rigid stem. This phenomenon occurs because a highly flexible
stem yields more to the incoming flow, limiting its deformation fluctuation amplitude.
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Ca = 0 Ca = 5 Ca = 30 Ca = 80

hc/h 1.00 0.688 0.354 0.296
ht/h 1.00 0.656 0.377 0.303
(hc − ht)/h 0 0.032 −0.023 −0.007
σx/h 0 0.0776 0.0358 0.0274
σy/h 0 0.100 0.0917 0.0794
μ̃3,y 0 −0.203 0.500 0.599

Table 4. Various characteristic statistics in the canopy flow: the height of the inflection point on the mean
streamwise velocity profile, hc; the average stem tip height, ht; the normalized difference between hc and ht,
(hc − ht)/h; the standard deviations of the stem tip displacements in the horizontal and vertical directions,
(σx, σy); and the skewness of the stem tip displacements in the vertical direction, μ̃3,y. Here hc and ht are also
defined as the hydrodynamic canopy height and geometric canopy height, respectively.

We call this phenomenon ‘high flexibility-induced rigidity’ and use it to explain the
similarity between the cases of Ca = 0 and 80, which are different from the cases of
Ca = 5 and 30, in many discussions below. Note that this expression only reflects the
similarity of rigid and highly flexible canopies in reconfiguration amplitude and does not
imply material rigidity; the highly flexible canopy is still more sensitive to the turbulence
of the flow than the less flexible canopy. We further examine the standard deviation
of x and y displacements (σx, σy) along the stem length to study the vibration mode
of the stem. For undamped systems, each vibration mode is associated with one of its
natural frequencies. The lowest natural frequency, also known as the fundamental natural
frequency, is associated with the first vibration mode where there is no node along
the standing wave. Higher natural frequencies, also known as harmonics, correspond to
standing waves where there are one or more nodes (Blevins & Plunkett 1980). The result
is shown in figure 7. Both σx and σy increase from the clamped end to the free end for all
the cases, indicating the dominance of the first vibration mode. For Ca = 5, there is no
inflection point along the profile, which means that the vibration mode is purely the first
mode (Tschisgale et al. 2021). For Ca = 30 and 80, at least one inflection point can be
found along the profile, indicating that high vibration modes are also present.

The probability density function (p.d.f.) of the filament tip height ytip/h is depicted in
figure 8. As shown, the distribution of the filament tip height is not Gaussian: the Ca = 5
case has a negative skewness, and Ca = 30 and 80 show a positive skewness. The values
of skewness σy/h are given in table 4.

The average stem tip height ht is also given in table 4. Because ht is convenient to
measure experimentally, we use it to define the geometric canopy height. By comparing
the stem tip height ht with the hydrodynamic canopy height hc in the flexible canopy cases,
it is found that whether hc or ht is larger is correlated with the skewness: for Ca = 5 where
the skewness is negative, hc > ht; for Ca = 30 and 80 where the skewness is positive,
hc < ht. This can be understood as being that negative (positive) skewness means more
than half of the samples have the values higher (lower) than the average value, such that the
hydrodynamic canopy height is higher (lower) than the average stem tip height. Therefore,
the hydrodynamic canopy height is determined by the general distribution of the stem
height, not merely the average stem height. As Ca increases, the difference between hc
and ht decreases. The normalized (hc − ht)/h is also provided in table 4.

Next, the wavenumber and frequency–wavenumber spectra of the stem tip envelope are
analysed to quantify the kinematic properties of monami. Our temporal sampling length
Ts/(h/u∗) and sampling interval ts/(h/u∗) are 150 and 0.1, respectively, and the spatial
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Figure 7. Standard deviation of the (a) x displacement, σx, and (b) y displacement, σy, along the stem length.
Here s/h denotes the stem coordinate, where s/h = 0 and s/h = 1 indicate the clamped and free ends,
respectively.
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Figure 8. The p.d.f. of the filament tip height ytip/h.
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Figure 9. Wavenumber spectra of monami as defined by (3.1) for cases with Ca = 5, 30 and 80.
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Figure 10. Frequency–wavenumber spectra for monami as defined by (3.2) for cases with (a) Ca = 5,
(b) Ca = 30 and (c) Ca = 80, where the black curves indicate the dispersion relation and the dashed line
indicates the monami scale km. The dispersion relations for all the cases are compared in (d).

sampling length and sampling interval follow the streamwise domain size Lx/h = 20 and
the average interval between two filaments Lx/(Nxh) = 0.5, respectively. We denote the
height of the stem tip as a function of the horizontal coordinates and time as yt(x, z, t);
then, its wavenumber spectrum is

ew(kx) = 1
LxLzT

∫ T

0

∫ Lz

0

∫ Lx

0
[y′

t(x, z, t)]2e−i kxx dx dz dt, (3.1)

and its frequency–wavenumber spectrum is

efw(kx, ω) = 1
LxLzT

∫ T

0

∫ Lz

0

∫ Lx

0
[y′

t(x, z, t)]2e−i kxxe−i ωt dx dz dt. (3.2)

Figure 9 shows the wavenumber spectra. Note that here the ‘energy’ is defined as
y′2

t ; it only reflects the envelop geometry of the monami and is not proportional to the
kinetic energy in the stems and turbulent flow. For all cases, the energetic wavenumber
components are near kxh ∼ 0.6. We define this scale as the ‘monami scale’, which
corresponds to the scale of the coherent structures in the mixing layer. Likewise, figure 10
depicts the frequency–wavenumber spectra for all cases. At every wavenumber, we define
a characteristic frequency, ωc(kx), as

ωc(kx) = arg max
ω

[efw(kx, ω)]. (3.3)

The extracted monami dispersion relation ωc(kx) is plotted in figure 10(a–c) and compared
in figure 10(d). Although the data are not smooth due to the limitation associated with high
computational cost, the relation between the wavenumber and frequency is found to be
nearly linear for all cases. All the cases have similar dispersion relations, i.e. similar wave
phase speeds, with c/u∗ ∼ 3, where c = ωc/kx. The monami phenomenon in all the cases
can thus be categorized as a ‘slow wave’ or ‘young wave’ in the context of wind–wave
interactions, where c/u∗ � 15 (Belcher & Hunt 1998). For the slow water waves, two
different mechanisms may contribute to the momentum transfer process from the wind
to the wave, including the singularity at the critical layer, defined as the height where
〈u〉 − c = 0 (Miles 1957), and the non-separated sheltering mechanism associated with
the thickened boundary layer on the leeside of wave crest (Belcher & Hunt 1993). While
both mechanisms can induce an asymmetric pressure distribution on the wave surface, for
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Figure 11. Schematics of the relationship between the conditionally averaged events and the monami wave
phase. The green lines represent the stems. The red arrows represent the velocities of the stem tips. The monami
is represented by the black envelope connecting the stem tips and travels to the right.

slow water waves, the critical layer is close to the wave surface and thus does not play a
significant role in the wave growth (Belcher & Hunt 1998; Yang & Shen 2010).

3.4. Conditional averages of the flow velocity and canopy drag
In this section, we illustrate the flow structures associated with the phases of monami.
Different from water waves with long-lasting wave trains and continuous wave phases,
for monami, the wave train is short and transient, which makes it difficult to identify the
wave phase. Therefore, instead of quantifying the monami wave phase and analysing the
associated flow field directly, we perform averaging conditioned upon the stem kinematic
events corresponding to particular monami wave phases. Figure 11 illustrates a sketch of
the correspondence between the stem kinematic events and the monami wave phases. We
define four categories of events associated with the stem kinematics: (1) small deformation
events, which occur when a stem has a large tip height and thus corresponds to the wave
crest; (2) large backward speed events, which occur when a stem tip has a large negative
horizontal velocity component and thus corresponds to the leeward surface; (3) large
deformation events, which occur when a stem has a small tip height and thus corresponds
to the wave trough; and (4) large forward speed events, which occur when a stem tip
has a large positive horizontal velocity component and thus corresponds to the windward
surface. We tested several other definitions, but they yielded similar results; for example,
for a large backward speed event, we tested the definitions of a stem tip that has a large
positive vertical velocity component and a stem tip that moves backward with a large
negative horizontal velocity component.

We perform conditional averages on the above four categories of events and assemble
the results to construct an overview of the flow structure associated with the monami
phenomenon. The conditional average of a flow variable φ(x, y, z, t) associated with a
stem kinematic event is calculated by

〈φ〉c(x, y, z) = 1
N

N∑
i=1

φ(xi, yi, zi, troot,i), (3.4)

where xi = (x − xroot,i) mod Lx; yi = y; zi = (z − zroot,i) mod Lz; (xroot,i, zroot,i) and troot,i
(i = 1, . . . , N) are the horizontal coordinates of the root (i.e. the centre point of the clamp
line at the base of the stem) and time, respectively, of the stem at which event i occurs;
N is the total number of events; and ‘mod’ is the binary modulo operator defined as
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a mod b = a − b�a/b�. Note that the modulo operation is performed in the streamwise
and spanwise directions because both directions employ the periodic boundary condition,
and by performing the modulo operation, the point (x, z) where x ∈ (−∞, 0) ∪ [Lx, ∞)

and z ∈ (−∞, 0) ∪ [Lz, ∞) can be translated into the computational domain. The above
procedure of conditional averaging guarantees that the root of the stem experiencing the
concerned event always translates to (x, z) = (0, 0) in the conditionally averaged flow
field. The conditional average of the stem geometry 〈ψ〉c

(x,z)(s) is calculated as

〈ψ〉c
(x,z)(s) = 1

N

N∑
i=1

ψ (xi,zi)
(s, troot,i), (3.5)

where s is the arclength coordinate andψ (x,z)(s, t) is the Eulerian coordinate of Lagrangian
point s on the stem rooted at (x, z) at time t. To compute the conditional average, we take
Ns = 1500 time frames of the flow field and select rs = 0.5 % of all the stem samples for
each category of events. Therefore, for each category of events, the total number of samples
is N = NsrsNf = 1500, where Nf = 200 is the number of stems in the flow. Given that the
subsample is large enough for statistics, further increasing the size of the subsample is not
desirable because samples that are less representative will be included. For example, for
the large deformation event, enlarging the subsample will include the samples with fewer
deformations.

Next, we present the conditional average results. The conditional average of the
streamwise velocity component u in the x–y plane that cuts through the centre of the
stem row is given in figure 12. The relationship between the conditionally averaged events
and the monami wave phase can be seen from the shape of the conditionally averaged
canopy geometry calculated using (3.5). Near the canopy top, the contour lines of u are
approximately parallel to the canopy envelope. The trough of the flow streamlines over
the stems exhibiting large deformation has a high streamwise velocity, which agrees with
the argument that sweep events are associated with canopy deformation during monami
(Ghisalberti & Nepf 2002, 2006; Okamoto & Nezu 2009; Patil & Singh 2010). Inside the
canopy, there are regions with negative u immediately behind stems due to the backflow,
and the size of these regions decreases as Ca increases because of the smaller frontal
area. These wake-scale flow structures may impact the transport of scalar quantities and
particles, for example, by trapping them to elongate their residence time in the canopy.

The streamlines of the conditionally averaged flow field in the monami-following frame
are plotted in figure 13 to better illustrate the flow dynamics associated with the monami
wave phase. Because all the cases with flexible canopies give similar results, only the case
of Ca = 5 is shown, where c/u∗ = 3 is used. From the conditionally averaged flow fields
for the large forward and large deformation speed events, we observe a vortex residing on
the monami trough near x/h = 0 and x/h = −0.5, respectively. This vortex is similar to
the cat’s eye structure in wind–wave interactions (Lighthill 1962; Sullivan, McWilliams
& Moeng 2000; Yang & Shen 2010), except that the streamlines extend into the canopy
due to the permeability of the canopy. The vortex and the critical layer (where 〈u〉c − c =
0) reside near the canopy top, which is consistent with the result in § 3.3 that monami
is a slow wave. The centre of the vortex, which is a convergence point, resides on the
leeward surface. Another large vortex can be observed on the right; note that this vortex
is stretched in the streamwise direction, and hence, only part of it is shown in the figure.
A saddle point between these two vortices is located on the windward surface, as can
be seen in figure 13(a), and the boundary between these two vortices can be identified
from the saddle point and the influx streamlines connected to it. The streamlines above the

947 A33-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

65
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.655


Simulation of turbulent flow in aquatic flexible canopy

(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

( j) (k) (l)

y/h

y/h

y/h

y/h

x/h

0
0.2

–1 0 1 2

0.4
0.6
0.8
1.0
1.2

x/h

0
0.2

–1 0 1 2

0.4
0.6
0.8
1.0
1.2

x/h

0
0.2

–1 0 1 2

0.4
0.6
0.8
1.0
1.2

0
0.2

–1 0 1 2

0.4
0.6
0.8
1.0
1.2

0
0.2

–1 0 1 2

0.4
0.6
0.8
1.0
1.2

0
0.2

–1 0 1 2

0.4
0.6
0.8
1.0
1.2

0
0.2

–1 0 1 2

0.4
0.6
0.8
1.0
1.2

0
0.2

–1 0 1 2

0.4
0.6
0.8
1.0
1.2

0
0.2

–1 0 1 2

0.4
0.6
0.8
1.0
1.2

0
0.2

–1 0 1 2

0.4
0.6
0.8
1.0
1.2

0
0.2

–1 0 1 2

0.4
0.6
0.8
1.0
1.2

0
0.2

–1 0 1 2

0.4
0.6
0.8
1.0
1.2

Figure 12. Contours of the conditionally averaged normalized streamwise velocity 〈u〉c/u∗ in the x–y plane
cutting through the centre of the stem row for (a,d,g,j) Ca = 5, (b,e,h,k) Ca = 30 and (c, f,i,l) Ca = 80. The
conditionally averaged events are (a–c) small deformation events, (d–f ) large forward speed events, (g–i) large
deformation events and (j–l) large backward speed events. For the isopleths, the solid and dashed lines represent
non-negative and negative values, respectively, and the intervals between non-negative values and between
negative values are 0.5 and 0.1, respectively. The red lines represent the conditionally averaged shapes of the
stems.

vortices deform with them and thus are depressed above the saddle point. The streamlines
of the conditionally averaged flow field in the monami-following frame are summarized in
figure 14.

Figure 15 shows the conditional average of the fluctuations of the streamwise and
vertical velocity components, 〈u′〉c and 〈v′〉c, respectively. As all the flexible canopy cases
show similar results, only the case of Ca = 5 is presented. For the streamwise velocity
fluctuation u′, we note that the large forward speed and large deformation events are
characterized by u′ > 0. This phenomenon can be understood from two perspectives of the
flow–stem interaction. First, from the perspective of the stems affecting the flow, highly
deformed stems have smaller frontal areas, and stems with a large forward speed have
a smaller velocity relative to the flow; in both situations, the flow resistance decreases,
and the flow velocity is increased. Second, from the perspective of the flow affecting the
stems, a faster flow can more easily deform the stems and maintain their large deformation.
A similar explanation can be applied to u′ < 0 in small deformation and large backward
speed events, where the frontal areas are large and the stems have a large velocity relative to
the flow, thereby increasing the drag force, and a slow flow allows the stems to rebound. For
the vertical velocity fluctuation v′, the large forward speed and large deformation events are
characterized by v′ < 0, while the small deformation and large backward speed events are
characterized by v′ > 0. In summary, large forward speed and large deformation events are
characterized by sweep events (u′ > 0, v′ < 0), and small deformation and large backward
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Figure 13. Streamlines of the conditionally averaged velocity field in the monami-following frame ((〈u〉c −
c)/u∗, 〈v〉c/u∗) in the x–y plane cutting through the centre of the stem row. The conditionally averaged events
are (a) small deformation events, (b) large forward speed events, (c) large deformation events and (d) large
backward speed events. The red lines represent the conditionally averaged shapes of the stems. The case of
Ca = 5 is shown, where c/u∗ = 3 is used.

y

C

x

Figure 14. Schematics of the flow pattern associated with the monami wave phase in the monami-following
frame in the x–y plane cutting through the centre of the stem row. The blue curves with arrows are streamlines.
The red dashed lines indicate the boundaries between the main flow structures. The green lines and black curve
represent the stems and the monami surface, respectively. The black cross indicates the saddle point.

speed events are characterized by ejection events (u′ < 0, v′ > 0), which is consistent with
the findings of previous experimental and numerical studies (Ghisalberti & Nepf 2006;
Okamoto & Nezu 2009; Patil & Singh 2010).

Figure 16 shows the conditionally averaged fluctuations of the streamwise and vertical
components of the drag force, 〈f ′

1〉c and 〈f ′
2〉c, respectively. Similar to figure 15, only the

case of Ca = 5 is plotted, as it is representative of the flexible canopies. Within the stem
oscillation trajectories, the time average of the streamwise force component f̄1 is always
negative because it averages the zero value of f1 if a stem is not present and the negative
value of f1 if a stem is present. As a result, for the region within the stem oscillation
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Figure 15. Contours of the conditionally averaged (a,c,e,g) normalized streamwise velocity fluctuation u′/u∗
and (b,d, f,h) normalized vertical velocity fluctuation v′/u∗ in the x–y plane cutting through the centre of the
stem row. The conditionally averaged events are (a,b) small deformation events, (c,d) large forward speed
events, (e, f ) large deformation events and (g,h) large backward speed events. The red lines represent the
conditionally averaged shapes of the stems. The case of Ca = 5 is shown.

trajectories, f ′
1 is positive if a stem is not present because f1 = f̄1 + f ′

1, f1 = 0 and f̄1 < 0.
When a stem is present, f ′

1 is usually negative. For example, for small deformation events
(figure 16a), f ′

1 is negative around the stem tips in the centre of the domain. This is because
this location is the highest reachable location of a stem, so f1 ¡ 0 only for small deformation
events and f1 ¿ 0 otherwise. In contrast, for large deformation events (figure 16e), f ′

1 is
negative at the upper part of the stems because the streamwise velocity there is higher than
in other events (see figure 15), and therefore, the drag force has large negative values.

For the vertical force component, its time average f̄2 is positive within the stem
oscillation trajectories because the inclination of the stems turns the streamwise incoming
flow to the direction along the stem, with a positive vertical velocity component. Then,
f ′
2 is negative if a stem is not present because f2 = f̄2 + f ′

2, f2 = 0 and f̄2 > 0. The sign of
f ′
2 when a stem is present depends on the vertical velocity v there. For large deformation

and large forward speed events, sweep events near the stems have v′ < 0, which results in
f ′
2 > 0. In contrast, small deformation and large backward speed events have f ′

2 < 0 near
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Figure 16. Contours of the conditionally averaged (a,c,e,g) normalized streamwise drag force fluctuation
f ′
1/(u

∗2/h) and (b,d, f,h) normalized vertical drag force fluctuation f ′
2/(u

∗2/h) in the x–y plane cutting through
the centre of the stem row. The conditionally averaged events are (a,b) small deformation events, (c,d) large
forward speed events, (e, f ) large deformation events and (g,h) large backward speed events. The red lines
represent the conditionally averaged shapes of the stems. The case of Ca = 5 is shown.

the stem tips and around the upper stem because of the ejection events with v′ > 0. The
results shown in figures 15 and 16 are important for the analyses of the waving term in the
TKE budget in § 4.6.

To summarize, in § 3 we study the flow structure, stem deformation and the dispersion
relation of monami in the canopy flow. The monami wave speed c is found to be around
2u∗, which is comparable to the wind over a slow water wave. Therefore, the flow
features over the canopy, such as the cat’s eye structure and the critical layer in the
wave-following frame, are also similar. By performing conditional averaging according to
the stem kinematics, we find that the backward and forward strokes of stems are associated
with ejection and sweep events, respectively. From our stem-resolving simulation, detailed
descriptions of the correlation between the velocity and drag associated with the monami
are obtained, which are valuable for the analysis of the waving terms in the TKE and DKE
budgets in the next section.
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Simulation of turbulent flow in aquatic flexible canopy

4. Spectral analyses of the TKE and DKE budgets

In this section, we perform spectral analyses of the TKE and DKE budgets. First, in § 4.1
the budget equation of TKE is derived, and the vertical profiles of TKE, DKE and TKE
budget terms are compared for cases with different canopy flexibilities. Then, in § 4.2
the spectral budget equation of TKE for canopy flows is derived following the two-point
correlation function approach in the previous studies of pure channel flows. Next, the terms
in the spectral budget equation are analysed, including the TKE and production terms
(§ 4.3), three wall-normal transport terms (§ 4.4), the intercomponent and interscale terms
(§ 4.5) and the waving term associated with flexible stems (§ 4.6). In § 4.6, the spectral
shortcut mechanism of the canopy flow is understood by comparing the interscale and
waving terms. Also in § 4.6, the contributions of the velocity components and quadrant
events to the waving term are studied, and the effects of the monami wave phases on the
waving term are analysed by conditional averaging. Finally, in § 4.7 the spectral budget at
the monami and wake scales are elucidated, from which a schematic on the energy flux in
the canopy flow is obtained.

4.1. Energy transport in the canopy flow: mean kinetic energy, DKE and TKE
Following (2.20), the kinetic energy in the canopy flow e = 〈uiui〉/2 can be decomposed
into

e = 1
2
〈ūi〉〈ūi〉︸ ︷︷ ︸
eMKE

+ 1
2
〈ū′′

i ū′′
i 〉︸ ︷︷ ︸

eDKE

+ 1
2
〈u′

iu
′
i〉︸ ︷︷ ︸

eTKE

, (4.1)

where eMKE, eDKE and eTKE are the mean kinetic energy (MKE), DKE and TKE,
respectively. The DKE represents the part of the kinetic energy induced by the flow
inhomogeneity and does not exist in a pure channel flow. The TKE budget in the canopy
flow is (Finnigan 2000)

∂

∂t

(
1
2
〈u′

iu
′
i〉
)

= 1
2
〈ūj〉

∂〈u′
iu

′
i〉

∂xj︸ ︷︷ ︸
A

−〈u′
iu

′
j〉

∂〈ūi〉
∂xj︸ ︷︷ ︸

Ps

−
〈
u′

iu
′
j
′′ ∂ ū′′

i
∂xj

〉
︸ ︷︷ ︸

Pw

− 1
2

∂〈ū′′
j u′

iu
′
i
′′〉

∂xj︸ ︷︷ ︸
Td

− 1
2

∂〈u′
iu

′
iu

′
j〉

∂xj︸ ︷︷ ︸
Tt

−
∂〈p′u′

j〉
∂xj︸ ︷︷ ︸
Tp

+ ν

2
∂2〈u′

iu
′
i〉

∂xj∂xj︸ ︷︷ ︸
Tv

− ν

〈
∂u′

i
∂xj

∂u′
i

∂xj

〉
︸ ︷︷ ︸

ε

+〈f ′u′〉︸ ︷︷ ︸
W

, (4.2)

where the right-hand side terms are the convection term A, shear production term Ps, wake
production term Pw, dispersive transport term Td, turbulent transport term Tt, pressure
transport term Tp, viscous transport term Tv , dissipation term ε and waving term W.
In these terms, the convection term A theoretically equals zero in the present problem
set-up, the wake production term Pw and the dispersive transport term Td are related
to the spatial inhomogeneity of the canopy flow, and the waving term W represents the
correlation between the hydrodynamic drag and the stem waving motion. Note that the
‘waving term’ is not necessarily associated with the canopy waving motion; this term also
exists in the rigid canopy where the stems do not wave. However, we still call it ‘waving
term’ following the convention in the literature, such as (7.1) in Finnigan (2000). In the
literature, fewer studies have been conducted on the waving term than on the other terms.
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Figure 17. Vertical profiles of the (a) TKE and (b) DKE averaged over time and over the x–z planes. Both
TKE and DKE are normalized by u∗2. The cases are: black solid line, Ca = 0; red dashed line, Ca = 5; green
dashed–dotted line, Ca = 30; and blue dashed–dotted line, Ca = 80.

Our numerical simulation provides comprehensive descriptions of the hydrodynamic drag
and flow velocity in space and time such that the canopy waving effect can be quantified
and analysed.

Figure 17 plots the vertical profiles of TKE and DKE. Below y ∼ 1.8h, TKE increases
with Ca, and the height of its maximum value decreases as Ca increases because the
canopy height decreases. The maximum values of the TKE profiles are above the canopy
where the centres of the coherent structures in the mixing layer are located (Nepf 2012).
Above y ∼ 1.8h, the TKE profiles of all the cases collapse into one curve, indicating
that the TKE enhancement effect of flexible canopies is limited with height. The DKE
is prominent only in the canopy region. The amplitude of DKE is small compared with
that of TKE, which is consistent with the measurement result of Raupach, Coppin & Legg
(1986). Interestingly, the maximum value of DKE in the rigid canopy is larger than that at
Ca = 5 and closer to that in the cases of Ca = 30 and 80. We believe the reason is that
the oscillation amplitude of the stems has a negative correlation with DKE and that highly
flexible stems oscillate less and behave more like a rigid stem, i.e. the phenomenon of
‘high flexibility-induced rigidity’ as discussed in § 3.3.

The vertical profiles of the TKE budget terms (4.2) are plotted in figure 18. For all cases,
the shear production term Ps is the dominant energy source. However, the wake production
term Pw can be higher than Ps inside the canopy because of the strong flow inhomogeneity
there, which is consistent with the findings of Raupach et al. (1986) and Poggi et al.
(2004). The turbulent transport term Tt has the largest magnitude among all four transport
terms and plays an important role in balancing the high energy production immediately
above the canopy and the high dissipation inside the canopy. In the rigid canopy case,
the extrema of Ps and ε are 12u∗3/h and −5u∗3/h, respectively, which agree with the
particle image velocimetry results of Yue et al. (2008), who measured a rigid canopy
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Td
Tt
Tp
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ε

Figure 18. Vertical profiles of the TKE budget terms defined in (4.2) inside and near the canopy top for
(a) Ca = 0, (b) Ca = 5, (c) Ca = 30, (d) Ca = 80. The terms are as follows: Ps, the shear production term; Pw,
the wake production term; Td , the dispersive transport term; Tt, the turbulent transport term; Tp, the pressure
transport term; Tv , the viscous transport term; ε, the dissipation term; and W, the waving term. All the terms
are normalized by u∗3/h.

flow in a wind tunnel. The flexible canopy cases have a similar profile shape for each
term, except that the terms have larger amplitudes and lower peak heights as Ca increases
owing to the lower canopy height and faster flow. Comparing the rigid and flexible canopy
cases reveals that the peak of Ps is sharper in the former because the oscillation of stems
in the flexible canopies smears the canopy top and the flow shear there. Another major
difference between the rigid and flexible canopy cases is the waving term W. For the rigid
canopy case (W = 〈f ′u′〉 = 0), because u = 0 on the stem surface and f = 0 away from
the stem surface, u′ /= 0 and f ′ /= 0 cannot be satisfied simultaneously. For the flexible

947 A33-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

65
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.655


S. He, H. Liu and L. Shen

canopy cases, the waving term is an energy source near the canopy top where the stem tip
has a large oscillation amplitude and a weak energy sink inside the canopy where the stem
oscillation is reduced. The maximum value of W is approximately half of Ps, which makes
it another major TKE source term for the flexible canopy cases. Owing to the difficulty
of experimentally measuring the drag–velocity correlation in flexible canopies, previous
studies did not clarify the role of the waving term in canopy flow dynamics (Finnigan 1979,
2000; Raupach & Thom 1981). Our simulations, which explicitly resolve the stems, show
that the waving term can play an important role in TKE generation in flexible canopies.
More analyses of the waving effects are provided in the sections below.

4.2. Algorithm for the spectral analysis of the TKE budget
We perform a spectral analysis of the TKE budget following the two-point correlation
function approach (Lee & Moser 2015, 2019; Wang et al. 2020). Note that there is
another equivalent approach that starts from the Navier–Stokes equations in the form of
Fourier modes (Mizuno 2016; Cho et al. 2018). We adopt the former approach, which
is briefly described below. Considering the two-point correlation of ui(x, y, z, t) and
ũj(x, rx, y, z, t) = uj(x + rx, y, z, t), j = 1, 2, 3, the spectral budget of the Reynolds stress
is

∂〈u′
iũ

′
j〉x

∂t
(rx, y, z) =

(
−〈ũ′

ju
′
k〉x

∂〈ūi〉x

∂xk
− 〈u′

iũ
′
k〉x

∂〈ūj〉x

∂ x̃k

)
︸ ︷︷ ︸

RP
ij

−
〈

ũ′
j
∂u′

ku′
i

∂xk
+ u′

i

∂ ũ′
kũ′

j

∂ x̃k

〉
x︸ ︷︷ ︸

RT
ij

− 1
ρ

〈
ũ′

j
∂p′

∂xi
+ u′

i
∂ p̃
∂ x̃j

〉
x︸ ︷︷ ︸

RΠ
ij

+ν

〈
ũ′

j
∂2u′

i
∂xk∂xk

+ u′
i

∂2ũ′
j

∂ x̃k∂ x̃k

〉
x︸ ︷︷ ︸

Rν
ij

+〈ũ′
jf

′
i + u′

if̃
′
j 〉x︸ ︷︷ ︸

RW
ij

, (4.3)

where 〈·〉x indicates the average in the streamwise direction. In the above equation, RP
ij ,

RT
ij , RΠ

ij , Rν
ij and RW

ij are the shear production term, turbulent term, pressure term, viscous
term and waving term, respectively. The terms RT

ij , RΠ
ij and Rν

ij can be further decomposed
such that: RT

ij can be decomposed into a wall-normal turbulent transport term RNTT
ij and an

interscale transport term RIST
ij ,

RNTT
ij = −1

2

(
∂〈ũ′

ju
′
iu

′
2〉x

∂y
+

∂〈u′
iũ

′
jũ

′
2〉x

∂y

)
, (4.4)

RIST
ij =

∂〈ũ′
ju

′
iu

′
1〉x

∂rx
−

∂〈u′
iũ

′
jũ

′
1〉x

∂rx
+

∂〈ũ′
ju

′
iu

′
3〉x

∂z
−

∂〈u′
iũ

′
jũ

′
3〉x

∂z

−1
2

(
∂〈ũ′

ju
′
iu

′
2〉x

∂y
+

∂〈u′
iũ

′
jũ

′
2〉x

∂y

)
+

〈
u′

iu
′
2

∂ ũ′
j

∂y

〉
x

+
〈

ũ′
jũ

′
2

∂u′
j

∂y

〉
x

; (4.5)

947 A33-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

65
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.655


Simulation of turbulent flow in aquatic flexible canopy

RΠ
ij can be decomposed into a wall-normal pressure transport term RNPT

ij and an
intercomponent transport term RICT

ij ,

RNPT
ij = 1

ρ

(
∂〈ũ′

jp
′〉x

∂y
δi2 + ∂〈u′

ip̃
′〉x

∂y
δj2

)
, (4.6)

RICT
ij = − 1

ρ

〈
p′ ∂ ũ′

j

∂ x̃i
+ p̃′ ∂u′

i
∂xj

〉
x

; (4.7)

Rν
ij can be decomposed into a wall-normal viscous transport term RNVT

ij and a dissipation
term RDIS

ij ,

RNVT
ij = ν

∂2〈u′
iũ

′
j〉x

∂y∂y
, (4.8)

RDIS
ij = −2ν

〈
∂u′

i
∂rx

∂ ũ′
j

∂rx
+ ∂u′

i
∂y

∂ ũ′
j

∂y
+ ∂u′

i
∂z

∂ ũ′
j

∂z

〉
x

. (4.9)

Therefore, we have

∂〈u′
iũ

′
j〉x

∂t
(rx, y, z) = RP

ij + RNTT
ij + RIST

ij + RNPT
ij + RICT

ij + RNVT
ij + RDIS

ij + RW
ij . (4.10)

By taking the trace of this equation (i = j), performing the Fourier transform about rx
while applying the Wiener–Khinchin theorem and averaging in the spanwise direction, we
can obtain

∂Ee

∂t
(kx, y) = EP + ENTT + ENPT + ENVT + EIST + EDIS + EW , (4.11)

where kx is the streamwise wavenumber, Ee is the streamwise spectrum of TKE, and the
right-hand side terms are the shear production EP, wall-normal turbulent transport ENTT ,
wall-normal pressure transport ENPT , wall-normal viscous transport ENVT , interscale
transport EIST , dissipation EDIS and waving effect EW , respectively. The definitions of
these terms are as follows:

Ee = Re
[〈
F∗(u′

i)F(u′
i)
〉
z

]
, (4.12a)

EP = Re

[
−2

〈
F∗(u′

k
∂ ūi

∂xk
)F(u′

i)

〉
z

]
, (4.12b)

ENTT = Re
[

∂

∂y

〈
F∗(u′

iu
′
2)F(u′

i)
〉
z

]
, (4.12c)

ENPT = Re
[
− 2

ρ

〈
F∗( p′)F(u′

2)
〉
z

]
, (4.12d)

ENVT = Re
[
ν

∂2

∂y2

〈
F∗(u′

i)F(u′
i)
〉
z

]
, (4.12e)
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EIST = Re
[
−2ikx

〈
F∗(u′

iu
′
1)F(u′

i)
〉
z
− ∂

∂y

〈
F∗(u′

iu
′
2)F(u′

i)
〉
z

+ 2

〈
F∗(u′

iu
′
2)F(

∂u′
i

∂y
)

〉
z

+ 2

〈
F∗(u′

iu
′
3)F(

∂u′
i

∂z
)

〉
z

]
, (4.12f )

EDIS = Re

[
−2νk2

x

〈
F∗(u′

i)F(u′
i)
〉
z
− 2ν

〈
F∗

(
∂u′

i
∂y

)
F

(
∂u′

i
∂y

)〉
z

]

− 2ν

〈
F∗

(
∂u′

i
∂z

)
F

(
∂u′

i
∂z

)〉
z

]
, (4.12g)

EW = Re
[

2
〈
F∗( f ′

i )F(u′
i)
〉
z

]
, (4.12h)

where 〈·〉z represents the spanwise average, F is the Fourier transform operator, (·)∗ is
the complex conjugate operator and Re(·) takes the real part of a complex number. The
correspondence of RICT

ij in (4.10), EICT , has the form of

EICT,i = Re

[
2
ρ

〈
F∗( p′)F

(
∂u′

i
∂xi

)〉
z

]
, no summation, i = 1, 2, or 3, (4.13)

where i indicates the component. Note that EICT does not exist in (4.11), because it
transfers energy only among the three velocity components, such that

EICT,1(kx, y) + EICT,2(kx, y) + EICT,3(kx, y) = 0. (4.14)

Here, we consider only the streamwise Fourier modes because we focus on the interaction
between the canopy and the streamwise structure of the coherent vortices in the mixing
layer. Spanwise Fourier modes need to be considered when studying the spanwise
structure, which is important for other types of flows (see, e.g. Cho et al. 2018) but is
less important than the dominant streamwise structures in canopy flows. In the following
analyses of the TKE budget terms, we compare our results mainly with the slow-wave
case (c/u∗ = 2) in Wang et al. (2020), where the spectral TKE budget for a 3-D turbulent
airflow over water waves is analysed, and has the closest simulation set-up in the literature
with our canopy problem for spectral TKE budget analysis. Note that because the velocity
fluctuations in Wang et al. (2020) contain both turbulent and wave-coherent components,
which are equivalent to the combination of the turbulent and dispersive components in our
case, their TKE budget is equivalent to the sum of the TKE and DKE budgets in our case.
Because the DKE budget is non-trivial only at the wake scale, our TKE budget can still be
compared with their results, but not at the wake scale. In the following sections §§ 4.3–4.6,
we first discuss the TKE budget in the spectral space at various heights, followed by a
discussion of the vertical profiles of the TKE and DKE budgets at the monami and wake
scales in § 4.7.

4.3. Spectra of TKE and the production term
Figure 19 shows the streamwise spectra of TKE, Ee. The TKE is higher at low
wavenumbers and over the canopy and achieves the largest value near the canopy top.
As the canopy flexibility increases, the TKE maximum value increases, and the height
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Figure 19. The 1-D streamwise spectra of TKE, Ee, for (a) Ca = 0, (b) Ca = 5, (c) Ca = 30, (d) Ca = 80. The
term is normalized by u∗2/h2. Here km and kw are denoted by arrows on the horizontal axis.

of the maximum value decreases as the canopy height decreases. These variations are
consistent with figure 17(a). From the spectra, we can identify two significant spatial
scales that do not exist in the boundary layer spectrum (de Langre 2008). The first scale
is approximately kxh ∼ 4π, where the TKE inside the canopy reaches a local maximum
value, as indicated in figure 19. This scale corresponds to the interval between adjacent
stems and hence represents the characteristic scale of the wake behind the stems, consistent
with the observation by Olivieri et al. (2020). We call this scale the ‘wake scale’ with
a wavenumber kw. The local maximum TKE is consistent with the spectral shortcut
mechanism (Kaimal & Finnigan 1994; Finnigan 2000; Olivieri et al. 2020). It should
be noted that such a local maximum TKE also exists at the integer multipliers of the
wake scale, also known as the harmonics (not plotted in the figures), and its amplitude
decreases as the multiplier increases. These harmonics can also be observed in the results
of Wang et al. (2020), who showed that the streamwise spectrum of the TKE for air
turbulence over a slow water wave exhibits high TKE at the dominant wavelength scale
and harmonics at higher wavenumbers. The second significant scale is approximately
kxh ∼ 0.6. For clarity, figure 20 plots locally magnified views of figure 19 to highlight
the low wavenumber range of kxh ≤ 5 in the lower part of the channel (y/h ≤ 1). For
every case, close to the channel bottom wall, there exists a local maximum TKE near
kxh ∼ 0.6; this is also the global maximum except in the case of Ca = 80, where the
spatially averaged component at kxh ∼ 0 is higher. Note that kxh ∼ 0.6 corresponds to
the energetic wavenumber component of the monami, as shown in figure 9, at which
the coherent flow structure near the canopy top influences the lower canopy. We call
this scale the ‘monami scale’ with a wavenumber km. Two reasons can explain why the
local maximum value at the monami scale occurs close to the channel bottom. One is
due to the penetration of the shear vortices into the canopy. The other reason is that the
flow close to the channel bottom, therefore within the canopy, directly interacts with the
monami, such that the monami scale is more prominent than the flow outside the canopy
where there is no direct flow–canopy contact. The wake and monami scales represent the
characteristic large flow scale of the coherent structures in the mixing layer and the small
flow scale of the wakes behind the stems, respectively. Note that previous experimental
studies usually measured the temporal spectra and then obtained the spatial spectra based
on Taylor’s frozen hypothesis to discuss the spectral shortcut (e.g. Allen 1968; Seginer
et al. 1976; Brunet et al. 1994; Kaimal & Finnigan 1994). We plot the temporal spectra of
TKE at the canopy height for each case. Note that owing to the limitation of the simulation
time duration, the temporal spectrum obtained at one point is very noisy. Therefore, we
averaged the temporal spectra at all grid nodes over the canopy height hc, and the result is
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Figure 20. Magnified view of figure 19 for kxh ≤ 5 and y/h ≤ 1: (a) Ca = 0; (b) Ca = 5; (c) Ca = 30; (d) Ca
= 80. The increment is 0.005 between contour lines from 0 to 0.2. Here km is denoted by an arrow on the
horizontal axis.
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Figure 21. Averaged one-point temporal spectra over the canopy height for Ca = 0, 5, 30 and 80.

plotted in figure 21. As shown, there are two local maxima for each case. One is located
at ωh/u∗ ∼ 1.6, which corresponds to the monami scale, and the other is located around
ωh/u∗ ∼ 28, which corresponds to the wake scale. Considering that our simulation can
precisely capture the spatial variation, we hereinafter discuss the spectral shortcut in the
context of spatial spectra. In the following sections, the flow features at these two scales
and the interaction between them are analysed and discussed.

To further understand the source of TKE at different streamwise wavenumbers, the
streamwise spectra of the shear production term EP are shown in figure 22. Similar to
the spectra for the TKE, EP attains its largest value near the canopy top where the shear is
strong and is high at low wavenumbers, especially at the monami scale (Finnigan 2000).
Local maximum values also exist at the wake scale, but the heights of the regions featuring
prominent values differ among the cases: for the rigid canopy, there is only one region near
the canopy top (y/h ∼ 1), whereas for the flexible canopies, there is another region near the
channel bottom. We believe that this discrepancy is caused by the different heights of the
primary shear. For the rigid canopy (Ca = 0), the velocity difference across the canopy top
is high and the velocity inside the canopy is low, so the primary shear occurs at the canopy
top. As the canopy becomes more flexible, the boundary between the flows inside and
outside the canopy becomes less defined because the oscillation of the stems weakens the
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Figure 22. The 1-D streamwise spectra of the production term EP for (a) Ca = 0, (b) Ca = 5, (c) Ca = 30,
(d) Ca = 80. The term is normalized by u∗3/h3. Here km and kw are denoted by arrows on the horizontal axis.

shear at the canopy top. At the same time, the flow velocity inside the canopy increases as
the drag coefficient decreases owing to the reconfiguration of the stems, and thus, the shear
at the channel bottom is strong. The shear strength is indicated by the vertical gradient of
the streamwise flow velocity ∂〈ū〉/∂y and is observable from figure 6(a), where Ca = 0
has a high streamwise velocity gradient at the canopy top and Ca = 30 and 80 have a high
streamwise velocity gradient close to the channel bottom wall.

Note that some previous studies found regions with negative shear production in spectral
analyses of the TKE budget; these regions are thought to be related to a negative Reynolds
shear stress −〈u′v′〉 at certain heights and wavenumbers (Lee & Moser 2019; Wang et al.
2020). Specifically, Wang et al. (2020) found a region with negative shear production at
the dominant wavelength scale in the case of wind over a slow wave and attributed it to
the strong negative Reynolds shear stress inside the critical layer. In our cases, we did
not observe any regions with prominent negative shear production, and figure 15 excludes
a prominent positive correlation between u′ and v′ at the monami scale. The reason is
that, different from the case of wind over a slow wave studied by Wang et al. (2020),
the canopy flow considered herein is predominantly influenced by the coherent structures
in the mixing layer, which interact with the flow inside the canopy through sweep and
ejection events (Ghisalberti & Nepf 2006; Okamoto & Nezu 2009; Patil & Singh 2010).

4.4. Wall-normal transport terms
The wall-normal transport terms, including the wall-normal pressure transport term ENPT ,
the wall-normal turbulent transport term ENTT and the wall-normal viscous transport term
ENVT , transport TKE along the vertical direction. Note that∫ H

0
ENTT(kx, y) dy =

∫ H

0
ENPT(kx, y) dy =

∫ H

0
ENVT(kx, y) dy = 0. (4.15)

Figure 23 shows the three wall-normal transport terms. All the cases show similar
features near the canopy top, where all three terms mainly transport the TKE downwards
across the canopy top to balance the high energy production outside the canopy with
the high dissipation inside the canopy, similar to the observation from figure 18. The
amplitudes of the pressure transport term ENPT and the turbulent transport term ENTT
increase as the canopy flexibility increases. For the viscous transport term ENVT , its
amplitude and variation along the vertical direction are larger at the top of the rigid canopy
than at the tops of the flexible canopies because the shear is sharper at the former but is
smeared by the oscillation of stems in the flexible canopies. The amplitudes of the three
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Figure 23. The 1-D streamwise spectra of the (a–d) wall-normal pressure transport term ENPT ,
(e–h) wall-normal turbulent transport term ENTT and (i–l) wall-normal viscous transport term ENVT . The terms
are normalized by u∗3/h3. The cases are (a,e,i) Ca = 0, (b, f,j) Ca = 5, (c,g,k) Ca = 30 and (d,h,l) Ca = 80.

terms are different. Comparing the ranges of the amplitudes for these terms in figure 23
indicates that ENTT has the largest amplitude, followed by ENPT , and ENVT has the smallest
amplitude. In Wang et al. (2020), although the turbulent transport term also achieves the
largest amplitude, the amplitude of the pressure transport term is smaller than that of the
viscous transport term. We believe that this discrepancy is related to the relative amplitude
of the pressure drag and viscous drag on the wave surface. In Wang et al. (2020), because
the wave amplitude is small, the pressure drag is small, and thus, the viscous drag is
the dominant drag on the wave surface, so the wall-normal transport associated with
the viscous effect is high. In our cases, however, the canopy drag is the predominant
form of drag, which results in high wall-normal transport associated with the pressure
variation. In addition to the different absolute amplitudes, the amplitude attenuation rate
with increasing wavenumber also varies between ENTT , ENPT and ENVT , as shown in
figure 23. In particular, the pressure transport term has a slower rate than the other two
terms, so its effects on large and small scales only slightly differs.
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Figure 24. The 1-D streamwise spectra of the intercomponent transport terms of different velocity
components: (a–d) the streamwise component EICT,1; (e–h) the vertical component EICT,2; and (i–l) the
spanwise component EICT,3. The terms are normalized by u∗3/h3. The cases are (a,e,i) Ca = 0, (b, f,j) Ca = 5,
(c,g,k) Ca = 30 and (d,h,l) Ca = 80.

4.5. Intercomponent and interscale terms
The intercomponent terms are plotted in figure 24. All the cases show similar results
except for the vertical locations of their variations owing to the different canopy heights.
Outside the canopy, the TKE generally flows from the streamwise component to the
vertical and spanwise components, consistent with the conclusions of previous spectral
TKE analyses of channel flows (Lee & Moser 2015, 2019; Mizuno 2016; Cho et al.
2018). However, at scales larger than the wake scale (kx < kw), the TKE flows from the
spanwise component to the vertical component. A similar phenomenon was also observed
in previous studies (Lee & Moser 2015, 2019; Wang et al. 2020). Lee & Moser (2019)
pointed out that the source of the TKE in the spanwise component is the interscale
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Figure 25. The 1-D streamwise spectra of the interscale transport term EIST normalized by u∗3/h3 for (a) Ca
= 0, (b) Ca = 5, (c) Ca = 30, (d) Ca = 80. The isopleths of the normalized EIST are also plotted, where the solid
lines represent non-negative values of EIST/(u∗3/h3) = 0 and the dashed lines represent negative values with
an interval of 0.02. Here km and kw are denoted by arrows on the horizontal axis.

transport, and we observe a similar phenomenon. The intercomponent transport inside
the canopy is generally small, and only for small wavenumbers (kxh < 5) is there a weak
TKE flow from the vertical component to the streamwise and spanwise components. The
reason for the above phenomenon is that inside the canopy, high hydrodynamic pressure
( p′ > 0) usually exists on the windward side of the stems with large deformation, thereby
driving or sustaining their deformation, and these stems correspond to large deformation
events and large forward speed events (§ 3.4), both of which correspond to sweep events
in which the negative vertical velocity increases with height (∂v′/∂y < 0), as shown in
figure 15(d, f ).

The interscale transport term EIST transports TKE across different scales such that∫ ∞

0
EIST(kx, y) dkx = 0. (4.16)

The interscale transport term is shown in figure 25, where the isopleth of EIST = 0 is
plotted to show the boundary between the TKE recipient and donor regions. For all the
cases, this term extracts TKE from the low-wavenumber range with kxh � 5 as well as
the scales near the wake scale kw inside the canopy. Note that the maximum resolvable
wavenumber in our study is kmaxh = 40π, which is far larger than the wavenumbers at
which TKE is extracted by this term. Therefore, the TKE extracted at small wavenumbers
is distributed across a broad wavenumber range such that the positive values of EIST do
not appear significant in the figure compared with the negative values. We checked that
(4.16) holds for our data. Note that while the spectral shortcut mechanism may suggest an
interscale energy flow route from the shear production scale to the wake scale, according
to figure 25, TKE is extracted by the interscale term from the wake scale inside the canopy.
Therefore, the spectral shortcut mechanism is unlikely to be exerted by the interscale
transport term. We find that it is instead associated with the waving term, which is
discussed in § 4.6.

The energy cascade from large to small scales is ubiquitous in turbulent flows. Previous
studies on channel flow also demonstrated the existence of an inverse energy cascade
through which the TKE is transferred from small to large scales (Lee & Moser 2015, 2019;
Andrade et al. 2018; Cho et al. 2018; Kawata & Alfredsson 2018; Kawata & Tsukahara
2019; Wang et al. 2020; Yang et al. 2020). In our cases, as shown in figure 25, there is
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a TKE recipient region near the bottom wall with a wavenumber range of 5 � kxh � 10
between two donor regions. Therefore, we examine which donor region is the TKE source
of the recipient region to understand whether the inverse energy cascade occurs in our
case. For this purpose, we perform a triadic analysis of the interscale transport term EIST .
Note that previous studies (e.g. Cho et al. 2018; Wang et al. 2020) performed triadic
analyses on the turbulent transport term ET , which is the sum of the wall-normal turbulent
transport term ENTT and the interscale transport term EIST ,

ET = ENTT + EIST = −Re

[〈
û′

i
∗ ∂

∂xj
û′

iu
′
j

〉
z

]
, (4.17)

where (̂·) is the Fourier transform operator. According to (4.12) and (4.17), the formula for
EIST is complex, while the formulae for ET and ENTT are simple. Therefore, to perform the
triadic analysis of EIST , we first perform triadic analyses of ET and ENTT and then subtract
the result of ENTT from that of ET . In what follows, we take ET as an example to show the
triadic analysis process. According to the convolution theorem, we have

û′
iu

′
j(k0) =

∫
kl+km=k0

û′
i(kl)û′

i(km) dkl =
∫

kl+km=k0
kl,km≥0

û′
i(kl)û′

i(km) dkl

+
∫

km−kl=k0
kl,km≥0

û′
i(kl)û′

i(km) dkl +
∫

kl−km=k0
kl,km≥0

û′
i(kl)û′

i(km) dkl. (4.18)

In this equation, the last three terms indicate the excitation at wavenumber k0 by the
interaction of wavenumbers kl and km. The term with kl + km = k0 indicates the interaction
of two large scales for a small scale and thus represents a normal energy cascade. The terms
with km − kl = k0 and kl − km = k0 indicate the interaction of a large scale and a small
scale for an intermediate scale and thus represent an inverse energy cascade. Therefore,
for ET , we have

ET(k0, y) =
∫ kmax

k0−kmax

ET,c(k0, y, kl) dkl

=
∫ kmax

k0−kmax

−Re

〈
û′

i
∗
(k0, y, z, t)

∂

∂xj

[
û′

i(kl, y, z, t)û′
j(k0 − kl, y, z, t)

]〉
z

dkl.

(4.19)

Then, by performing the same triadic analysis on ENTT for ENTT,c and subtracting the result
for ENTT,c from that for ET,c, we obtain

EIST(k0, y) =
∫ kmax

k0−kmax

EIST,c(k0, y, kl) dkl

=
∫ kmax

k0−kmax

ET,c(k0, y, kl) dkl −
∫ kmax

k0−kmax

ENTT,c(k0, y, kl) dkl, (4.20)

where ENTT,c is obtained in a way similar to (4.19):

ENTT,c(k0, y, kl) = −Re
[

∂

∂y

〈
û′

i(kl, y, z, t)û′
2(k0 − kl, y, z, t)û′

i
∗
(k0, y, z, t)

〉
z

]
. (4.21)

Considering the symmetry of wavenumbers kl and k0 − kl in the triadic interaction with
wavenumber k0, we further average EIST,c(k0, y, kl) and EIST,c(k0, y, k0 − kl) for the final
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Figure 26. Normalized interscale turbulent energy transport to the wake scale kw via triadic interaction,
[EIST,c(kw, y, kl) + EIST,c(kw, y, kw − kl)]/2/(u∗3/h2), defined by (4.20) for cases (a) Ca = 0, (b) Ca = 5,
(c) Ca = 30, (d) Ca = 80. The two vertical dashed lines represent the average flow scale klh = 0 and the
wake scale klh = kwh = 4π.

result. Figure 26 shows the interscale turbulent energy transport to the wake scale kw via
triadic interaction, [EIST,c(kw, y, kl) + EIST,c(kw, y, kw − kl)]/2. Over the canopy, its value
is positive for 0 < kl < kw, which reflects the energy cascade as the energy flows to the
wake scale from the large scale. Inside the canopy, the energy influx to the wake scale kw
originates from the interaction between the mean flow kl = 0 and the wake scale itself, not
from the interactions between different turbulence scales. Additionally, inside the canopy,
for 0 < klh < kwh, the value of the triadic interaction term is negative but not significant,
which suggests that the outflux from the wake scale to the large scale is weak if it does
exist. Therefore, we conclude that the inverse cascade is insignificant in our cases.

4.6. Waving term
Following (2.20) and (4.1), the waving term for the total energy Wtotal = 〈fiui〉 can be
decomposed into

Wtotal = 〈f̄i〉〈ūi〉︸ ︷︷ ︸
WMKE

+〈f̄ ′′
i ū′′

i 〉︸ ︷︷ ︸
WDKE

+〈f ′
i u′

i〉︸ ︷︷ ︸
WTKE

, (4.22)

where the right-hand side terms are the waving terms for MKE, DKE and TKE.
Figure 27 shows the vertical profiles of WMKE, WDKE, WTKE and Wtotal. The waving

term for MKE is a sink because 〈 f̄i〉 < 0 and 〈ūi〉 > 0. That for DKE is a source because
in the dominant streamwise component (see figure 28), the negative dispersive velocity
ū′′

1 < 0 and negative dispersive stem drag f̄ ′′
1 < 0 are correlated on the stems, and ū′′

1 > 0
and f̄ ′′

1 > 0 are correlated at the interval between stems. For the rigid canopy case, as
the waving terms for TKE and the total energy are zero (§ 4.1), the waving effect purely
transfers energy from MKE to DKE. In contrast, for the flexible canopy cases, the waving
term for TKE is an energy source near the canopy top and a weak energy sink inside the
canopy, as discussed in § 4.1. Additionally, the effect of the waving term on the total energy
is an energy sink, which means that it dissipates energy. As shown in figure 27, both WMKE
and WDKE have two local extrema: one near the canopy top and one near the bottom wall.
The upper extremum is due to the strong flow and large drag near the canopy top, while
the lower extremum is correlated with the mean velocity variation shown in § 3.2.
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Figure 27. Vertical profiles of the waving terms for MKE (WMKE), DKE (WDKE), TKE (WTKE) and the total
energy (Wtotal) normalized by u∗3/h for cases (a) Ca = 0, (b) Ca = 5, (c) Ca = 30, (d) Ca = 80. The lines are
as follows: blue dashed double-dotted line, WMKE; red dashed dotted line, WDKE; black dashed line, WTKE; and
black solid line, Wtotal. Note that Wtotal = 0 for Ca = 0 and is not shown in (a) to avoid obscuring WTKE .

To better understand the effects of these waving terms, we analyse the three components
WMKE, WDKE and WTKE, as shown in figure 28. Only the streamwise component
contributes to WMKE because 〈ū2〉 = 〈ū3〉 = 0. For WDKE, the contribution predominantly
comes from the streamwise component, except in the flexible canopy case with Ca = 5,
where the vertical component WDKE,2 provides a comparable contribution in the upper
canopy. This is because for both the rigid canopy (Ca = 0) and the highly flexible canopies
(Ca = 30 and 80), the stems exhibit no or very small oscillations (see the discussion on
‘high flexibility-induced rigidity’ in § 3.3) such that ū2 ≈ 0 and ū′′

2 ≈ 0 on the stems, while
in the case with Ca = 5, the large stem oscillations in the upper canopy stimulate the
inhomogeneity of the vertical velocity and drag along the trajectory of the stem oscillation.
A similar explanation also applies to the decreasing contribution of WDKE,2 as the canopy
flexibility increases (figure 28f –h) because highly flexible stems are more likely to yield
to the flow and display smaller oscillation amplitudes compared with the Ca = 5 case, as
discussed in § 3.3. For WTKE, the streamwise and vertical components are a strong source
and a weak sink, respectively, and the spanwise component changes from a weak sink to a
weak source as the height increases. Therefore, the positive sign of WTKE results from the
streamwise component.

To understand the contributions of the different f ′
i –u′

i events, we perform a
quadrant analysis on each component of the TKE waving term, 〈f ′

i u′
i〉 (i = 1, 2 or

3; no summation notation). The quadrant events for the f ′
i –u′

i correlation are defined as
Q1 events if f ′

i > 0 and u′
i > 0; Q2 events if f ′

i < 0 and u′
i > 0; Q3 events if f ′

i < 0 and
u′

i < 0; and Q4 events if f ′
i > 0 and u′

i < 0. Their contributions to the TKE waving term
in the flexible canopy cases are plotted in figure 29. All the cases show similar results
except for the vertical locations of their variations owing to the different canopy heights.
For the streamwise and vertical components, the contributions from Q3 and Q4 events are
larger than those from Q1 and Q2 events, respectively. In other words, the events with
u′

i < 0 contribute more to WTKE than those with u′
i > 0. For the streamwise component,

this is because u′
1 < 0 means that the stem has a larger velocity relative to the streamwise

flow such that the drag force is higher. For the vertical component, this is because sweep
events (where u′

2 < 0) are stronger than ejection events (where u′
2 > 0) in the mixing

layer (Ghisalberti & Nepf 2006). For the spanwise component, the contributions from
Q1 and Q2 events are the same as those from Q4 and Q3 events, respectively, which

947 A33-39

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

65
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.655


S. He, H. Liu and L. Shen

0
0

0.4

0.8

1.2

y/h

5–5 0
0

0.4

0.8

1.2

5–5 0
0

0.4

0.8

1.2

5–5 0
0

0.4

0.8

1.2

5–5

0
0

0.4

0.8

1.2

y/h

5–5 0
0

0.4

0.8

1.2

5–5 0
0

0.4

0.8

1.2

5–5 0
0

0.4

0.8

1.2

5–5

0
0

0.4

0.8

1.2

y/h

5–5 0
0

0.4

0.8

1.2

5–5 0
0

0.4

0.8

1.2

5–5 0
0

0.4

0.8

1.2

5–5

(a) (b) (c) (d)

(e) ( f ) (g) (h)

(i) ( j) (k) (l)

Figure 28. Vertical profiles of the waving term for the different velocity components of (a–d) MKE,
(e–h) DKE and (i–l) TKE. All the terms are normalized by u∗3/h. The lines are as follows: black
dashed line, the streamwise component; black dashed dotted line, the vertical component; black dashed
double-dotted line, the spanwise component; and black solid line, the sum of all the components. The cases are
(a,e,i) Ca = 0, (b, f,j) Ca = 5, (c,g,k) Ca = 30 and (d,h,l) Ca = 80.

is due to the symmetry in the spanwise direction. The spanwise component is negative
because the stems do not deform in the spanwise direction (§ 2.5); hence, the stem drag and
spanwise flow velocity component act in opposite directions. As the spanwise component
has smaller values than the other two components, it is not analysed in the remainder of
this section.

We further examine the contributions of different conditionally averaged events to the
streamwise and vertical components of the TKE waving term WTKE in the flexible canopy
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Figure 29. Contributions to f ′
i u′

i/(u
∗3/h) (i = 1, 2 or 3; no summation notation) from its quadrant events: red

small dashed line, Q1 events ( f ′
i > 0, u′

i > 0); green dashed dotted line, Q2 events (f ′
i < 0, u′

i > 0); cyan
long dashed line, Q3 events (f ′

i < 0, u′
i < 0); blue dashed double-dotted line, Q4 events (f ′

i < 0, u′
i > 0);

and black solid line, the sum of all the events. The components are (a–c) the streamwise component
(i = 1), (d–f ) the vertical component (i = 2), and (g–i) the spanwise component (i = 3). The cases are
(a,d,g) Ca = 5, (b,e,h) Ca = 30 and (c, f,i) Ca = 80.

cases. Figure 30 shows the contours of the conditionally averaged streamwise component
of the waving term, 〈W1〉c, in the x–y plane cutting through the centre of the stem row.
We discuss the different Ca cases together because they have similar results, although the
vertical locations of the variations are different owing to differences in the deformation of
the canopy. For large forward speed and large deformation events, 〈W1〉c over the canopy
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Figure 30. Contours of the conditionally averaged normalized streamwise component of the TKE waving
term, 〈W1〉c/(u∗3/h), in the x–y plane cutting through the centre of the stem row. The conditionally averaged
events are (a–c) small deformation events, (d–f ) large forward speed events, (g–i) large deformation events and
(j–l) large backward speed events. The cases are (a,d,g,j) Ca = 5, (b,e,h,k) Ca = 30 and (c, f,i,l) Ca = 80. The
red lines represent the conditionally averaged shapes of the stems.

is positive because f ′
1 > 0 and u′

1 > 0, as explained in § 3.4. Therefore, in these situations,
the positive values of 〈W1〉c are Q1 events of the f ′

1–u′
1 correlation. For small deformation

events, at the centre of the domain, the values are positive around the stem tips and negative
in the upper canopy. As shown in figures 15 and 16, this is because u′

1 < 0 at both locations
as a result of the ejection events of the turbulence, and f ′

1 is negative and positive at the
stem tips and upper stems, respectively, as explained in § 3.4. Therefore, the positive and
negative values are Q3 and Q4 events, respectively, of the f ′

1–u′
1 correlation. This result

indicates a wall-normal TKE transport mechanism by stem waving. For large backward
speed events, the positive 〈W1〉c values near the stem tips are due to the Q3 events of the
f ′
1–u′

1 correlation, i.e. f ′
1 < 0 and u′

1 < 0.
Figure 31 is similar to figure 30 except that it shows the vertical component of the waving

term, 〈W2〉c. Similar to the discussion in figure 30, we discuss all the cases together owing
to the similarity of the results. For large forward speed and large deformation events, the
positive and negative values near the canopy top are Q3 and Q4 events, respectively,
of the f ′

2–u′
2 correlation because they correspond to sweep events of the turbulent flow

where u′
2 < 0 (figure 15d, f ). For small deformation and large backward speed events, the

positive and negative values in the upper canopy are Q1 and Q2 events, respectively, of the
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Figure 31. Contours of the conditionally averaged normalized vertical component of the waving term,
〈W2〉c/(u∗3/h), in the x–y plane cutting through the centre of the stem row. The conditionally averaged events
are (a–c) small deformation events, (d–f ) large forward speed events, (g–i) large deformation events and
(j–l) large backward speed events. The cases are (a,d,g,j) Ca = 5, (b,e,h,k) Ca = 30 and (c, f,i,l) Ca = 80.
The red lines represent the conditionally averaged shapes of the stems.

f ′
2–u′

2 correlation, as they correspond to ejection events of the turbulent flow where u′
2 > 0

(figure 15b,h). Explanations for the sign of f ′
2 are given in § 3.4.

Similar to other terms, spectral analysis on the waving term can also be performed to
understand the effects of the waving term on energy transport among different vertical
locations and scales. The streamwise spectra of the TKE waving term, EW , are plotted
in figure 32. For the rigid canopy case, EW is a sink at low wavenumbers (kxh < 10)
and a source at high wavenumbers (kxh > 10). The sink and source effects are strong
in the upper canopy and achieve maximal values near the monami scale km and the wake
scale kw, respectively. These phenomena indicate that EW plays a considerable role in the
interscale transport of energy in the rigid canopy case. Note that in the rigid canopy case,
the integration of EW over the wavenumber is zero, such that the waving term does not have
net effect on the TKE, which is consistent to Wtotal(z) = 0. The flexible canopy cases show
similar phenomena to the rigid canopy case at relatively high wavenumbers (kxh > 10). At
relatively low wavenumbers (kxh < 10), EW transports energy upwards inside the canopy.
Therefore, in flexible canopies, EW has the combined effects of interscale transport and
wall-normal transport. For the interscale transport effect of EW , in all cases, the energy flux
is from the monami scale to the wake scale, which is consistent with the spectral shortcut
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Figure 32. The 1-D streamwise spectra of the waving term EW for
(a) Ca = 0, (b) Ca = 5, (c) Ca = 30, (d) Ca = 80. The term is normalized by u∗3/h3. Here km and kw are

denoted by arrows on the horizontal axis.

mechanism. Therefore, we conclude that the spectral shortcut mechanism is exerted by the
waving term associated with the correlation between the drag and velocity fluctuations.

4.7. Vertical profiles of TKE and DKE at the monami and wake scales
The monami and wake scales are the two characteristic scales in our canopy flow cases.
We perform a comparison of the TKE and DKE budgets at these two scales, and the results
are plotted in figures 33 and 34.

Figure 33 shows the vertical profiles of the TKE budget terms at the monami and wake
scales. At the monami scale (figure 33a–d), the globally dominant source and sink are
the shear production and interscale transport terms, respectively, and the wall-normal
turbulent transport term plays a major role in the transport of TKE in the vertical direction.
In contrast, the waving term acts as a sink inside the canopy for the rigid canopy and as
a transport term for the flexible canopies. In the flexible canopy cases, the signs of the
waving and wall-normal turbulent transport terms are opposite to each other and swap
at the canopy top. Therefore, the canopy top is the characteristic height that divides the
two different patterns of energy transport. Inside the canopy, the shear production and
wall-normal turbulent transport terms act as TKE sources at the monami scale, while the
interscale transport and waving terms are sinks. Above the canopy, the sources are the
shear production and waving terms near the canopy top, and the sinks are the interscale
transport and wall-normal turbulent transport terms. Note that besides the terms discussed
above, the SGS term ESGS introduced by the SGS stress in LES is also included in
figure 33,

ESGS = Re

[
2
ρ

〈
F∗(

∂τ ′
sgs,ik

∂xk
)F(u′

i)

〉
z

]
, (4.23)

where τsgs,ik is the SGS stress in (2.1b). In our simulation, the SGS term is small at the
monami scale. At the wake scale, the SGS term is a significant dissipation term, having a
similar shape to the viscous dissipation term. A summary of the TKE flow at the monami
scale for the rigid and flexible canopies is given in figures 35(a) and 35(c), respectively.

Likewise, the TKE budget terms at the wake scale are plotted in figure 33(e–h). The
amplitudes of the TKE budget terms are approximately one-tenth of those at the monami
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Figure 33. Vertical profiles of the TKE budget terms at (a–d) the monami scale (kxh ∼ 0.6) and (e–h) the
wake scale (kxh = 4π). All the terms are normalized by u∗3/h3. The lines are as follows: black solid line,
the production term EP; blue solid line, the wall-normal turbulent transport term ENTT ; blue dashed line, the
wall-normal pressure transport term ENPT ; blue dashed–dotted line, the wall-normal viscous transport term
ENVT ; red solid line, the interscale transport term EIST ; black dashed line, the viscous dissipation term EDIS;
black dashed–dotted line, the SGS term ESGS; and green solid line, the waving term EW . The cases are (a,e)
Ca = 0, (b, f ) Ca = 5, (c,g) Ca = 30 and (d,h) Ca = 80.

scale (figure 33a–d). The waving term as a source term is as significant as the shear
production term, the dominant sink is the viscous dissipation term, and the interscale
transport is a sink inside the canopy and a source above the canopy.

The DKE budget can be calculated through the difference between the budgets of the
following two TKE definitions:

eTKE,1(x, y, z, t) = 1
2

(ui − ūi) (ui − ūi) , (4.24a)

eTKE,2(x, y, z, t) = 1
2

(ui − 〈ūi〉) (ui − 〈ūi〉) , (4.24b)

eDKE,p(x, y, z) = eTKE,2(x, y, z, t) − eTKE,1(x, y, z, t) = 1
2

(ūi − 〈ūi〉) (ūi − 〈ūi〉) ,

(4.24c)

where eTKE,1 and eDKE,p are equivalent to eTKE and eDKE, respectively, without temporal
and spatial averaging. Note that because DKE is time-independent by definition and that
the time-averaged flow has only the wake scale and its integer multipliers, the spectral
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Figure 34. Vertical profiles of the DKE budget terms at the wake scale (kxh = 4π) for (a) Ca = 0, (b) Ca = 5,
(c) Ca = 30, (d) Ca = 80. All the terms are normalized by u∗3/h3. The lines are as follows: black solid line,
the production term EP; blue solid line, the wall-normal turbulent transport term ENTT ; blue dashed line, the
wall-normal pressure transport term ENPT ; blue dashed–dotted line, the wall-normal viscous transport term
ENVT ; red solid line, the interscale transport term EIST ; black dashed line, the viscous dissipation term EDIS;
and green solid line, the waving term EW . Note that the range of the horizontal axis differs between the case of
Ca = 0 and the other cases.
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Figure 35. Schematics of the (a,c) TKE flow at the monami scale and (b,d) DKE flow at the wake scale
for (a,b) rigid and (c,d) flexible canopy cases. The terms are as follows: EP, the production term; EDIS, the
dissipation term, including both the resolved and SGS parts; EW , green, the waving term; ENPT , blue, the
wall-normal pressure transport term; ENTT , blue, the wall-normal turbulent transport term; and EIST , red,
the interscale transport term. The horizontal green dashed line indicates the canopy top. The arrows pointing
into and away from the boxes indicate sources and sinks of energy, respectively.

budget of DKE has only these scales. Next, we calculate the DKE budget by subtracting
the spectral budget of eTKE,1 from that of eTKE,2, both of which are calculated following
the algorithm in § 4.2. Therefore, the DKE budget has the same terms as the spectral TKE
budget, as described in § 4.2.

Figure 34 shows the vertical profiles of the DKE budget terms at the wake scale. Note
that harmonics similar to those that occur in the TKE spectra described in § 4.3 are also
observed at the integer multipliers of the wake scale and are not plotted here. Although
eDKE is much smaller than eTKE, as shown in figure 17, the DKE is concentrated on the
wake scale and its harmonics such that its budget terms on the wake scale (figure 34)
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are more pronounced than the TKE budget terms (figure 33). For the shear production
term, in the flexible canopy cases, there is a local maximum at the canopy top and another
local maximum near the channel bottom wall. This phenomenon is similar to the spectra
of EP for TKE at the wake scale discussed in § 4.3 and can also be explained by the
vertical variation of shear. Additionally, this term is negative between the two maxima.
A negative production region was also observed by Wang et al. (2020) in their study of
air turbulence over a slow water wave. Note that the TKE budget in Wang et al. (2020)
corresponds to the sum of the TKE and DKE budgets in our case, and our analyses
of the TKE and DKE budgets show that the negative value is associated with the DKE
budget. The wall-normal pressure transport term is the predominant term among the three
wall-normal transport terms. For the rigid canopy case, the wall-normal pressure transport
term is mainly responsible for transporting energy downwards within the canopy; for the
flexible canopy cases, this term transports DKE to the upper canopy from the lower canopy
as well as from above the canopy. As the canopy flexibility increases, the wall-normal
turbulent transport term becomes significant inside the canopy. The interscale transport
term is negative inside the canopy and transports the DKE to its harmonics. The waving
term is a DKE source and is more prominent than the shear production term. It is balanced
mainly by the wall-normal pressure transport term in the lower canopy, the interscale
transport term in the upper canopy and the wall-normal turbulent transport and dissipation
terms over the canopy. Summaries of the DKE fluxes at the wake scale for the rigid and
flexible canopy cases are demonstrated in figures 35(b) and 35(d), respectively.

To summarize, the vertical profiles and budgets of TKE and DKE are analysed in § 4.
We find that some flow features, such as the DKE profiles, are similar between the cases
of Ca = 0 and Ca = 80. This can be understood from the fact that the stem fluctuation
amplitude decreases as the stem flexibility increases, such that the highly flexible stems
behave like rigid stems. We call this phenomenon ‘high flexibility-induced rigidity’.
From the profiles of the TKE budget terms, we show that the wake production is more
pronounced than the shear production inside the canopy, and the waving term can be more
than one-half of the shear production term in flexible canopy cases. Then, for the first
time, the spectral TKE budget for turbulent canopy flows is analysed. The monami scale
associated with the coherent structures in the mixing layer and the wake scale associated
with the interval between adjacent stems are two dominant scales in the canopy flow. For
the flexible canopy cases, the shear production term at the wake scale is high near the
bottom owing to the strong shear there. The interscale transport term redistributes the
energy at the wake and monami scales to smaller scales following the energy cascade
process, which is different from the spectral shortcut mechanism. The analysis on the
waving term shows that it behaves like an interscale transport term in the rigid canopy
case, and has the functions of both the interscale transport and wall-normal transport in
the flexible canopy cases. The energy interscale flux corresponds to the spectral shortcut,
which indicates that the waving term is responsible for the spectral shortcut mechanism.

5. Conclusions

In this study, we simulate turbulent canopy flows with the canopy exhibiting various
degrees of flexibility and investigate the flow features and the correlations between the flow
and canopy dynamics. Different from the traditional approach that models the canopy as a
continuous medium with a homogeneous drag coefficient, in this study the hydrodynamic
effect of the canopy is modelled by an IB method in which individual stems within the
canopy are resolved. By using this approach, a priori drag coefficient models are not
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needed, and the complex kinematics of the canopy, such as the waving motion of the stems
and the phenomenon known as ‘monami’, are resolved. The flow is simulated by LES,
and the turbulent flow motions and motions of the canopy stems are dynamically coupled
with two-way interactions. The Cauchy number Ca, which denotes the ratio between the
hydrodynamic force on the stem and the stem restoring force, is varied from 0 to 80,
which covers a broad range of stem flexibilities from rigid stems to oscillatory stems to
stems yielding to the flow.

The features and underlying mechanisms of the flows and canopies are studied.
Consistent with the conclusions of previous experimental studies, our simulations reveal
correlations between the turbulence structures in the mixing layer at the canopy top and
the wave phase of monami. We find that the stem fluctuation amplitude decreases as Ca
increases because highly flexible stems yield more to the incoming flow; we call this
phenomenon ‘high flexibility-induced rigidity’ and use it to explain the similarities of
some flow features between the cases of Ca = 0 and Ca = 80, such as the similarity
among the DKE profiles. By extracting the dispersion relation of monami in the flexible
canopy cases from the frequency–wavenumber spectrum of the canopy envelope, we find
that the monami wave speed c is in the neighbourhood of 2u∗. Therefore, some features
of the flow over the canopy, such as the cat’s eye structure of streamlines and the critical
layer near the canopy top in the monami-following frame, are similar to those in the wind
over a slow water wave. To understand the flow features correlated with the monami wave
phase, we define four categories of conditionally averaged events according to the stem
kinematics (figure 11) and perform conditional averaging on the flow velocity and drag
force. We discover that the forward and backward strokes of stems correspond to sweep
and ejection events, respectively. A summary of the flow pattern in the monami-following
frame is provided in figure 14.

Furthermore, analyses are performed on the TKE budget. In addition to the terms
describing pure channel flows, three new terms are introduced to the TKE budget equation
owing to the canopy: the wake production term and dispersive transport term are related
to the spatial inhomogeneity, while the waving term is related to the correlation between
the hydrodynamic drag and the stem waving motion. The shear production term is the
dominant energy source, but the wake production term is more pronounced inside the
canopy. The turbulent transport term is the strongest among all four transport terms and
plays an important role in balancing the high energy production above the canopy with
the high dissipation inside the canopy. While the role of the waving term was not clarified
in previous studies, our study shows that the waving term is a major TKE source term
and that its amplitude can be as large as one-half of that of the shear production term in
flexible canopy cases. In addition to quantifying TKE, we also quantify DKE and report
that the amplitude of DKE is approximately 10 % of that of TKE, which is consistent with
the findings of previous experimental studies.

In addition, for the first time, this study conducts spectral TKE budget analyses for
turbulent canopy flows. Two streamwise scales are identified, namely, the wake scale
associated with the interval between adjacent stems and the monami scale associated
with the coherent structures in the mixing layer. At the wake scale, compared with the
rigid canopy case, the flexible canopy cases have an additional region characterized by
prominent shear production near the bottom, which is due to the strong shear at the
bottom in the flexible canopy cases. The wall-normal pressure transport term has a
larger amplitude than the wall-normal viscous transport term, which contrasts the case
of wind over a slow water wave studied by Wang et al. (2020). This discrepancy is
due to the different relative amplitudes of the pressure drag and viscous drag terms.
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Figure 36. Schematics of the energy flow among MKE, DKE and TKE and the role of the waving term.

Over the canopy, the intercomponent transport term necessarily transports TKE from
the streamwise component to the other two components, while at scales larger than the
wake scale, TKE flows from the spanwise component to the vertical component. Inside
the canopy, there is a weak TKE flow from the vertical component to the other two
components. Additionally, the interscale transport term extracts the TKE at the wake and
monami scales and redistributes it to smaller scales following a normal energy cascade.
Therefore, the interscale transport term is unlikely to be responsible for the spectral
shortcut mechanism. Moreover, a triadic analysis indicates that no inverse energy cascade
occurs in our simulation cases.

This study is able to quantify the dynamic role of the energetic waving terms by
leveraging the present stem-resolving computational approach. The waving terms transfer
MKE to DKE and TKE. A summary of the energy flow among MKE, DKE and TKE and
the roles of the corresponding waving terms is illustrated in figure 36. The streamwise
component is the primary contributor to the waving term. In addition, the vertical
component contributes to the DKE waving term near the canopy top in the case of Ca = 5.
The waving term displays the effect of an interscale transport term in the rigid canopy
case and the combined effects of the interscale transport term and wall-normal transport
term in the flexible canopy cases. The waving term transports energy from the monami
scale to the wake scale, indicating that this term is responsible for the spectral shortcut
mechanism. Accordingly, quadrant analyses are conducted on the correlation between
the drag and velocity fluctuations to understand the contributions of various monami
wave phases to the waving term. For the correlation in the streamwise direction, f ′

1u′
1,

large deformation and large forward speed events exhibit positive contributions owing to
Q1 events, while large backward speed events yield positive contributions owing to Q3
events, and small deformation events provide positive contributions near the stem tips
and negative contributions in the upper canopy owing to Q3 and Q4 events, respectively.
For the correlation in the vertical direction, f ′

2u′
2, large deformation and large forward

speed events have positive and negative contributions near the canopy top owing to Q3
and Q4 events, respectively, whereas small deformation and large backward speed events
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exhibit positive and negative contributions in the upper canopy owing to Q1 and Q2 events,
respectively. We also calculate the DKE budget at the wake scale. Summaries of the TKE
flow at the monami scale and the DKE flow at the wake scale are shown in figure 35.

By resolving the dynamics of individual stems with an IB method, the present work
investigates the dynamics of flows and canopies with various stem flexibilities. The
similarities of the flow features between rigid and highly flexible canopies are discovered
and attributed to the small fluctuation of the stems yielding to the flow, a phenomenon
named as ‘high flexibility-induced rigidity’. Our analysis of the spectral TKE budget
reveals the significant role of the waving term in the spectral shortcut mechanism.

As a next step of research, multiphysics processes, including but not limited to heat
transfer, scalar transport and particle transport, can be introduced to the simulation.
Also, our simulations may provide useful information for developing parameterization
models for large-scale canopy flow simulations where the canopy is not resolvable.
Our present numerical algorithm can be further improved. For example, a lubrication
model may be introduced to resolve the approaching process of adjacent stems more
precisely. For cases with high Reynolds number and low grid resolution, a wall model
can be applied with the diffused IB method (e.g. Ma, Huang & Xu 2019). Note that
the present results are valid only for small spanwise sizes and should not be treated
as general validity. Given higher computational capacity, the spanwise domain size can
be expanded to investigate the spanwise properties of the flow (e.g. Bailey & Stoll
2016; Monti et al. 2020), which are not discussed in the present work. Also, a more
sophisticated beam model or a shell model can replace the present beam model to
resolve the spanwise motion of the stems. We would like to urge experiment–simulation
collaborative research in the near future for two reasons. First, such research can provide
canopy flow benchmark data for the validation of numerical tools, given that there are
very few validation cases at present. Second, the simulation can be used to investigate the
flow details within the canopy, which are challenging to measure in experimental studies.
For example, the present simulation provides results including the harmonics inside the
canopy, the conditional-averaged streamwise velocity inside the canopy (figure 12), and the
monami-scale coherent structures (figures 13 and 14). More research about the flow within
the canopy can be beneficial. While these studies are beyond the scope of the present paper,
they should be conducted in the future.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2022.655.
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