
160

Theorems in the Products of Belated Quantities.

By F. H. JACKSON, M.A.

§ 1. Let (x)n denote the function

(x - n + 1 )(x - n + 2) • • • • (x - n + K)

« = . (x+l)(x+2) ••• (X + K)

then

(x + r)n (x + r-l),

r 10 r - 1 l l \r--2 12

In Gamma Functions the above may be written.

T(x) T(x-l) T(x-2)
T(x-n) r 1Y(x-n-l) + r2T(x-n-2)

By using the theorem (1)1 shall obtain a purely algebraical proof
of the well-known theorem

F (a B v̂  n ( Y - l ) . n ( y - a - ) 8 - l )

where II denotes Gauss's II Function and F^o, /?, y) denotes
the Hypergeometric Series in which the element xx=l.

It can be deduced from (1) that

( ^ ^ £ £ w i t h - < 3 >

r is not necessarily an integer in (3) and (1).*

* See § 7.
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§ 2. A fundamental property of the function (x)n is

(x)a x (x - n)m = (x)H+m

whence we get («)»_» x (x - n + r), x (x + r - s),._, = (x- 4- r - s),,

Now the (s + 1)" term on the left side of (1) = ( - 1)"'

which may be written

N. (a-'),- r(x-n + r). (x + r - s\_

r-s \ s

" 1)'

Since (x + r~s)r_, —when r and s are both integers—mayjje
written in the form

(x + l)(x + 2)(x + 8)- • •(* + r - «) = ( - l ) ' - ( - * - l)r_,

the (.+ I f term = ( - l ^ ^ T

The expression on the left side of (1) may be written

<xY ( \r

r - 1 1

By Vandermonde's theorem* the expression with the large bracket

= ( - x - 1 + ./• - n + r),. = (r - n - 1),.

Expression (4) becomes

which proves theorem (1).

* See §7.
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Replacing ( )„ by Gamma Functions, the theorem (1), after mul-
tiplication throughout by | r becomes

r T(i+rn) ' - w -

substitute y for x + r+1, then (">) becomes

l) T ( y - 2 )
_

Y(y-n) ' ^

Remembering that Y(y) = (y - ] )r(y - 1) on division throughout
•p / \

by „, . we have
Y{y - n)

1 C i ^ T r + A A + (n)

this may be written

(;c - w), r • r - 1 (.<; - w), _ r • r - 1 r - 2 (.<-• - 7t) (n)r

(*)i 2 1 (.-e)a 3 ! (*), + - (x)r
 W

analogous to the Binomial Expansion

(x -H) r r - 1 (x — n)" (n)r

~V'~(xY+~2~l {xf =(Sj-'
The Expansion (o) has been obtained on the supposition that r is
a positive integer; but it will be shown later to hold for negative
and fractional values of r.
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§ 4. To consider the expansion in general of f(x + y) in the
form Po + Pjte), + P2(a;)2 +••••+ Yr{x), + ••••
where P 0 -P jP , - - - - are functions of y only or constants. Assume
that j\x + y) is capable of being expanded in a convergent series
of the above form then

fix + y) = P o + P . f c ) , + P , ( z ) 2 + • • • • + P,(.«)r + • • • •

By giving x the values 0 - 1 - 2 - 3 - in succession we obta in the

following equat ions to de te rmine Yo• P , • P2-•• •

Ay) = P U

From which we obtain

« Av)
o |o

1 1 0 O i l

),fil/ + r-2) 1U /(y)
+ | r - 2 | 2 - • • • • + ( - ' ) | 0 | r

which is that

7v(-,)^W (7)

subject to the convergence of the series.
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§ 5. The expansion of (x + y)n, n being unrestricted.
The coefficient of xr will be

' — ! „ ) n ! „ i i i " * * i .\n 10 l ra -1 II l n - 2 12

(by Theorem (1)).

y

n-n- 1-- x-r +

This is the generalised form of Vandermonde's Theorem ; the proof
depends, as will be seen on reference to § 2, No. 4, on Vander-
monde's Theorem for positive integral values of the suffix.

To expand a1 in a series of form (7)

wehave | r 10 \r- 1 1 v ' 0 | r | r

.-. o ' - 1 + (a - !)(*)! + (<t ~1)~ ^ ^

this is a well known particular case of the Binomial Expansion.

1
To expand

x + a

1wehave P,. = - L { — c, —T+rCt o
\r la + r a + r-1 r 2 a + r - 2

1 \r

\r (a + r)(a + r-

+1 + l + 2a; + a a a - a + 1 a a + l a + 2 a- a+ l - - a + r

This is a special case of Vandermonde's Theorem for negative
integral values of the suffix. The functions which can be expanded
in series of form (7) seem very restricted in number.
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§6. Writing
-I

{x + yjn = \'j/)n + n • {y/ti—iyV/i H ~~: j~~^ \f/)r.—
i ^ I.

«*n — 1"-*TO — r + 1 ,

divide both sides by (y)n .

Then ( a + y ) " ^ l | w • ( y ) " - ' ^ |
() ()

Now it is easily seen that ^ - ' =
(?/)» y — « + 1

(y)n (y-n + i),.

a n d ( ^ n ^ l , % - ; > w h e r e n denotes Gauss's
(y)n U{x + y-n) IL(x)

II Function. Therefore

(a;).
| w- n) Il(a;) (;</ - n + 1 )j

n - n - 1 (x)2 n-n-r+1 (x)r

1 +'"+ 77\

Replacing n by - a, x by - /3, and y — n + 1 by y we have

a + 1 • )8-)3+
1 - 2 - y y + l

n(y-a-j8-l)-n(y-l) a • j8 a - a + 1 • )8-)3+1
l) 1

§ 7. If in § 2, result (4), we had assumed the truth of Vander-
monde's Theorem for unrestricted values of the suffix, Theorems (1),
(2), and (3) would have been proved for all values of r. Since we
have proved Vandermonde's Theorem for unrestricted values of the
suffix, the proofs of §§ 2 and 3 may be repeated with r unrestricted.
The use of ( - l)r in § 2 can easily be avoided. When r is un-
restricted, (r)r must be used instead of | r .
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