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1. Introduction. The unit tangent vector at a point of a curve in a 
hypersurface of a Riemannian space has two derived vectors along the curve, 
one with respect to the Riemannian space in which the hypersurface is imbedded 
and one with respect to the hypersurface itself. When the former vector is 
decomposed along the directions normal and tangent to the hypersurface, its 
tangential component, which is called the first curvature vector of the curve 
at the point in the hypersurface, is exactly the latter vector. In this respect, 
the first curvature at a point of a curve in a hypersurface, that is, the magnitude 
of the first curvature vector, is related to the unit normal vector of the hyper­
surface at the point. Since the normal direction to the hypersurface used in the 
above decomposition can be replaced by a general direction orthogonal to the 
curve, it is obvious that the concept of the first curvature of a curve in a hyper­
surface can be generalized. This note deals with such generalization and its 
consequences. 

The notation of Eisenhart (2) will be used for the most part except that 
Tl

j1c will be employed for Christoffel Symbols of the second kind. 

2. Definition. Let Vn be a Riemannian space with positive definite first 
fundamental form gijdxidxj (iyj = 1, . . . , n) imbedded in a Riemannian 
space Vn+i with positive definite first fundamental form aap dya dy& (a, /3 = 1,..., 
n + 1). Let C: xl = xl{s) be a curve in Vn, where 5 is its arc length. If qa and pi 

represent the derived vectors of the unit tangent vector t of C with respect to 
Vn+i and Vn respectively, we have 

(2.1) ^ = ̂ ^+(^|-fs^" 
where £a are the contravariant components of the unit vector normal to Vn 

and where Q^ the second fundamental quadratic tensor for Vn(2} p. 151). 
Let X be unit vectors in Vn+i, which are not in Vn except possibly in its asymp­

totic directions and whose contravariant components A" at a point P in Vn 

are analytic functions of xi and dxi at P. The totality of these vectors X associated 
with Vn is called a \-congruence, which is a congruence of unit vectors if Xa 

are functions of xl only, or a congruence of hypercones of unit vectors if Xa 

are functions of both xl and dxi
J in which case we assume that X is in Vn if and 
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only if X and its corresponding dxl at xl are coincident with an asymptotic 
direction in Vn. Each point of Vn is associated with one unit vector or one 
hypercone of unit vectors of the X-congruence. We always assume such associa­
tion between the X-congruence and Vn in the following discussion. Expressing X 
as a linear combination of independent vectors in Vn+h we may write 

(2.2) Xa = ya
liw

i + w£a 

where wl are the components of a contravariant vector in Vn and where w is a 
scalar. The case w = 0 which corresponds to X in an asymptotic direction of 
Vn will be discussed at an appropriate place. Unless explicitly indicated w is 
always assumed to be different from zero. Since aa$ Xa \$ = 1, we have 

(2.3) gtj-wtw* + (w)2 = 1. 

Let Na be a unit vector at a point P of the curve C in Vn, which satisfies the 
conditions: (1) it is linearly dependent on X and the unit tangent vector t at 
P of C, (2) it is orthogonal to /. Hence aap N<* W = 1 and a^ Na P = 0. With 
the help of (2.3) and the fact that the contravariant components of t in Vn+\ 
are ya,idxi/ds1 we have 

fo A\ AT* - a- J*'* I -ghkWl(dxk/ds){dx yds) +w*\ + wJja 

{ } ~ * {1-gtj gM wl w\dxj/ds) (dxk/ds)} * 

The plus sign in (2.4) is to be taken when w > 0, the minus sign when w < 0. 
Thus (2.4) will reduce to Na = £a as is expected, when X is linearly dependent 
on t and £a; that is, wi = kdx*/ds, k being any constant different from unity. 
Elimination of £a from (2.1) and (2.4) gives 

(2.5) q" = y',t (p* -KnP
t+ Kn ghk P" ^ g ) 

where i£w is the normal curvature of C and where pi — wi/w. Thus, when qa is 
decomposed along Na and a direction in Fn, we have from (2.5) the tangential 
component, Kg/i*, defined by 

(2.6) Kg M* = Pl -KnP<+ Kn ghk P
h ^ g 

where \xl is the unit first curvature vector of C in Vn at P. We call KgH1 the first 
curvature vector of C in Fw at P relative to the X-congruence and Kg the first 
curvature of C in Vn at P relative to the X-congruence. For convenience, they 
may be called the relative first curvature vector and the relative first curvature 
of the curve C at P respectively. 

When w = 0, we have wi = dxl/ds coincident with an asymptotic direction 
of Vn. Equations (2.4) and consequently equations (2.6) are then undefined. 
In this case, equations (2.1) reduce to qa — ya

Jip
i
1 which yield immediately 

(2.7) Kçn'^P*. 

w\ 
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Since equations (2.7) are derivable from (2.6) when / is asymptotic and w 9e 0, 
we see that any result obtained from (2.6) for an asymptotic / with w ^ 0 
holds true for an asymptotic t with w = 0. With this understanding we may say 
that equations (2.6) do give us a complete knowledge of the relative first cur­
vature vector and the relative first curvature of the curve C in a hypersurface. 

A simple calculation shows that the relative first curvature of C at P is 
given by 
(2.8) Kg = Kg + Kd 

where Kg is the first curvature of C in Vn and where Kd is defined by 

(2.9) Kd = 0 or Kd = - Kn Pj „' \Pj = gij p*) 

according as w = 0 or w ^ 0. When C is a geodesic in Vn, we have Kg — 0. 
Consequently, Kg = Kd, which is then the relative first curvature of a geodesic 
in Vn. Hence we have 

THEOREM 2.1. The relative first curvature at a point P of a curve in Vn differs 
from its first curvature at P in Vn by the relative first curvature at P of the geodesic 
in Vn, which passes through P in the same direction as the curve. 

If / is asymptotic, we have Kg — Kg and Kg — K, where K is the first curva­
ture of C in Vn+i. Conversely, if K = Kg, then t is asymptotic and Kg = Kg. 
Hence we have 

THEOREM 2.2. The three curvatures at a point P of a curve in Vn in Vn+i — 
the relative first curvature, the first curvature in Vni and the first curvature in Vn+i — 
are identical if and only if the direction of the curve at P is an asymptotic direction 
0fVn. 

From the definition of Kd in equations (2.9) it is seen that Kd vanishes if 
and only if: (1) t is asymptotic and w = 0, or (2) t is asymptotic and w ^ 0, 
or (3) / is not asymptotic and w1 = kt where k is any constant different from 
unity. Hence we have 

THEOREM 2.3. The relative first curvature of a geodesic in Vn is zero if and only if 
the geodesic is an asymptotic curve, or at each point P of the geodesic, every vector 
of the ^-congruence associated with P is linearly dependent on the unit vector normal 
to Vn at P and the unit tangent vector of the geodesic at P. 

3. Pseudogeodesics. A curve in Vn is called a pseudogeodesic in Vn re­
lative to a X-congruence or simply a pseudogeodesic in Vn, if the relative first cur­
vature at each point of the curve is zero. From (2.5) a curve in Vn in Vn+i is a 
pseudogeodesic in Vn if and only if the principal normal vector of the curve in 
Vn+i coincides with Na, which according to its definition is determined by the 
direction of the curve and the vector of the X-congruence. Since the oscu­
lating geodesic surface at a point of a curve in a space is the surface formed 
by the geodesies through the point in the pencil of directions determined by the 
tangent and the principal normal to the curve (2, p. 62), we have the following 
geometric property of a pseudogeodesic. 
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THEOREM 3.1. A necessary and sufficient condition that a curve in Vn in Vn+i 
be a pseudogeodesic in Vn is that the osculating geodesic surface at every point 
of the curve considered as a curve in Vn+i is tangent to the unit vector of the \-con-
gruence associated with the curve at the corresponding point. 

Since pl = d2xl/ds2 + Ti
jk(dxj/ds)(dxk/ds), we have from (2.6) that pseudo-

geodesies in a hypersurface with respect to the X-congruence are defined by 

,o n d2x* , L i , dxm dx'\ dxj dxk 

( s u ) ~d? + Vr ik " °*p + QjkPm Hi li) ~Js~ IF = °-
These equations are n differential equations of the second order. Their complete 
integral involves 2n arbitrary constants. These may be determined by initial 
values of xl and dxi/dsJ that is, values for 5 = 0, or by the initial values of x1, 

denoted by x% and other values of xl such that \x* — xio\ are less than some 
fixed quantity. Hence we have 

'THEOREM 3.2. Through each point and in any given direction in a hypersurface 
there passes a unique pseudogeodesic. 

THEOREM 3.3. Through two sufficiently near points in a hypersurface there 
passes one and only one pseudogeodesic. 

By Theorem 2.2 we have 

THEOREM 3.4. If an asymptotic curve of Vn is a geodesic in Vn+i, it is both a 
geodesic in Vn and a pseudogeodesic in Vn. If a geodesic in Vn is a geodesic in 
Vn+i, it is a pseudogeodesic in Vn. An asymptotic geodesic in Vn is always a pseudo­
geodesic in Vn. 

By Theorem 3.1, geodesies, union curves, and hypergeodesics on a surface in 
ordinary space appear as special pseudogeodesics (5) in V2 in Sd. Substitution 
into (2.8) and (3.1) for X the unit normal vectors to the surface, or the unit 
vectors along the specified congruence in the definition of union curves, or the 
unit vectors along generators of the osc-cones associated with a family of hyper­
geodesics gives respectively the geodesic curvature of a curve and the differential 
equations of geodesies, or the union curvature of a curve and the differential 
equations of union curves (4), or the hypergeodesic curvature of a curve and 
the differential equations of hypergeodesics (1). The definition of the relative 
first curvature of a curve has the characteristic of being independent of the differential 
equations of pseudogeodesics. 

4. Relative parallelism. Let C be an arbitrary curve in Vn with unit 
tangent vector dxi/ds. Let vi be contra variant components of a family of unit 
vectors v along C in Vn. We say that the vectors v are parallel along C relative 
to the X-congruence if and only if 

,A . v dvl . ('i ^ i . ^ dxm dxl\ * dxk
 rt 

Such parallelism of v along C is called a relative parallelism. When the X-con-
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i 

ds 

gruence becomes a congruence of unit normal vectors to Vn, a relative parallelism 
of v along C reduces to parallelism of v along C in the sense of Levi-Civita. 

Comparing equations (3.1) with equations (4.1), we see that the unit tangent 
vector to a pseudogeodesic suffers a relative parallel displacement along the 
pseudogeodesic. Hence we have 

THEOREM 4.1. Pseudogeodesics in Vn are relative auto-parallel curves in Vn. 

H v are not parallel along C relative to the X-congruence, we put 

(4-2) H + V * - °* ' + °* *• ~d7 -ds) V Is 
Then v* are obviously contravariant components of a vector. We call vi the 
relative associate curvature vector or the relative angular spread vector of v along C 
and its magnitude {gijVlvjY the relative associate curvature or the relative angular 
spread of v along C. 

Let Q be a neighboring point of P on C. Let As be the arc length of C from 
P to Q. Let a unit vector vl in Fn undergo a local displacement along C from P 
to <2 into a unit vector v±\l and undergo a relative parallel displacement along 
C from P to Q into a unit vector z l̂*. It is obvious that along C dxl/ds, its 
unit tangent vector, and any function of xi are functions of s. We assume all 
functions involved in the following discussion to be analytic along C in a certain 
common interval of s. Let gtj at Q be denoted by <7*y. Let <£z denote certain 
terms in (4.1) as follows 

$' = ( - v'Jk + a# P
j - a* Pm ^ fJ * j ax 

ds 

Then we can express z/i|*, ẑ l* and #^ as follows in Taylor's series: 

,t i dvx ,K \ s -i d vl
 /A x2 , 

Vl\ = t, + -^ (As) + I - ? (As) + • • • , 

(4.3) v2\' = v* + * ' (As) + \ - J - (As)2 + . . . , 

9« = a, + dff (A*) + i ^ (^)2 + • • • -
where all the coefficients are to be evaluated at P . 

Substituting (4.3) into (jijV^v^ = 1 and gijV2\iv2\
i = 1, we obtain 

*„..£ + *« .v-o. 

(4.4) 

j 2 
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Let Ad be the angle between vi\ * and v2\ *. Then we have 

(4.5) cos (A0) = 0„0i | '0 , | ' . 

By Taylor's theorem and equations (4.3), (4.4) we obtain 

cos (Ad) = 1 - | (A*)* +..., 
{ ' 0«,»i | '»«| '= l-%gilv

tv>{Asy+.... 

Substitution of (4.6) into (4.5) yields 

(4.7) {%)'-*>"'>'• 
Hence we have 

THEOREM 4.2. The relative associate curvature of a vector along a curve C 
at a point P is numerically the arc-rate of change of the angle between the two 
vectors displaced locally and relative parallelly from the vector at P along C. Such 
arc-rate of change of angle is zero along C if and only if the vector suffers relative 
parallel displacement along C. 

When vi = dxi/ds1 then equation (4.7) reduces to dd/ds = ± K9. Hence we 
have another interesting geometric interpretation of the relative first curvature. 

THEOREM 4.3. If the unit tangent vector at a point of a curve undergoes relative 
parallel displacement along the curve, the arc-rate of change of the angle between 
the vector and the curve is numerically the relative first curvature of the curve at the 
point. 

The content of Theorem 4.1 can be derived as a consequence of Theorem 
4.3 and reads as 

THEOREM 4.4. If the unit tangent vector at a point of a p s eudo geodesic undergoes 
relative parallel displacement along the p s eudo geodesic, the arc-rate of change of 
the angle between the vector and the pseudogeodesic is zero at the point. 

Let the coefficients in the second term of (4.1) be denoted by L1
 ûh, that is 

T * _ T>
 i o i _i_ o dx dx 

•L* J* ~ l Ik ~ ^J'fc P \ Mjk Pm -, j ~ • 

It is evident that if Ll
jk and Lh

pq are these coefficients in different coordinate 
systems x* and x* respectively, they satisfy the equations 

(A o\ ____̂ _ i ji dx dx _ j h dx 
^'*} Tx3dxq + L jk ~dxp d'x1 " L pq dx* 

exactly the same as the coefficients of connection except that the latter are 
functions of x's only (3, p. 3). Hence, if these coefficients L*^ are called the 
coefficients of relative connection, the concepts of relative parallelism and pseudo-
geodesies become respectively those of parallelism and paths defined in terms of 
the relative connection (3, pp. 13, 57). 
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