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Abstract

Background. While maternal at-risk drinking is associated with children’s emotional and
behavioral problems, there is a paucity of research that properly accounts for genetic con-
founding and gene–environment interplay. Therefore, it remains uncertain what mechanisms
underlie these associations. We assess the moderation of associations between maternal at-risk
drinking and childhood emotional and behavioral problems by common genetic variants
linked to environmental sensitivity (genotype-by-environment [G × E] interaction) while
accounting for shared genetic risk between mothers and offspring (GE correlation).
Methods. We use data from 109 727 children born to 90 873 mothers enrolled in the
Norwegian Mother, Father, and Child Cohort Study. Women self-reported alcohol consump-
tion and reported emotional and behavioral problems when children were 1.5/3/5 years old.
We included child polygenic scores (PGSs) for traits linked to environmental sensitivity as
moderators.
Results. Associations between maternal drinking and child emotional (β1 = 0.04 [95% confi-
dence interval (CI) 0.03–0.05]) and behavioral (β1 = 0.07 [0.06–0.08]) outcomes attenuated
after controlling for measured confounders and were almost zero when we accounted for
unmeasured confounding (emotional: β1 = 0.01 [0.00–0.02]; behavioral: β1 = 0.01 [0.00–
0.02]). We observed no moderation of these adjusted exposure effects by any of the PGS.
Conclusions. The lack of strong evidence for G × E interaction may indicate that the mech-
anism is not implicated in this kind of intergenerational association. It may also reflect insuf-
ficient power or the relatively benign nature of the exposure in this sample.

Introduction

Mental health problems often start in childhood, compromising children’s quality of life and
development to such an extent that they are among the leading causes of childhood disability
(Erskine et al., 2015; Kessler et al., 2007b). Early-onset mental health problems often persist
into adolescence and adulthood (Kessler et al., 2007a), with broad and far-reaching conse-
quences for individuals, their families, and society. About 13% of children have a psychiatric
disorder (Barican et al., 2022), e.g. emotional and behavioral problems and disorders
(Campbell, 1995; Collishaw, 2015; Weitzman et al., 2015). Given the prevalence and impact
of early-onset psychiatric problems, there is a need for reliable knowledge about risk factors
associated with children’s emotional and behavioral problems that can inform intervention
and prevention research.

Maternal at-risk drinking is a risk factor associated with child emotional and behavioral
problems (Hill et al., 2008; Hill, Tessner, & McDermott, 2011; Hussong, Huang, Curran,
Chassin, & Zucker, 2010; Kim & Sin, 2020; Marmorstein, Iacono, & McGue, 2009; Oro,
Goldsmith, & Lemery-Chalfant, 2021). However, as with many observational associations in
epidemiological research, it remains uncertain to what extent causal mechanisms underlie
these associations. Given the context of this association – typically between related individuals
living in the same household –, two potential routes of confounding could inflate or mask
exposure-based causal effects in observed associations. First, in genetic transmission of risk,
the same genetic factors influence liability to problem drinking in adults and behavior difficul-
ties in children. Within individuals old enough to experience alcohol problems, there is exten-
sive genetic overlap with other mental health problems, such as behavioral, like hyperactivity
and conduct difficulties (Karlsson Linnér et al., 2021; Kendler, Prescott, Myers, & Neale, 2003;
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Kessler, Crum, Warner, & Nelson, 1997), and emotional, like anx-
iety and depression (Colbert et al., 2021; Foo et al., 2018; Kushner
et al., 2012). Therefore, it is plausible that genetic material shared
intergenerationally might give rise to or inflate an observational
association between parent and child behaviors; indeed, this has
been demonstrated in numerous scenarios (McAdams et al.,
2014). Second, non-genetic familial vulnerabilities for behavioral
outcomes may also wholly or partly explain an association
between maternal problem drinking and offspring emotional or
behavioral problems. These include observable risks like financial
instability, certain physical health problems, or bereavement –
more broadly are defined as factors without a genetic basis that
increases the likelihood of both parental exposure and child out-
come, prompting the two to be associated independently of any
causal relationship between them.

Although both genetic and non-genetic familial factors may
confound estimates of associations between maternal at-risk
drinking and offspring outcomes, truly causal effects relying on
children being exposed to problem drinking (or its consequences)
and subsequently developing emotional or behavioral problems
may nonetheless exist. The causal mechanisms for this may
involve a range of maternal behaviors or aspects of family func-
tioning operating as mediators. For example, maternal problem
drinking may affect mothers’ ability to be sensitive and supportive
in interaction with their child(ren) (Renk et al., 2015; Straussner &
Fewell, 2018), which in turn increases the risk of emotional and
behavioral difficulties in offspring (Christoffersen & Soothill,
2003; Rossow, Lambert, Keating, & McCambridge, 2015). Fetal
programming represents an alternative mechanism (Lewis,
Austin, Knapp, Vaiano, & Galbally, 2015; Stevenson, Lillycrop,
& Silver, 2020); the assumption is that prenatal exposure to stres-
sors during pregnancy, such as alcohol use and mental health pro-
blems, causes physiological fetal reprogramming, which can
influence offspring health into adulthood. For instance, in-utero
exposure to maternal anxiety and depression has been associated
with an increased likelihood of behavior and emotional problems
in offspring during childhood and adolescence (Lewis, Lewis, &
Galbally, 2014). Further, women with poor mental health during
pregnancy likely have poorer health behaviors, including being
more likely to consume alcohol during pregnancy (Lewis et al.,
2015). Studies examining associations between maternal at-risk
drinking and offspring emotional and behavioral problems should
control for in-utero exposure to alcohol – but few do.

Much of the research on the environmental transmission of
risk is based on observational studies (Jennison, 2014;
Knudsen, Ystrom, Skogen, & Torgersen, 2015; Mahedy et al.,
2017), which are frequently confounded by genotype–environ-
ment (GE) correlations (Plomin, Defries, & Loehlin, 1977).
However, even studies using traditional behavior genetic
studies designs, such as family, adoption, twin, and
children-of-twin studies, produce somewhat inconsistent find-
ings about associations between parental at-risk drinking and
offspring behavior, and more so for emotional outcomes
(Bornovalova, Hicks, Iacono, & McGue, 2010; Kendler et al.,
2015; Lund et al., 2020; Oro et al., 2021; Waldron, Martin, &
Heath, 2009). These inconsistent findings may result from
genuine heterogeneity between study cohorts or measurement
issues. They are also likely compounded by the cost, in terms
of statistical power, of partitioning variance and covariance
for mental health problems into multiple environmental and
genetic components. This approach may reduce the precision
of exposure-based effect estimates and produce inconsistencies

by ignoring the potential for interactions between genes and the
environment (Rutter, 2010).

G × E can be explained as (1) an exposure (e.g. maternal drink-
ing) impacting an outcome (e.g. offspring emotional and behavior
problems) differently for individuals with different genotypes; or
(2) the impact of the genotype on the risk of the outcome varying
due to different environmental risk (Dick, 2011) exposures.
Genetic variants associated with traits that influence how people
respond to changes in their immediate environment are, by def-
inition, involved in producing G × E. For example, common gen-
etic variants explain approximately 10% of the inter-individual
variation in neuroticism (Nagel et al., 2018). Individuals with
high levels of neuroticism tend to ‘respond poorly to environmen-
tal stress, interpret ordinary situations as threatening and can
experience minor frustrations as hopelessly overwhelming’
(Widiger & Oltmanns, 2017). Accordingly, any genetic variants
that are causal for higher levels of neuroticism can also be consid-
ered biological amplifiers of the effects of environmental stressors.
In practical terms, since genome-wide polygenic scores (PGSs)
aggregate the cumulative effects on a given trait of common var-
iants across an individual’s genome, any PGS for a trait linked to
environmental sensitivity may be used to test for G × E (see exam-
ples using PGS for neuroticism [Lehto, Karlsson, Lundholm, &
Pedersen, 2019; Plomin, Gidziela, Malanchini, & von Stumm,
2022], attention-deficit hyperactivity disorder [ADHD] [Chen
et al., 2020; He & Li, 2022], post-traumatic stress disorder
[PTSD] [Lipsky et al., 2023], and others [Mullins et al., 2016;
Trotta et al., 2016]). G × E may inflate, mask, or partially attenuate
estimates of exposure–outcome associations, depending on their
magnitude and direction and the composition of the study sam-
ple. Moreover, interpreting results from PGS-by-environment
models is made challenging by the potential influence of several
distinct forms of bias (Pingault et al., 2022). Careful control for
dependencies between PGS and measured environments is
required – and in all cases, cautious interpretation is warranted
(Akimova, Breen, Brazel, & Mills, 2021).

Estimating exposure-based effects of maternal at-risk drinking
on offspring’s emotional and behavioral problems precisely and
without bias requires rigorous and thoughtful control for all GE
interplay and non-genetic confounding. In this study, we take
on the challenge of providing robust answers about the role of
maternal drinking on offspring’s emotional and behavioral devel-
opment by utilizing data from genotyped mother–offspring pairs
and mother–offspring–sibling trios. Specifically, we assess the
moderation of associations between maternal at-risk drinking
and childhood emotional and behavioral problems by common
genetic variants linked to environmental sensitivity (G × E)
while accounting for shared genetic risk between mothers and
their offspring (GE correlation) and potential confounding by
non-genetic familial factors and prenatal maternal drinking.

Methods

Sample

MoBa is a population-based pregnancy cohort study conducted
by the Norwegian Institute of Public Health (Magnus et al.,
2016). Participants were recruited from all over Norway from
1999 to 2008. The women consented to participation in 41% of
the pregnancies. The cohort now includes 114 500 children, 95
200 mothers, and 75 200 fathers. The analyses were based on ver-
sion 12 of the quality-assured data files released for research in
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January 2019. The Regional Committees for Medical and Health
Research Ethics provided ethical approval (REK; 2016/1702). We
also used data from the Medical Birth Registry of Norway
(MBRN), a national health registry containing information
about all births in Norway.

Genotyping and quality control

Blood samples were obtained from both parents during pregnancy
and mothers and children (umbilical cord) at birth (Paltiel et al.,
2014). Procedures for genotyping and subsequent quality control
of genotype data are described fully in Corfield et al. (2022). For
these analyses, after quality control, genotype data across 6 981
748 single-nucleotide polymorphisms (SNPs) were available for
76 465 children, 77 387 mothers, and 50 462 fathers.

Inclusion/exclusion criteria

We included individuals from MoBa with data available on at
least one exposure or outcome variable.

Measures

Exposures

The primary exposure was maternal at-risk drinking. Variables
indexing maternal at-risk drinking were derived based on mother
reports from questionnaires received when children were 1.5, 3,
and 5 years old. The mothers reported how many alcohol units
they usually drink when they consume alcohol on weekends
and weekdays, respectively. We followed a previously established
approach (Lund et al., 2020) for converting these numbers to a
three-point ordinal scale, using an average of weekday and week-
end drinking scores but with weekday drinking up-weighted as
follows: 1–2 units reported = 0/0 (weekday score/weekend
score); 3–4 = 1/0.5, 5–6 = 2/1, 7–9 = 3/2, and ⩾10 = 3/3.
Abstainers (mothers reporting zero units consumed) were set to
missing to account for censoring, as per Lund et al. (2020).

Outcomes

The primary outcomes were children’s emotional and behavioral
problems, measured using the Child Behavior Checklist (CBCL)
behavioral and emotional problems sub-scales. Mothers reported
about their children at 1.5, 3, and 5 years old on a three-point
response scale (‘Never or rarely true’, ‘Sometimes or somewhat
true’, ‘Often or always true’). The behavior sub-scale included
eight items related to aggressive, defiant, inattentive, or impulsive
behavior. The emotions subscale included five items related to
emotional reactivity, anxiety, and somatic complaints. Scale scores
were created at each wave as the mean of all available items multi-
plied by the number of items in the scale unless more than 50% of
items were missing, in which case we set the individual’s scale
score to missing. See online Supplementary Methods S1 for an
overview of what CBCL items we included in the emotional and
behavior measures at 1.5, 3, and 5 years.

Moderators

We created PGSs based on summary statistics from the largest
recent genome-wide association studies (GWASs) of three traits:
ADHD (Demontis et al., 2018), neuroticism (Luciano et al.,

2017), and PTSD (Nievergelt et al., 2019). We selected these traits
because each plausibly involves sensitivity to the environment in
some respect (e.g. the attentional component of ADHD, neuroti-
cism reflecting dispositional concern and worry about many
aspects of day-to-day life, and PTSD indexing sensitivity to trau-
matic environmental exposures). We additionally included height
as a negative control (Yengo et al., 2018); as a non-behavioral yet
highly polygenic trait, we assume that height-associated variants
are unlikely to moderate responses to environmental stress
beyond the level of chance. We created all PGSs using PRSice2
(Choi & O’Reilly, 2019) using a clumping and thresholding
approach (250 kb window, p = 1, r2 = 0.1). The p value thresholds
for SNP inclusion were 5 × 10−8, 10−7, 10−6, 10−5, 10−4, 0.001,
0.01, 0.05, 0.1, 0.5, and 1. The first principal component of scores
across all of the p value thresholds (within a trait) was extracted as
the PGS for analysis (this is the PGS-principal component ana-
lysis [PCA] approach outlined in Coombes, Ploner, Bergen, &
Biernacka [2020]).

Covariates

We organized covariates for the analyses into tiers according to
their adjustment level. Tier 1 covariates are parity and child sex,
extracted from the MBRN. A growing body of research suggests
that fetal programming affects the developing fetus (e.g. Lewis
et al., 2015; Stevenson et al., 2020). The assumption is that pre-
natal exposure to various stressors during pregnancy, such as
alcohol use, causes physiological fetal reprogramming, which
can influence offspring’s health into adulthood. In tier 2, we
therefore included a measure of prenatal exposure to maternal
at-risk drinking, derived similarly to the exposures, based on
responses at the 17th and 30th weeks of pregnancy. We used an
average of these two scores as the covariate in analyses. Finally,
tier 3 covariates were maternal and paternal versions of the rele-
vant PGS, constructed as described above.

All continuous variables were standardized prior to analysis.
We prepared data using the phenotools package (0.2.8)
(Phenotools, n.d.) in R 4.1.0 (R Core Team, 2022).

Analyses

PGS analyses

Multiple linear regression
We describe the basic analytic model in Equation (1). We ran 24
separate models for combining two CBCL outcomes, three meas-
urement waves, and four PGS traits. We added covariates sequen-
tially according to the ‘tier’ listed in the abovementioned covariate
description. Interaction terms for the moderation of exposure and
PGS main effects by covariates were included, in line with current
recommendations (Domingue, Trejo, Armstrong-Carter, &
Tucker-Drob, 2020).

CBCLoutwave =b0+b1mARDrinkwave+ b2cPGStrait
+b3mARDrinkwave:cPGStrait+b4cov1
+ b5mARDrinkwave:cov1+b6cPGStrait :cov1+···+1

(1)

Here, CBCL, Child Behavior Checklist; mARDrink, maternal
at-risk drinking; cPGS, child polygenic score; cov, covariate; sub-
scripts ‘out’ denotes the outcome (either behavioral or emotional);
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subscript ‘wave’ denotes the wave of measurement (either child
age 1.5, 3, or 5 years old); subscript ‘trait’ denotes the PGS trait
(either ADHD, neuroticism, PTSD, or height).

All models for a given PGS trait and CBCL outcome combin-
ation were specified concurrently in a structural equation model-
ing (SEM) framework using lavaan 0.6-9 (Rosseel, 2012) in R. We
used cluster robust standard errors were used to account for sib-
ling pairs in the data and full information maximum-likelihood
estimation to handle missing data. In the interests of parsimony
and reducing the multiple testing burden, we tested whether the
exposure and moderator main (β1, β2) and interaction (β3) effects
and, subsequently, the residual variances of the outcome could be
constrained to be equal across waves. We retained all constraints
that did not significantly worsen model fit according to a likeli-
hood ratio test (LRT) with a Bonferroni-corrected critical p
value threshold of 0.05/8 = 0.00625, corresponding to the number
of combinations of two outcomes and four moderators. All ana-
lytic code is publicly available online at https://github.com/
psychgen/mdrink-gxe.

Multilevel SEM
We used multilevel SEMs to decompose the main and interaction
effects of interest according to the extent to which they are
individual-specific (‘within’ level) or family wide (‘between’
level). Figure 1 shows the core components of the tested model.
An exposure-based main effect of maternal at-risk drinking (β1)
on the child outcome is estimated independently of a direct effect
from confounding factors (both genetic and non-genetic in ori-
gin) that influence the exposure consistently across siblings in a
family (γ1). Similarly, the interaction effect between the exposure
and the PGS is estimated separately within (β3) and between (γ3)
levels of the model – with the latter absorbing components of the
effect that are inconsistent with an exposure-based mechanism.

The multilevel SEM was run, including covariates from all
tiers. Given its additional adjustment for unmeasured familial
confounding, it is considered the ‘fully adjusted’ model. As with
the standard linear regression models above, we tested the effect
of constraining key parameters and residuals to be equal across
measurement waves using LRTs. We used the most constrained
acceptable model as the basis for inferences relating to our
hypotheses. Multilevel models were run in software Mplus 8.3
(Muthén & Muthen, 2017) via R using MplusAutomation 1.0.0
(Hallquist & Wiley, 2018).

xPGS analyses

The polygenic scores interaction (xPGS) approach (Chen et al.,
2020) involves re-creating PGS based on the extent to which
each SNP in the PGS moderates the association between an expos-
ure and an outcome. For each PGS trait indexing environmental
sensitivity (i.e. ADHD, neuroticism, PTSD), we selected SNPs that
were included at the threshold at which most variance was
explained by the first principal component from the PGS-PCA
described above (SNPi…j). We ran SNP–exposure interaction
models for these SNPs of the form shown in Equation (2).

CBCLoutwave =b0 + b1mARDrinkwave + b2SNPi...jtrait
+ b3mARDrinkwave:SNPi . . . jtrait + b4cov1
+ b5mARDrink:cov1 + b6SNPi...jtrait :cov1 + · · · + 1

(2)

Here, CBCL, Child Behavior Checklist; mARDrink, maternal
at-risk drinking; SNPi, ith individual variant from the original
polygenic score; cov, covariate; subscript ‘out’ denotes the out-
come (either behavioral or emotional); subscript ‘wave’ denotes
the wave of measurement (either child aged 1.5, 3, or 5 years
old); subscript ‘trait’ denotes the PGS trait (either ADHD, neur-
oticism, PTSD, or height).

This model is equivalent to that used in a genome-wide inter-
action study, with one key difference. Rather than looking for
interaction effects across the whole genome – a very costly
approach in terms of statistical power – here, the testing burden
is reduced by restricting to SNPs accounting for most of the direct
polygenic effect on the trait(s) in question. Thus, the main
assumption that this approach relies upon is that SNP–trait inter-
action effects are more likely where SNPs are also involved in the
main effects on the same trait. To guard against over-fitting, these
models were run only in the singleton MoBa children with avail-
able genotype data (N = 50 637) as a ‘training’ sample. Having run
the single-SNP interaction models for each outcome at each wave,
we created a single xPGS at each of the 11 p value inclusion
thresholds listed above (under ‘Moderators’), including all SNPs
that remained after clumping (250 kb window, p = 1, r2 = 0.1) in
a single score (i.e. irrespective of which PGS trait a SNP initially
come from). We used the betas and p values from the single-SNP
interaction models averaged across the three waves of a given out-
come to create the xPGS. PGS-PCA was again used to derive the
first principal component from the scores at all 11 thresholds,
meaning that finally, we included one single xPGS for emotional
and one for behavioral problems as moderators in the relevant
standard and multilevel linear models described above. The
only difference was that these models were run on the siblings
only (N = 33 105) – i.e. those individuals not included in the
training sample used to generate the xPGS. We also ran models
using the original PGS on this sub-sample to check that the
results were comparable.

Multiple testing

We applied a false-discovery rate (FDR) correction to p values
across the parameters involved in the null hypothesis significance
tests using the Benjamini–Hochberg method. At a minimum – i.e.
with all constraints over time accepted – this would have been the
eight interaction effects (four PGS traits and two outcomes).
However, where constraining effects to be equal across time was
impossible without a significant reduction in model fit, each effect
was included (up to the maximum of 24). Main effects are not
subjected to null hypothesis significance tests (and thus not
included in the FDR correction) and are only presented with con-
fidence intervals (CIs) as a measure of precision.

Preregistration

We pre-registered the plan for these analyses before the data was
analyzed (Hannigan et al., 2022). Deviations from the pre-
registration are detailed and justified in online Supplementary
Methods S2.

Results

See Table 1 for descriptive statistics for the main study variables.
Mean levels of all child behavioral and emotional problems and
maternal at-risk drinking decreased slightly across the available
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study waves. We found evidence of selective attrition on all traits
and ADHD PGS (see online Supplementary Table S1), partly
explaining this trend.

PGS analyses

Model fitting to determine the acceptability of cross-wave
constraints
The results of the model fit comparisons to determine the accept-
ability of constraining core main and interaction effects and resi-
duals to be equal across time are available in online
Supplementary Tables S2–S5. Apart from in the ADHD-PGS-
as-moderator models, at least the main and interaction effects
(and often also the residual variances) could be constrained to
be equal across waves in all models. We present results from
the most parsimonious model that did not significantly lose fit
to the data (compared to an unconstrained model) in all cases.

Main effects
Figure 2 shows the estimated main effects of the exposure, mater-
nal at-risk drinking, and each PGS moderator on childhood emo-
tional and behavioral problems and the extent to which they are
attenuated with each additional level of adjustment for confound-
ing. The main effects of maternal at-risk drinking are estimated at
β1 = 0.04 (95% CI 0.03–0.05) for emotional and β1 = 0.07 (0.06–
0.08) for behavioral problems when only parity and child sex
are included in the models. The magnitude of these effects was
reduced when other covariates were added to the models, and
are almost attenuated in the most adjusted model when

unmeasured familial confounding is accounted for (emotional:
β1 = 0.01 [95% CI 0.00–0.02]; behavioral: β1 = 0.01 [0.00–0.02]).
Of the PGS moderators, ADHD showed the strongest direct effect
on behavior. This effect was broadly unaffected by all adjust-
ments. The effect also differed markedly across waves, which
was why no constraints were acceptable in this model. Small dir-
ect effects for other PGS moderators were mostly attenuated in the
most adjusted model.

Interaction effects
Figure 3 shows the exposure-by-PGS results from the models
adjusted for all covariates and unmeasured familial confounding.
The solid lines show the effects of maternal at-risk drinking
across different PGS-moderator values, with shaded bands
representing 95% CIs based on the estimated interaction term.
Dashed lines show the null for each interaction test.
Specifically, the effect of maternal at-risk drinking does not
change from the overall main effect for an outcome with changes
in the PGS-moderator. Raw and FDR-corrected p values for all
PGS–exposure interaction terms are presented in Table 2 and
confirm that no interactions between maternal at-risk drinking
and any of the PGS were observed once multiple testing was
accounted for.

xPGS analyses

Exposure-by-SNP models were run in the singleton sub-sample
MoBa children (N = 76 867) to be used as the basis of the xPGS
creation. Online Supplementary Table S6 provides an overview

Figure 1. Core components of the multi-level SEM in
which main and interaction effects are adjusted for
familial confounding.
Note: Observed variables are represented in boxes and
latent variables in circles; double-headed arrows indi-
cate the variance of a latent variable estimated; and
single-headed arrows indicate estimated paths; the
full model includes multiple waves of correlated out-
comes and predictors – these are omitted here for
clarity.
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of the top 15 SNPs from these models, i.e. those with the lowest p
values for their interaction with the exposure. None of the indi-
vidual SNPs reached significance after a strict Bonferroni correc-
tion based on a combination of the number of independent SNPs
tested (17 133) and the number of outcomes (two) and waves

(three). Online Supplementary Tables S7–S10 provide an over-
view of model fit comparisons testing constraints in the xPGS
models run in the sibling sub-sample of MoBa children (N = 37
367). In the most adjusted models, the main and interaction
effects for maternal at-risk drinking and the xPGS could be

Table 1. Descriptive statistics for the analytic sample

Measure Waves age (years) N Mean S.D. Min. Max.

CBCL behavioral problems 1.5 75 737 3.943 2.269 0 16

3 58 202 3.873 2.432 0 16

5 41 246 2.502 2.283 0 16

CBCL emotional problems 1.5 70 776 1.327 1.240 0 10

3 58 196 1.408 1.409 0 10

5 41 246 1.078 1.309 0 10

Maternal at-risk drinking 1.5 57 985 0.198 0.521 0 3

3 44 676 0.187 0.511 0 3

5 21 487 0.115 0.390 0 3

Figure 2. Main effects of exposure and PGS moderators on child emotional and behavioral problems at each level of adjustment.
Note: Effects are displayed separately by wave when constraining them to equality was not possible without a loss of model fit – otherwise the constrained effect
estimated at all waves is displayed.
T1, tier 1 covariates (parity and child sex); T2, tier 2 covariates (T1 + prenatal exposure to maternal at-risk drinking); T3, tier 3 covariates (T1, T2 + maternal and
paternal PGSs); ML, multilevel.
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constrained to equality across waves for behavioral but not emo-
tional problems. Online Supplementary Figure S1 shows the esti-
mates of exposure-by-xPGS effects, and online Supplementary
Table S11 shows FDR-corrected p values. For behavioral problems,

the pattern was consistent with the results of the PGS analysis,
with no significant or sizeable moderation of the effect of mater-
nal at-risk drinking. For emotional problems, we observed a small,
significant interaction effect at age 3 (β3 = 0.04 [0.02–0.08],

Figure 3. Exposure-by-PGS interaction effects in the most adjusted models presented as changes in the exposure’s overall effect at different PGS moderator values.
Note: Shaded regions represent uncertainty (95% CIs) in the estimation of the exposure-by-PGS interaction effect only (i.e. uncertainty around the estimate of the
main effect of the exposure is not represented); effects are displayed separately by wave when constraining them to equality was not possible without a loss of
model fit – otherwise the constrained effect estimated at all waves is displayed.

Table 2. Estimates and FDR-corrected p values and effect estimates for the interaction between maternal at-risk drinking and PGS from the best-fitting, most
parsimonious multilevel models

Outcome PGS moderator Accepted constraints Wave Beta p value FDR-corrected p value

CBCL behavior ADHD None 1.5 years 0.018 0.007 0.070

CBCL behavior ADHD None 3 years −0.009 0.281 0.351

CBCL behavior ADHD None 5 years −0.002 0.854 0.854

CBCL behavior Neuroticism Betas and residuals All −0.001 0.827 0.854

CBCL behavior PTSD Betas and residuals All −0.009 0.022 0.073

CBCL behavior Height Betas and residuals All −0.008 0.054 0.108

CBCL emotion ADHD Betas and residuals All 0.006 0.134 0.223

CBCL emotion Neuroticism Betas and residuals All 0.009 0.040 0.100

CBCL emotion PTSD Betas and residuals All −0.009 0.021 0.073

CBCL emotion Height Betas and residuals All −0.005 0.271 0.351
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FDR-corrected p value = 0.012), with effects at other ages in a
consistent direction but not significant

Post-hoc sensitivity analysis

In response to reviewer comments we tested the impact of includ-
ing other forms of maternal prenatal substance use in the models
as a covariate. The results – presented as main and interaction
effect estimates from tier 2 and tier 2 + maternal prenatal smoking
models in online Supplementary Tables S12 and S13 – show that
the impact of including maternal prenatal smoking was negligible.

Discussion

We set out to disentangle the mechanisms underlying associations
between maternal at-risk drinking and offspring emotional and
behavior problems in the context of GE interplay. Specifically,
we assessed whether common genetic variants putatively linked
to environmental sensitivity moderated the effects of exposure
to maternal at-risk drinking on emotional and behavioral pro-
blems early in life. The main effects of maternal at-risk drinking
weakened substantially after controlling for measured and
unmeasured familial confounding. There was no robust evidence
for the moderation of these effects by genetic sensitivity. The find-
ings are consistent with the GE correlation that inflates associa-
tions between maternal at-risk drinking and child outcomes.
However, they provide no support for the hypothesis that G × E
makes the causal component of these links stronger in some fam-
ilies than others.

The idea that children with certain genetic makeups are more
sensitive to unfavorable environmental influences than children
without such genetic makeups is plausible. However, studying
the G × E implied by this model is complex and vulnerable to ana-
lytical missteps (Domingue et al., 2020). We applied controls for
both measured and unmeasured confounding to ensure – as far as
possible – that the effect of being moderated was due to exposure
and not sources of confounding shared intergenerationally (such
as genetics). This was necessary because of the ambiguous evi-
dence regarding whether such exposure-mediated effects exist.
Much of previous, genetically informed research on associations
between maternal drinking and offspring behavior or/and emo-
tional problems addressed outcomes in adolescent and adult off-
spring (e.g. Hicks, Foster, Iacono, & McGue, 2013; Kendler et al.,
2015, 2012; Kim & Sin, 2020; Knopik et al., 2006; Marmorstein,
Iacono, & Mcgue, 2012; Marmorstein et al., 2009; Oro et al.,
2021). Most of these studies suggest an association, but the find-
ings are not unambiguous, nor do they necessarily generalize to
younger children – the focus of our investigation. Indeed, two
large-scale, longitudinal studies that included offspring ages simi-
lar to the current study (1.5, 3, and 4 years old) suggested no asso-
ciation (Knudsen et al., 2015; Mahedy et al., 2017) – though their
designs do not allow for familial confounding, which can mask
and inflate effects.

The attenuation of the exposure effects down almost to zero in
the final model of our study demonstrated the significance of
adjusting for confounding – which included maternal and pater-
nal PGSs and their interaction terms and prenatal at-risk drinking
to account for the possibility of a ‘fetal programming’ mechanism
(Lewis et al., 2015; Stevenson et al., 2020). The results confirm
previous findings with these data, both for maternal at-risk drink-
ing (Lund et al., 2020) and other putative sources of intergenera-
tional risk transmission (Cheesman et al., 2020; Eilertsen et al.,

2022; Gustavson et al., 2021; Hannigan et al., 2018): namely
that processes like GE correlation highly inflate observational
associations and that both cautious interpretation and – where
possible – statistical adjustment is fundamental.

After systematically removing sources of confounding from
our estimated associations between maternal at-risk drinking
and child emotional and behavioral outcomes, we estimated
G × E effects. We followed a pre-registered analysis plan to control
the false-positive rate and accounted for multiple testing. Further,
we followed current best practice guidelines and included inter-
action effects between all covariates and both the exposure and
moderators (Domingue et al., 2020). With stringent control of
confounding, we found no robust evidence of moderation of the
effect of exposure to maternal at-risk drinking on early-life emo-
tional and behavioral development.

We are unaware of previous studies that have addressed genetic
moderation of the effect of maternal at-risk drinking on off-
spring’s emotional and behavioral problems. However, consider-
ing our findings in the context of prior work on G × E for
similar associations, previous research suggests that child genetic
variation may moderate the associations between maternal risk
factors and offspring’s emotional and behavioral outcomes
(Chen et al., 2020). For instance, a study that examined whether
prenatal depression and the child promoter region of the sero-
tonin transporter gene interacted to predict childhood dysregula-
tion suggested an interaction effect that was stable during the
study period from offspring ages 3–36 months (Babineau et al.,
2015). Further, while the effect was modest, the difference in dys-
regulation scores was considered clinically significant for children
with particular genetics sensitive to unfavorable environmental
influences when examining extremes of exposure (Babineau
et al., 2015). Another study examined whether the effects of pre-
natal anxiety on offspring’s emotional symptoms were moderated
by genetic variation in the offspring’s brain-derived neurotrophic
factor (BDNF) gene. Offspring emotional symptoms were assessed
six times from ages 4 to 15 years. The results showed a main effect
of two BDNF polymorphisms on emotional symptoms up to age
13; and genetic moderation by other BDNF polymorphisms
(O’Donnell, Glover, Holbrook, & O’Connor, 2014). These studies
indicate that examining G × E remains essential because the
approach recognizes that one size does not fit all. What is consid-
ered weak environmental effects at the population level could have
strong effects on offspring with certain genetic sensitivities to
unfavorable environmental influences (Plomin et al., 2022). It
is, however, important to contextualize these kinds of results by
noting that the current trend in G × E research is moving away
from specific candidate gene/variant approaches, which have typ-
ically yielded inconsistent results, and toward more polygenic
models of GE interplay (Assary, Vincent, Keers, & Pluess, 2018;
Barker, Maughan, Allegrini, Pingault, & Sonuga-Barke, 2022).
Preliminary applications of such models have tended to find little
(Gillett et al., 2022; He & Li, 2022; Plomin et al., 2022), with some
notable exceptions (Chen et al., 2020), warranting further investi-
gation and replication attempts. This suggests that such effects do
not exist at any meaningful magnitude for the combinations of
traits and environments studied, or perhaps we need to adapt
our methodologies and fine-tune our polygenic instruments to
better detect them.

We further probed the possible presence of interactions by
adapting the recently introduced xPGS approach (Chen et al.,
2020) to refine PGS based on SNPs most involved in moderating
associations. Although our single-SNP moderation models
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remained underpowered to detect SNP-level interaction effects
because of our multiple testing burden, the possibility of using
clumped GWAS results to target and preserve power in the gen-
omic search for SNP–exposure interactions may be worth further
exploration. Further, the only significant interaction effect we
observed in the model was an xPGS – based on SNPs accounting
for most of the polygenic signal for ADHD, neuroticism, and
PTSD – moderated the extent to which maternal drinking was
associated with child emotional problems at 3 years. Given the
isolated nature of this result and the potential for some degree
of overfitting in these models (despite using a separate training
sample to parameterize the xPGS), we do not interpret it as robust
evidence of a G × E mechanism operating in this context.

The absence of evidence for G × E in our study should not be
taken as evidence of absence. The small magnitude of the adjusted
exposure effect of maternal at-risk drinking hampers our ability to
say anything general about the likelihood of SNPs linked to traits
plausibly indexing sensitivity to the environment being involved
in the moderation of risk. As the average exposure effect
approaches zero, the likelihood of observing a significant inter-
action effect decreases unless that interaction is either: (a) a cross-
over interaction, meaning – quite implausibly, in our case – that
exposure to maternal at-risk drinking would have to have a bene-
ficial effect on emotional or behavioral problems among children
with low genetic liability to, for example, neuroticism; or (b) non-
linear in form, such that the effect only appears when genetic
liability is high. This latter possibility is more plausible but not
trivial to model. We would likely be underpowered to do so
here. In line with these observations, it is notable that one of
the largest absolute exposure effects we estimated on behavioral
problems at 1.5 years old in the ADHD-PGS-moderator model
coincided with the strongest interaction effect estimate in the
expected direction. Simply put, there is more ‘space’ above the
overall null to see an interaction without it requiring a reversal
of the effect at low-PGS values. Nonetheless, it is important to
emphasize that this effect did not pass multiple testing correc-
tions. We observed no consistent effect for the main effect on
behavioral problems in the same model at 5 years.

Methodological considerations

Major strengths of the study include that it is based on a prospect-
ive population-based cohort study with many related individuals.
This allowed us to explore the role of genetics and environment in
the intergenerational transmission of risk and familial confound-
ing in associations between maternal at-risk drinking and off-
spring emotional and behavioral problems (Corfield et al.,
2022). The methodological robustness is a particular strength,
including PGS for children, mothers, and fathers.

The study also has several limitations. The MoBa study has a
participation rate of 41%, which may have resulted in selection
bias. Indeed, some groups are underrepresented, including
young mothers, mothers with more than two previous births,
smokers, women living alone, and women with low education.
Further, those who continue to participate are healthier and
more educated than those who discontinue MoBa participation;
this selection bias may contribute to biased results. Regarding
maternal at-risk drinking, it is likely that the MoBa sample does
not represent as adverse an environment as the population at
large. For a G × E mechanism to operate within an intergenera-
tional exposure, greater variability in the severity of the exposure
may be necessary. Importantly, we cannot say for sure – based on

these results – whether the lack of such variability in our sample
was the reason for the lack of an effect or whether the effect would
also have been absent with a more adverse environmental
exposure.

Second, though the structure of MoBa is longitudinal, associa-
tions are examined cross-sectionally in this study in order to be
able to detect evidence of any G × E. Cross-sectional observations
maximize our chances of capturing any exposure-based effects of
maternal drinking on offspring outcomes, which may plausibly be
short-lived and not persist across MoBa data collection waves. We
could afford to do this at the cost of the observed associations
being inflated by confounding because of the implementation of
the multilevel modeling, which parcel out such confounding at
the analysis stage. Longitudinal analyses of these data would be
advantageous in future work, especially where the goal is to tri-
angulate evidence about the extent to which the association
between maternal at-risk drinking and child behavioral and emo-
tional problems is causal across different research designs.
Moreover, a significantly longer-term follow-up would be
required to ascertain whether maternal at-risk drinking during
childhood affects offspring development and functioning later
in life, whether moderated by genetic sensitivities or otherwise.

Finally, most previous studies on associations between mater-
nal at-risk drinking and offspring emotional and behavior out-
comes have focused on clinical-level maternal drinking,
measured using diagnostic interviews or registry records indica-
tive of alcohol-use disorder diagnosis (e.g. Kendler et al., 2015;
Knopik et al., 2006; Marmorstein et al., 2012; Oro et al., 2021;
Waldron et al., 2009; Wolfe, 2017). We used maternal self-report
of drinking frequency and amount; different exposures are pos-
sible explanations for differing findings (Hicks et al., 2013;
Kendler et al., 2015; Kim & Sin, 2020). In the same vein, many
emotional and behavioral outcomes measured in the adult sam-
ples, e.g. substance use disorder and crime, differ from emotional
and behavioral outcomes measured in studies of preschool chil-
dren; further, genetic and environmental factors may influence
offspring outcomes differently at different ages (Knopik,
Neiderhiser, DeFries, & Plomin, 2013). It would have been ideal
to include information from the complete alcohol-use disorders
identification test (AUDIT) on alcohol consumption. However,
the full AUDIT was not included in the MoBa questionnaires
administered at children ages 1.5, 3, and 5. We were therefore lim-
ited to using maternal alcohol consumption to identify maternal
at-risk drinking. The mothers reported on their own alcohol con-
sumption and offspring outcomes; this is not ideal and may have
resulted in common method bias. It would have been preferable
to have information about the offspring’s emotional and behav-
ioral outcomes from sources besides maternal reports, e.g. kinder-
garten teachers. Further, paternal drinking may also be associated
with offspring outcomes. However, as fathers were not invited to
respond to the 1.5-, 3- and 5-year questionnaires, we could not
examine this. The study does not control for unmeasured factors
specific to the individual, such as stressful life events that may
influence maternal drinking and offspring’s emotional and behav-
ioral problems.

Conclusion

Our findings suggest that genetic sensitivities to unfavorable
environmental influences do not moderate the small exposure
effect of maternal at-risk drinking on offspring behavior and emo-
tional problems that remains after controlling for genetic
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confounding in our sample. The findings are consistent with sub-
stantial inflation of observational effects by GE correlation.
However, we found no robust support for G × E in this context.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291723003057.
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