A CHARACTERIZATION OF CHAINABLE CONTINUA

J. B. FUGATE

1. Introduction. In this paper, certain results of Bing (1) and myself (2) are extended. It is well-known that a chainable compact metric continuum must be a-triodic (contain no triods), hereditarily unicoherent (the common part of each two subcontinua is connected), and each subcontinuum must be chainable. Our principal result states that a compact metric continuum M is chainable if and only if M is a-triodic, hereditarily unicoherent and each indecomposable subcontinuum of M is chainable. Some condition on the indecomposable subcontinuum of M seems essential, if we consider the dyadic solenoid, S, which is indecomposable, a-triodic and hereditarily unicoherent. Indeed, each proper subcontinuum of S is an arc. However, S is not chainable, since it cannot be embedded in the plane.

2. Definitions and notation. A chain \mathscr{E} is a finite collection $\{E_1, \ldots, E_m\}$ of open sets such that $E_i \cap E_j \neq \emptyset$ if and only if $|i - j| \leq 1$. We frequently denote \mathscr{E} by E(1, m) and denote $\bigcup_{i=1}^m E_i$ by $E^*(1, m)$. The elements of \mathscr{E} are called *links*; two links are *adjacent* if and only if they intersect. If nonadjacent links are a positive distance apart, \mathscr{E} is said to be *taut*. If E(1, m)and F(1, j) are chains such that $E_i \cap F_j \neq \emptyset$ if and only if i = m and j = 1, then the chain $\{E_1, \ldots, E_m, F_1, \ldots, F_n\}$ is denoted by $E(1, m) \oplus F(1, j)$. If E(1, m) is a chain and S is an open set intersecting the common part of each pair of adjacent links, then the chain $\{E_1 \cap S, \ldots, E_m \cap S\}$ is denoted by $E(1, m) \cap S$. If $\epsilon > 0$, then \mathscr{E} is an ϵ -chain if and only if each link of \mathscr{E} has diameter less than ϵ . A compact metric continuum M is ϵ -chainable if and only if there is an ϵ -chain covering M; M is chainable (snakelike, arclike) if and only if for each $\epsilon > 0$, M is ϵ -chainable.

Finally, if E(1, m) is a chain covering M, and K is a subcontinuum of M, then K is contained exactly in the subchain E(j, l) (in symbols, $K \subset {}^{e}E^{*}(j, l)$) if and only if K is not contained in any proper subchain of E(j, l) and

$$(\operatorname{Cl}(E^*(1,j-1)) \cup \operatorname{Cl}(E^*(l+1,m))) \cap K = \emptyset.$$

3. Terminal subcontinua. Given an $\epsilon > 0$, we must be able to cover M with an ϵ -chain. The basic idea is to decompose M into proper subcontinua A and B, and ϵ -chain each of these. We then fit the two chains together to obtain a chain covering M. The key to this fitting process is the concept of terminal subcontinuum.

Received November 28, 1967.

Definition 1. If M is a compact metric continuum and K is a subcontinuum of M, then K is a *terminal subcontinuum* of M if and only if for each pair L, N of subcontinua of M, each intersecting K, either $L \subset N \cup K$ or $N \subset L \cup K$. If K is degenerate, then K is a *terminal point* of M.

Remark 1. If the a-triodic, hereditarily unicoherent compact metric continuum M is the union of two of its proper subcontinua A and B, then each is a terminal subcontinuum of M. Moreover, $A \cap B$ is a terminal subcontinuum of A and of B. (This is proved as Claim 1 in the proof of (2, Theorem 1).)

Several important facts about terminal subcontinua are embodied in the following lemmas. Proofs of Lemmas 1 and 2 may be found in (2).

LEMMA 1. Suppose that M is an a-triodic, hereditarily unicoherent compact metric continuum, K is a terminal subcontinuum of M, and $\mathscr{E} = E(1, m)$ is a chain covering M. Then there is a chain $\mathscr{G} = G(1, n)$ covering M and an integer s, $1 \leq s \leq n$, such that

(1) \mathcal{G} is a refinement of \mathcal{E} ,

(2)
$$K \subset {}^{e} G^{*}(s, n),$$

(3) if \mathscr{E} is taut, so is \mathscr{G} .

LEMMA 2. If M is a-triodic, hereditarily unicoherent compact metric continuum and K is a subcontinuum of M, then K is a terminal subcontinuum of M if and only if for each subcontinuum P of M which intersects $K, K \cup P$ is irreducible between some pair of points, one of which belongs to K.

LEMMA 3. Suppose that M is an a-triodic, hereditarily unicoherent compact metric continuum, K is a terminal subcontinuum of M, each of A and B is a proper subcontinuum of K and $K = A \cup B$. Then at least one of A and B is a terminal subcontinuum of M.

Proof. Suppose that the lemma fails. Since A is not a terminal subcontinuum of M, by Lemma 2 there is a subcontinuum R of M such that $R \cap A \neq \emptyset$ and

(†) $R \cup A$ is not irreducible between any pair of points, one of which belongs to A.

Clearly, $A \subset R$. Since R intersects the terminal continuum K, applying Lemma 2 again, we find that there are points $p \in R$ and $q \in K$ such that $R \cup K$ is irreducible from p to q. Moreover, $q \in B - A$, for if $q \in A$, then R is a subcontinuum of $R \cup K$ containing p and q; hence, $R \cup K = R$ and $R = R \cup A$ is irreducible from $p \in R$ to $q \in A$. This violates (†). Not only does $q \in B - A$, but $p \in R - K$, for if $p \in K$, then $p \in B$, otherwise we contradict (†). Then B is a proper subcontinuum of $R \cup K$ containing p and q and $R \cup K$ is reducible from p to q. This contradiction shows that $p \in R - K$.

In a similar fashion, there is a subcontinuum S of M such that $S \cap B \neq \emptyset$ and $S \cup B$ is not irreducible between any pair of points, one of which is in B. Then $S \cup B = S$ and there are points $x \in S - K$, $y \in A - B$ such that $S \cup K$ is irreducible from x to y.

Since each of R and S is a continuum intersecting K, it follows from the definition of a terminal subcontinuum that either $R \subset S \cup K$ or $S \subset R \cup K$. We shall assume that $S \subset R \cup K$. Since $x \in S - K$, $x \in R - K$. From (†), $R = R \cup A$ is reducible from p to $y \in A$, and thus there is a proper subcontinuum L of R such that $p \in L$, $y \in L$. Thus $q \notin L$. Now $y \in L \cap K$, hence $L \cup K$ is a subcontinuum of $R \cup K$ containing p and q; thus, $L \cup K = R \cup K$ and $x \in L$. Since $q \in B - (L \cap (S \cup K)) \subset S, L \cap (S \cup K)$ is a proper subcontinuum of $S \cup K$ containing x and y and $S \cup K$ is reducible from x to y. This contradiction establishes the lemma.

LEMMA 4. Suppose that M is an a-triodic, hereditarily unicoherent compact metric continuum and K is a terminal subcontinuum of M. Then there is a subcontinuum L of K such that

- (i) L is a terminal subcontinuum of M;
- (ii) L is irreducible with respect to (i);
- (iii) L is indecomposable or is a single point, a terminal point of M.

Proof. If $B \subset M$, then B has Property P if and only if B is a terminal subcontinuum of M and $B \subset K$. We show that Property P is inductive.

Suppose that N is a decreasing sequence such that for each positive integer i, N_i is a continuum having Property P. Clearly, $\bigcap_{i=1}^{\infty} N_i$ is a continuum contained in K. If $\bigcap_{i=1}^{\infty} N_i$ does not have Property P, then $\bigcap_{i=1}^{\infty} N_i$ is not terminal for M. Thus there are subcontinua D and E of M, each intersecting $\bigcap_{i=1}^{\infty} N_i$, and neither is contained in the union of $\bigcap_{i=1}^{\infty} N_i$ and the other. Let

$$d\in D-\left(E\cup\left(\ \underset{i=1}{\overset{\infty}{\cap}}N_i\right) \right) \ \text{ and } \ e\in E-\left(D\cup\left(\ \underset{i=1}{\overset{\infty}{\cap}}N_i\right) \right).$$

Since $M - \{d, e\}$ is open in M and contains $\bigcap_{i=1}^{\infty} N_i$, there is a positive integer j such that $N_j \subset M - \{d, e\}$. Thus, each of D and E intersect N_j and neither is contained in the union of N_j and the other. Hence, N_j is not a terminal subcontinuum of M. This is impossible; hence Property P is inductive.

Since K has Property P, there is a subcontinuum L of K such that L is irreducible with respect to Property P. This establishes (i) and (ii). According to Lemma 3, L cannot be decomposable, hence (iii) is established.

LEMMA 5. Suppose that M is an a-triodic, hereditarily unicoherent compact metric continuum and K is an indecomposable terminal subcontinuum of M. Further, suppose that there is a subcontinuum A of M such that $A \cap K \neq \emptyset$, $K \not\subset A$, and $A \not\subset K$. Let D be the composant of K containing $A \cap K$. If B is a subcontinuum of M intersecting K, such that $B \not\subset K$ and $K \not\subset B$, then $B \cap K \subset D$.

Proof. Suppose that there is a continuum B for which the conclusion fails. Since $B \cap K$ is a proper subcontinuum of K not contained in D, $B \cap K \cap$

 $D = \emptyset$. Thus $A \cap K \cap B = \emptyset$. Now, K is a terminal subcontinuum of M; it follows that $A \subset B \cup K$ or $B \subset A \cup K$. Suppose that $A \subset B \cup K$. Since $A \not\subset K$, $A \cap B \neq \emptyset$. Then $(A \cup B) \cap K$ is a subcontinuum of K intersecting disjoint composants of K. Thus $(A \cup B) \cap K = K$. However, this means that K is the union of two proper subcontinua, $A \cap K$ and $B \cap K$. This contradicts the indecomposability of K and establishes the lemma.

Definition 2. Suppose that M is an a-triodic, hereditarily unicoherent compact metric continuum and K is an indecomposable terminal subcontinuum of M. If there exists a continuum A satisfying the hypothesis of Lemma 5, then the composant D is called the *accessible composant* of K. All other composants are *inaccessible*. If no such continuum A exists, then all composants of K are inaccessible. In either case, a point of an inaccessible composant of K is an *inaccessible point* of K.

Remark 2. Suppose that M is an a-triodic, hereditarily unicoherent compact metric continuum, K is an indecomposable terminal subcontinuum of M, and μ is an inaccessible point of K. It follows immediately from Lemma 5 that if R is a subcontinuum of M containing μ , then $R \subset K$ or $K \subset R$.

Definition 3. Suppose that M is a compact metric continuum and each of K and L is a terminal subcontinuum of M. K and L are *opposite* terminal subcontinua if and only if there are points $k \in K$ and $l \in L$ such that M is irreducible from k to l.

This notion is essentially a generalization of that of "opposite terminal points" found in (1). The following lemma extends (2, Theorem 14).

LEMMA 6. Suppose that M is an a-triodic hereditarily unicoherent compact metric continuum, K is a non-degenerate indecomposable terminal subcontinuum of M, $\mathscr{E} = E(1, m)$ is a chain covering M, $\mathscr{F} = F(1, n)$ is a chain which refines \mathscr{E} and covers K, and $\mu \in F_n \cap K$ is an inaccessible point of K. Then there is a chain $\mathscr{D} = D(1, t)$ covering M such that

- (i) \mathcal{D} refines \mathscr{E} ;
- (ii) $\mu \in D_t$.

Proof. Suppose that the lemma is false. If $B \subset M$, then *B* has Property P if and only if *B* is a subcontinuum of *M* containing *K*, and no chain covering *B* satisfies (i) and (ii). We shall show that Property P is inductive. Suppose that *J* is a sequence such that for each positive integer *i*, J_i has Property P and $J_{i+1} \subset J_i$. Clearly, if $\bigcap_{i=1}^{\infty} J_i$ does not have Property P, then there is a chain \mathscr{H} which refines \mathscr{C} , covers $\bigcap_{i=1}^{\infty} J_i$, and μ is in the last link of \mathscr{H} . Now \mathscr{H}^* is an open set containing $\bigcap_{i=1}^{\infty} J_i$. Hence, there is a positive integer *j* such that $J_j \subset \mathscr{H}^*$. Thus, J_j does not have Property P. This contradiction shows that $\bigcap_{i=1}^{\infty} J_i$ has Property P and Property P is inductive.

Since M has Property P and K does not have Property P, there is a subcontinuum M' of M such that M' is irreducible with respect to having Property P. For notational convenience, we shall assume that M' = M. We may further assume that M is not contained in any proper subchain of \mathscr{C} . Since K is a terminal subcontinuum of M, it follows from Lemma 2 that there is a pair of points $p \in K$, $q \in M - K$ such that M is irreducible from p to q. Since the composant of M determined by p is dense in M, there is a proper subcontinuum N of M such that $K \subset N$ and N intersects each link of \mathscr{C} . Now N is a proper subcontinuum of M; hence, N does not have Property P and there is a chain $\mathscr{G} = G(1, b)$ covering N such that \mathscr{G} refines \mathscr{C} and $\mu \in G_b$. We may assume that no chain with fewer links than \mathscr{G} has these properties.

We shall demonstrate that $G_1 \cap N \cap (E_1 \cup E_m) \neq \emptyset$. For, suppose this is not true. Then there is a link $E_r \in E(2, m-1)$ such that $G_1 \cap N \subset E_r$. Now $\mathscr{G}^* \cap N$ intersects both E_1 and E_m . Let G_s be the first link of \mathscr{G} which intersects $N \cap (E_1 \cup E_m)$. Clearly 1 < s. For definiteness, let us suppose that $G_s \cap N \cap E_1 \neq \emptyset$. Let G_t denote the first link of \mathscr{G} which intersects $N \cap E_m$. Since G(s, t) is a refinement of E(1, m) which intersects E_1 and E_m , some link of G(s, t) is contained in E_r . Thus, E_r contains a link of G(1, t)distinct from G_1 .

Since G_t is the first link of \mathscr{G} which intersects E_m , $G_t \subset E_{m-1}$. There is a link E_x of \mathscr{E} such that $G^*(1, t) \subset E^*(x, m-1)$ and $G^*(1, t)$ is not contained in any proper subchain of E(x, m-1). Since $G^*(1, t)$ intersects both E_1 and E_m , $1 \leq x \leq 2 \leq r \leq m-1$. Define a new chain by

$$G^*(1, t-1) \cap E(x, m-2) \oplus G^*(1, t) \cap E_{m-1} \oplus G(t+1, b).$$

Since $G_{t+1} \subset E_{m-1}$, this chain refines \mathscr{C} , covers N, and has μ in its last link. Moreover, this chain has fewer links than \mathscr{G} , since each link of E(x, m-1) contains at least one link of \mathscr{G} and $E_r \in E(x, m-1)$ contains at least two links of \mathscr{G} . This is contrary to the choice of \mathscr{G} , and hence $G_1 \cap (E_1 \cup E_m) \cap N \neq \emptyset$. We shall suppose that $G_1 \cap N \cap E_1 \neq \emptyset$.

Let V be an open set such that $\operatorname{Cl} V \subset (G_1 \cap E_1) - \{\mu\}$, and $V \cap N \neq \emptyset$. Let R denote the component of M - V containing μ . Since each of N and R is a continuum intersecting K, either $R \subset N \cup K = N$ or $N \subset R \cup K$. We shall show that the last alternative is impossible. If $V \cap N \subset K$, then, since μ is an inaccessible point of K, it follows from Remark 2 that $R \subset K$. Since $N \not\subset K$, $N \not\subset R \cup K = K$. If $V \cap N \not\subset K$, then $V \cap N \not\subset K$ denotes $M \not\subset K$. In either event, $N \not\subset R \cup K$; hence $R \subset N \cup K = N$. Since R is a component of M - V and N is covered by \mathscr{G} , no continuum in M - V intersects both R and $(M - V) - \mathscr{G}^* = M - \mathscr{G}^*$. Thus, M - Vis the union of two disjoint closed sets, one containing $M - \mathscr{G}^*$, the other containing R. Using normality, we obtain disjoint open sets S and T such that $M - V \subset S \cup T$, $M - \mathscr{G}^* \subset T$ and $R \subset S$. Define a chain $\mathscr{D} = D(1, t)$ covering M as follows:

$$\mathscr{D} = E(m,3) \cap T \oplus (E_2 \cap T) - \operatorname{Cl} V \oplus E_1 \cap T \oplus (G_1 \cap S) \cup V \oplus G(2,b) \cap S.$$

Since \mathscr{D} has properties (i) and (ii), this concludes the proof.

LEMMA 7. Suppose that D is an a-triodic hereditarily unicoherent compact metric continuum, K and L are disjoint opposite terminal subcontinua of D, and \mathscr{E}' is an ϵ -chain covering D. Then there is a chain $\mathscr{F} = F(1, n)$ covering D such that

(1) \mathscr{F} is a refinement of \mathscr{E}' ;

(2) $F_1 \cap K \neq \emptyset$ and $F_n \cap L \neq \emptyset$;

(3) there are positive integers i and k with $K \subset {}^{e} F^{*}(1, i), \qquad L \subset {}^{e} F^{*}(k, n).$

Proof. We first wish to obtain a chain \mathscr{F}' satisfying (1) and (2). Minor modifications of \mathscr{F}' will then yield a chain \mathscr{F} satisfying (1), (2), and (3). (The assumption that K and L are disjoint is not necessary, but it makes the proof of (3) easier.)

According to Lemma 1, there is an ϵ -chain $\mathscr{E} = E(1, m)$ which refines \mathscr{E}' , covers D, and $K \subset \mathscr{E}^*(j, m)$. Applying this lemma again, we obtain a chain $\mathscr{G} = G(1, b)$ covering D such that \mathscr{G} refines \mathscr{E} and $L \subset \mathscr{E}^*(a, b)$; we may assume that no chain with fewer links than \mathscr{G} has these properties. If $E_1 \cap L \neq \emptyset$, we may take $\mathscr{F}' = \mathscr{E}$; similarly, if $G_1 \cap K \neq \emptyset$, we may take $\mathscr{F}' = \mathscr{G}$. Thus, we may assume that $E_1 \cap L = \emptyset$ and $G_1 \cap K = \emptyset$.

There is a link of \mathscr{G} contained in E_1 and a link of \mathscr{G} contained in E_m . An argument essentially the same as that given in the proof of Lemma 6 will show that $G_1 \subset E_1 \cup E_m$. (Substitute "links of \mathscr{G} contained in $E_1 \cup E_m$ " for "links of \mathscr{G} intersecting $N \cap (E_1 \cup E_m)$ ".) Indeed, $G_1 \subset E_1$. For, suppose that $G_1 \not\subset E_1$, hence that $G_1 \subset E_m$. Now $G_1 \cap K = \emptyset$, and since $K \subset E^*(j,m)$, $(E_m - E_{m-1}) \cap K \neq \emptyset$. Hence, there is a link $G_r \in G(1,m)$ such that $G_r \subset E_m$. There is a positive integer z such that $G^*(1, r) \subset E^*(z, m)$ and $G^*(1, r) \not\subset E^*(z + 1, m)$. Then $E(z, m - 1) \cap G^*(2, r - 1) \oplus E_m \cap$ $G^*(1, r) \oplus G(r + 1, b)$ is a proper consolidation of \mathscr{G} since E_m contains G_1 and G_r . This violates the choice of \mathscr{G} as being a chain with fewest links which has the desired properties. Thus $G_1 \subset E_1$.

Now *D* is irreducible from a point $k \in K$ to a point $l \in L$. Since the composant of *D* determined by *l* is dense in *D*, there is a proper subcontinuum *N* of *D* such that $l \in N$ and $N \cap G_1 \cap E_1 \neq \emptyset$. Since $k \notin N, N \cup L$ is a proper subcontinuum of *D*. We shall simply assume that $L \subset N$.

Let V be an open set intersecting N such that $\operatorname{Cl} V \subset G_1 \subset E_1$. Since $E_1 \cap L = \emptyset$ and $G_1 \cap K = \emptyset$, $V \cap (L \cup K) = \emptyset$. Since D is irreducible from k to l, no continuum in D - V intersects both K and L. (If R is such a continuum, then $R \cup K \cup L$ is a proper subcontinuum of D containing k and l.) Hence, D - V is the union of two disjoint closed sets, one containing K, and the other containing L. Thus, there are disjoint open sets S and T such that $M - V \subset S \cup T$, $K \subset S$ and $L \subset T$. Define a chain $\mathscr{F}' = F'(1, n)$ as follows:

$$\mathscr{F}' = E(m, 3) \cap S \oplus (E_2 \cap S) - \operatorname{Cl} V \oplus E_1 \cap S \oplus (G_1 \cap T) \cup V \oplus G(2, b) \cap T.$$

388

Since \mathscr{F}' refines \mathscr{E} , \mathscr{F}' refines \mathscr{E}' . Moreover, $(F_1' - F_2') \cap R \neq \emptyset$, and $(F_n' - F_{n-1}') \cap L \neq \emptyset$.

Let Q and R be open sets such that $K \subset Q \subset \operatorname{Cl} Q \subset F'^*(1, i), L \subset R \subset \operatorname{Cl} R \subset F'^*(k, n)$, and $\operatorname{Cl} Q \cap \operatorname{Cl} R = \emptyset$. We define the chain $\mathscr{F} = F(1, n)$ as follows: $F_p = F_p'$, if $p \neq i+1$, $p \neq k-1$. If $k-1 \neq i+1$, then

$$F_{i+1} = F_{i+1}' - \operatorname{Cl} Q$$
 and $F_{k-1} = F_{k-1}' - \operatorname{Cl} R$.

If k - 1 = i + 1, $F_{i+1} = F_{i+1}' - (\operatorname{Cl} Q \cup \operatorname{Cl} R)$. \mathscr{F} satisfies (1) and (2) since \mathscr{F}' does, and \mathscr{F} satisfies (3) as well.

4. Principal results. In (2), the following theorem is proved.

THEOREM 1. Suppose that M is an a-triodic hereditarily unicoherent compact metric continuum, $\epsilon > 0$, M is the union of two subcontinua A and B, A is ϵ -chainable and B is chainable. Then M is ϵ -chainable.

This is a slightly strengthened version of (2, p. 466, Theorem 1), and the proof given there will go through with only very minor changes. Note, in particular, that if A is not simply ϵ -chainable but chainable, then M is chainable.

THEOREM 2. A compact metric continuum M is chainable if and only if M is a-triodic, hereditarily unicoherent, and each indecomposable subcontinuum of M is chainable.

Proof. Certainly, each of the three conditions is necessary for M to be chainable. Let us suppose, then, that the three conditions hold.

If M fails to be chainable, then there is an $\epsilon > 0$ such that no ϵ -chain covers M. Since the property of failing to be ϵ -chainable is inductive, there is a subcontinuum M' of M which is irreducible with respect to this property. We may assume that M' = M. Clearly, M is decomposable.

Case I. There is an indecomposable subcontinuum D of M such that $D^0 \neq \emptyset$.

Subcase Ia. D is a terminal subcontinuum of M.

By Lemma 2, M is irreducible between a pair of points, one of which belongs to D. Thus, M - D is connected and $\operatorname{Cl}(M - D)$ is a continuum. Moreover, $\operatorname{Cl}(M - D)$ is a proper subcontinuum of M, since $D^0 \neq \emptyset$. Thus, M is the union of two proper subcontinua of M, $\operatorname{Cl}(M - D)$, which is ϵ -chainable, and D, which is chainable. Theorem 1 shows that $\operatorname{Cl}(M - D) \cup D = M$ is ϵ -chainable. This contradiction establishes the theorem for Subcase Ia.

Subcase Ib. D is not a terminal subcontinuum of M.

Then $\operatorname{Cl}(M - D)$ is not connected. For, if $\operatorname{Cl}(M - D)$ is connected, then by Remark 1, both $\operatorname{Cl}(M - D)$ and D are terminal subcontinua of M.

We shall show that Cl(M - D) has exactly two components. Suppose that X, Y, and Z are distinct components of Cl(M - D). Since D contains a limit

point of each component of M - D, D certainly contains a limit point of each component of Cl(M - D). Since each of X, Y, and Z is closed, it follows that each must intersect D. Thus, $X \cup D$, $Y \cup D$, and $Z \cup D$ are three continua which intersect, no one of which is contained in the union of the other two. By (3, p. 440), their union is a triod. Since this is impossible, Cl(M - D) has exactly two components, X and Y.

Now X is a proper subcontinuum of M; hence, X is ϵ -chainable. Remark 1 shows that $D \cap X$ is a terminal subcontinuum of X. Applying Lemma 1, we obtain a taut ϵ -chain $\mathscr{C} = E(1, m)$ covering X and a positive integer j, $1 \leq j \leq m$, such that $D \cap X \subset {}^{e}E^{*}(j,m)$. In like fashion, there is a taut ϵ -chain $\mathscr{G} = G(1, t)$ covering Y and a positive integer $s, 1 \leq s \leq t$, such that $D \cap Y \subset {}^{e}G^{*}(s, t)$. Since X and Y are disjoint closed sets, we may invoke the normality of M to assume that $\operatorname{Cl} G^{*} \cap \operatorname{Cl} \mathscr{C}^{*} = \emptyset$.

Since $D^0 \neq \emptyset$, each of $D \cap X$ and $D \cap Y$ is a proper terminal subcontinuum of D. Now D is indecomposable; hence, D is irreducible from $D \cap X$ to $D \cap Y$, i.e., $D \cap X$ and $D \cap Y$ are disjoint opposite terminal subcontinua of D. From Lemma 7, it follows that there is a taut ϵ -chain $\mathscr{F} = F(1, n)$ covering D and positive integers i and k such that $1 \leq i < k - 2 < k \leq n$, $X \cap D \subset {}^e F^*(k, n)$, and $Y \cap D \subset {}^e F^*(1, i)$. Moreover, since the links of \mathscr{F} may be made as small as we please, we may assume that F(k, n) is a closed refinement of E(j, m), F(1, i) is a closed refinement of G(s, t), and

$$\operatorname{Cl}\mathscr{F}^* \cap (\operatorname{Cl}(E^*(1,j-1)) \cup \operatorname{Cl}(G^*(1,s-1))) = \emptyset;$$

see Figure 1.

FIGURE 1

We now apply, to \mathscr{E} and \mathscr{F} , the technique of "amalgamating two chains" used in the proof of Theorem 1, as given in (2). (Our construction shows that \mathscr{E} and \mathscr{F} satisfy (1)-(4) of (2, Lemma 4). Small modifications of \mathscr{E} and \mathscr{F} , detailed in (2, p. 465) will ensure that they satisfy (5) and (6) as well.) This yields an ϵ -chain \mathscr{H} covering $X \cup D$ such that the subchain of \mathscr{H} containing $Y \cap D$ is precisely F(1, i). Now we use this technique again, letting \mathscr{H} play the role of \mathscr{F} , and \mathscr{G} play the role of \mathscr{E} . This yields an ϵ -chain covering M and concludes the proof of Subcase Ib.

Case II. Each indecomposable subcontinuum of M has void interior.

Under this hypothesis, Bing has shown in the proof of (1, p. 658, Theorem 8) that there is a monotone upper semi-continuous decomposition J of M such that the decomposition space M/J is homeomorphic to [0, 1]. Let $f: M \to [0, 1]$ denote the projection map. Let $A = f^{-1}[0, \frac{1}{2}]$ and $B = f^{-1}[\frac{1}{2}, 1]$. Each of A and B is a proper subcontinuum of M, hence each is ϵ -chainable. By Remark 1, $A \cap B$ is a terminal subcontinuum of A and of B; in like fashion, $A \cap \text{Cl}(B - A)$ is a terminal subcontinuum of A and Cl(B - A).

Claim 1. If Q is a subcontinuum of $\operatorname{Cl}(B - A)$ such that $Q \cap A \cap \operatorname{Cl}(B - A) \neq \emptyset$ and $Q \not\subset A \cap \operatorname{Cl}(B - A)$, then $A \cap \operatorname{Cl}(B - A) \subset Q$.

Suppose that there is a continuum Q satisfying the hypothesis but not the conclusion of Claim 1. Let $p \in (A \cap \operatorname{Cl}(B - A)) - Q$ and let V be an open set such that $p \in V$ and $V \cap Q = \emptyset$. Since $Q \not\subset A \cap \operatorname{Cl}(B - A)$, $Q \not\subset A$, and hence there is a point $t \in Q$ with $f(t) > \frac{1}{2}$. Now $p \in A \cap \operatorname{Cl}(B - A)$, hence there is a point $s \in V \cap f^{-1}(0, f(t)) \cap (B - A)$. Since $s \notin A$, $\frac{1}{2} < f(s) < f(t)$. Thus, each of $\operatorname{Cl}(B - A) \cap f^{-1}[\frac{1}{2}, f(s)]$ and Q is a subcontinuum of $\operatorname{Cl}(B - A)$ intersecting $A \cap \operatorname{Cl}(B - A)$, and neither is contained in the union of $A \cap \operatorname{Cl}(B - A)$ and the other $(t \in Q - (A \cup f^{-1}[\frac{1}{2}, f(s)])$, $p \in \operatorname{Cl}(B - A) \cap f^{-1}[\frac{1}{2}, f(s)]$, and $p \notin Q$. Thus, $A \cap \operatorname{Cl}(B - A)$ is not a terminal subcontinuum of $\operatorname{Cl}(B - A)$. This contradiction establishes Claim 1.

Lemma 4 yields a subcontinuum K of $A \cap Cl(B - A)$ such that K is irreducible with respect to being a terminal subcontinuum of A. It follows that K is either a terminal point of A or a non-degenerate indecomposable continuum.

We shall show that K is a terminal subcontinuum of Cl(B - A). If this is not true, then there are subcontinua L and R of Cl(B - A), each intersecting K, and neither is contained in the union of K and the other. Since K is a terminal subcontinuum of A, $L \cup R \not\subset A$. Suppose that $L \not\subset A$. Then $L \not\subset A \cap Cl(B - A)$, and from Claim 1, $A \cap Cl(B - A) \subset L$. Since $R \not\subset L$, it follows that $R \not\subset A \cap Cl(B - A)$, and thus $A \cap Cl(B - A) \subset R$. Hence, R, L, and A are three continua which intersect, no one of which is contained in the union of the other two. Thus, their union is a triod. This contradiction shows that K is indeed a terminal subcontinuum of Cl(B - A). Let \mathscr{C}' and \mathscr{F}' be ϵ -chains covering A and $\operatorname{Cl}(B - A)$, respectively. We now show that there are chains \mathscr{C} and \mathscr{F} covering A and $\operatorname{Cl}(B - A)$, respectively, such that \mathscr{C} refines $\mathscr{C}', \mathscr{F}$ refines \mathscr{F}' , and the last link of \mathscr{C} intersects the last link of \mathscr{F} in a point of K. If K is a terminal point of A, then it is also a terminal point of $\operatorname{Cl}(B - A)$, by the argument just given, and the existence of \mathscr{C} and \mathscr{F} follows immediately from Lemma 1. Thus, we may assume that K is a non-degenerate indecomposable continuum; hence, K is chainable. Let $\mathscr{G} = G(1, d)$ be a chain covering K which refines both \mathscr{C}' and \mathscr{F}' . Let $\mu \in G_d$ be a point of K which is inaccessible from either A or $\operatorname{Cl}(B - A)$. (Since K has uncountably many disjoint composants, at most two of which are accessible from either A or $\operatorname{Cl}(B - A)$, such a point μ exists.) By Lemma 6, there is a chain $\mathscr{C} = E(1, x)$ which refines \mathscr{C}' , covers A, and $\mu \in E_x \cap K$. Similarly, there is a chain $\mathscr{F} = F(1, y)$ which refines \mathscr{F}' , covers $\operatorname{Cl}(B - A)$, and $\mu \in F_u \cap K$. Let U be an open set such that $\mu \in U$ and $\operatorname{Cl} U \subset E_x \cap F_y$.

Claim 2. No continuum in M - U intersects both A - U and $(M - U) - \mathscr{E}^* = M - \mathscr{E}^*$.

Suppose that there is such a continuum, N. Then N intersects B - A, since $N \not\subset \mathscr{C}^*$. Since N intersects A, N must intersect $A \cap \operatorname{Cl}(B - A)$. Thus, $N \cap \operatorname{Cl}(B - A)$ is a subcontinuum of $\operatorname{Cl}(B - A)$ intersecting $A \cap \operatorname{Cl}(B - A)$ and B - A. From Claim 1, it follows that $A \cap \operatorname{Cl}(B - A) \subset$ $N \cap \operatorname{Cl}(B - A)$. However, $\mu \in K \subset A \cap \operatorname{Cl}(B - A)$, and $\mu \notin N$. This contradiction establishes Claim 2.

It follows that M - U is the union of two disjoint closed sets, one containing A - U, the other containing $M - \mathscr{E}^*$. Using normality, we obtain disjoint open sets S and T such that $M - U \subset S \cup T$, $A - U \subset S$, and $M - \mathscr{E}^* \subset T$. An ϵ -chain covering M is given by

 $E(1, x - 2) \cap S \oplus (E_x \cap S)$ $- \operatorname{Cl} U \oplus E_x \cap S \oplus (F_y \cap T) \cup U \oplus F(y - 1, 1) \cap T.$

This establishes Theorem 2.

COROLLARY. Suppose that M is an a-triodic compact plane continuum which does not separate the plane. Then M is chainable if and only if each indecomposable subcontinuum of M is chainable.

Theorem 2 and its corollary are extensions of (1, p. 660, Theorem 11 and Corollary 2).

THEOREM 3. Suppose that M is an a-triodic hereditarily unicoherent compact metric continuum which is the union of countably many chainable continua. Then M is chainable.

Proof. Suppose that J is a sequence of chainable subcontinua of M such that $M = \bigcup_{i=1}^{\infty} J_i$. If N is an indecomposable subcontinuum of M, then

CHAINABLE CONTINUA

 $N = \bigcup_{i=1}^{\infty} (N \cap J_i)$. Since, for each $i, N \cap J_i$ is a continuum and no indecomposable continuum is the union of countably many proper subcontinua, there is a positive integer l such that $N = N \cap J_l$. Thus, N is a subcontinuum of J_l ; hence N is chainable. Since each indecomposable subcontinuum of M is chainable, we apply Theorem 2 and find that M is v_{ν} chainable.

References

- 1. R. H. Bing, Snake-like continua, Duke Math. J. 19 (1951), 653-663.
- 2. J. B. Fugate, Decomposable chainable continua, Trans. Amer. Math. Soc. 123 (1966), 460-468.
- 3. R. H. Sorgenfrey, Concerning triodic continua, Amer. J. Math. 66 (1944), 439-460.

University of Kentucky, Lexington, Kentucky