
A CHARACTERIZATION OF CHAINABLE CONTINUA 

J. B. FUGATE 

1. Introduction. In this paper, certain results of Bing (1) and myself (2) 
are extended. It is well-known that a chainable compact metric continuum 
must be a-triodic (contain no triods), hereditarily unicoherent (the common 
part of each two subcontinua is connected), and each subcontinuum must be 
chainable. Our principal result states that a compact metric continuum M is 
chainable if and only if M is a-triodic, hereditarily unicoherent and each 
indecomposable subcontinuum of M is chainable. Some condition on the 
indecomposable subcontinua of M seems essential, if we consider the dyadic 
solenoid, 5, which is indecomposable, a-triodic and hereditarily unicoherent. 
Indeed, each proper subcontinuum of S is an arc. However, S is not chainable, 
since it cannot be embedded in the plane. 

2. Definitions and notation. A chain <f is a finite collection {Ely... , Em) 
of open sets such that Et C\ Ej^ 0 if and only if \i — j \ ^ 1. We frequently 
denote S by £ ( 1 , m) and denote U?=iE* by E*(l, m). The elements of S 
are called links; two links are adjacent if and only if they intersect. If non-
adjacent links are a positive distance apart, <f is said to be taut. If E ( l , m) 
and F(l,j) are chains such that Et C\ F) 9e 0 if and only if i = m and j = 1, 
then the chain {Ei, . . . , Em, Fi, . . . , Fn] is denoted by E ( l , m) © F(l,j). 
If E ( l , m) is a chain and 5 is an open set intersecting the common part of 
each pair of adjacent links, then the chain {E± C\ 5, . . . , Em C\ S] is denoted 
by E(l, m) C\ S. If e > 0, then é* is an e-chain if and only if each link of S* 
has diameter less than e. A compact metric continuum M is e-chainable if 
and only if there is an e-chain covering M ; M is chainable (snakelike, arclike) 
if and only if for each e > 0, M is e-chainable. 

Finally, if E(l, m) is a chain covering M, and K is a subcontinuum of M, 
then K is contained exactly in the sub chain E(j, I) (in symbols, K CeE*(j, /)) 
if and only if K is not contained in any proper subchain of E(j, I) and 

(CI(E*(1,7 - 1)) W C1(£*(Z + 1, m))) H K = 0. 

3. Terminal subcontinua. Given an e > 0, we must be able to cover M 
with an e-chain. The basic idea is to decompose M into proper subcontinua 
A and B, and e-chain each of these. We then fit the two chains together to 
obtain a chain covering M. The key to this fitting process is the concept of 
terminal subcontinuum. 
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Definition 1. If M is a compact metric continuum and K is a subcontinuum 
of M, then K is a terminal subcontinuum of I f if and only if for each pair 
L, N of subcontinua of M, each intersecting K, either L <Z N VJ K or 
N C_ L\J K. If f£ is degenerate, then X is a terminal point of ikf. 

Remark 1. If the a-triodic, hereditarily unicoherent compact metric con­
tinuum Af is the union of two of its proper subcontinua A and B, then each 
is a terminal subcontinuum of M. Moreover, A r\ B is a terminal subcon­
tinuum of A and of B. (This is proved as Claim 1 in the proof of 
(2, Theorem 1).) 

Several important facts about terminal subcontinua are embodied in the 
following lemmas. Proofs of Lemmas 1 and 2 may be found in (2). 

LEMMA 1. Suppose that M is an a-triodic, hereditarily unicoherent compact 
metric continuum, K is a terminal subcontinuum of M, and S = E(\,m) is a 
chain covering M. Then there is a chain ^ = G(l, n) covering M and an integer s, 
1 S s ^ n, such that 

(1) ^ is a refinement of <f, 
(2) Z C ^ * ^ ) , 
(3) if S is taut, so is ^ . 

LEMMA 2. If M is a-triodic, hereditarily unicoherent compact metric continuum 
and K is a subcontinuum of M, then K is a terminal subcontinuum of M if and 
only if for each subcontinuum P of M which intersects K, KKJ P is irreducible 
between some pair of points, one of which belongs to K. 

LEMMA 3. Suppose that M is an a-triodic, hereditarily unicoherent compact 
metric continuum, K is a terminal subcontinuum of M, each of A and B is a 
proper subcontinuum of K and K = A \J B. Then at least one of A and B is a 
terminal subcontinuum of M. 

Proof. Suppose that the lemma fails. Since A is not a terminal subcontinuum 
of M, by Lemma 2 there is a subcontinuum R of M such that R C\ A ^ 0 and 

(f ) R VJ A is not irreducible between any pair of points, one of wThich 
belongs to A. 

Clearly, A C R- Since R intersects the terminal continuum K, applying 
Lemma 2 again, we find that there are points p G R and q G K such that 
R \J K is irreducible from p to q. Moreover, q G B — A, for if q G A, then 
R is a subcontinuum of R \J K containing p and q; hence, R\J K = R and 
R = RKJ A is irreducible from p Ç R to q G A. This violates (f). Not only 
does q Ç B — A, but p £ R — K, for if p G K, then p G B, otherwise we 
contradict (f). Then B is a proper subcontinuum of RKJK containing 
p and q and R W K is reducible from p to q. This contradiction shows that 
p G R - K. 

In a similar fashion, there is a subcontinuum S of M such that S r\ B ^ 0 
and 5 U B is not irreducible between any pair of points, one of which is in B. 
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Then S U B = S and there are points x £ S — K, y £ A — B such that 
S VJ K is irreducible from x to y. 

Since each of i? and S is a continuum intersecting K, it follows from the 
definition of a terminal subcontinuum that either R d S U K or S C. R^J K. 
We shall assume that 5 C R U i£. Since xÇS-K, xÇR-K. From (f), 
R = RVJ A is reducible from ^ to ^ 6 ^4, and thus there is a proper sub-
continuum L oi R such that p £ L, y £ L. Thus q & L. Now y £ L r\ K, 
hence L KJ K is a subcontinuum of i ? U X containing £ and #; thus, 
L U X = R\JK and x £ L. Since g £ £ - ( L H ( 5 U I ) ) C ^ i n ( S U Î ) 
is a proper subcontinuum of 5 U i£ containing x and 3/ and S \J K is reducible 
from x to y. This contradiction establishes the lemma. 

LEMMA 4. Suppose that M is an a-triodic, hereditarily unicoherent compact 
metric continuum and K is a terminal subcontinuum of M. Then there is a 
subcontinuum L of K such that 

(i) L is a terminal subcontinuum of M; 
(ii) L is irreducible with respect to (i); 

(iii) L is indecomposable or is a single point, a terminal point of M. 

Proof. If B C M, then B has Property P if and only if B is a terminal sub­
continuum of M and B (Z K. We show that Property P is inductive. 

Suppose that N is a decreasing sequence such that for each positive integer i, 
Ni is a continuum having Property P. Clearly, n " = i ^ i is a continuum con­
tained in K. If Dî^iNi does not have Property P, then r)T=iNi is not terminal 
for M. Thus there are subcontinua D and E of M, each intersecting f l i l i ^ » 
and neither is contained in the union of dïLiNi and the other. Let 

de D -\EVjynNi)) and e e E - ^ U ^ n J V j J . 

Since M — {d, e) is open in M and contains n"=i^f> there is a positive 
integer j such that Nj C M — {d, e}. Thus, each of D and E intersect Nj and 
neither is contained in the union of Nj and the other. Hence, Nj is not a ter­
minal subcontinuum of M. This is impossible; hence Property P is inductive. 

Since K has Property P, there is a subcontinuum L of K such that L is 
irreducible with respect to Property P. This establishes (i) and (ii). According 
to Lemma 3, L cannot be decomposable, hence (iii) is established. 

LEMMA 5. Suppose that M is an a-triodic, hereditarily unicoherent compact 
metric continuum and K is an indecomposable terminal subcontinuum of M. 
Further, suppose that there is a subcontinuum A of M such that A C\ K 9^ 0, 
K ÇL A, and A (£. K. Let D be the composant of K containing A C\K. If B is a 
subcontinuum of M intersecting K, such that B (£_ K and K Çf_ B, then 
BC\KCD. 

Proof. Suppose that there is a continuum B for which the conclusion fails. 
Since B C\ K is a proper subcontinuum of K not contained in D, B P\ K C\ 
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D = id. Thus A C\ K C\ B = 0. Now, K is a terminal subcontinuum of M\ 
it follows that ACB\JK or BCAVJK. Suppose that A C B \J K. Since 
A (jL K, A H B 9* 0. Then (A U B) Pi K is a subcontinuum of X inter­
secting disjoint composants of K. Thus (A U B) C\ K = K. However, this 
means that K is the union of two proper subcontinua, A C\ K and B C\ K. 
This contradicts the indecomposability of K and establishes the lemma. 

Definition 2. Suppose that M is an a-triodic, hereditarily unicoherent 
compact metric continuum and K is an indecomposable terminal subcontinuum 
of M. If there exists a continuum A satisfying the hypothesis of Lemma 5, 
then the composant D is called the accessible composant of K. All other com­
posants are inaccessible. If no such continuum A exists, then all composants 
of K are inaccessible. In either case, a point of an inaccessible composant of K 
is an inaccessible point of K. 

Remark 2. Suppose that M is an a-triodic, hereditarily unicoherent compact 
metric continuum, K is an indecomposable terminal subcontinuum of M, and 
JU is an inaccessible point of K. I t follows immediately from Lemma 5 that if 
R is a subcontinuum of M containing /x, then R C K or K C R-

Definition 3. Suppose that M is a compact metric continuum and each of 
K and L is a terminal subcontinuum of M. K and L are opposite terminal 
subcontinua if and only if there are points k Ç K and / G L such that M is 
irreducible from k to /. 

This notion is essentially a generalization of that of ''opposite terminal 
points" found in (1). The following lemma extends (2, Theorem 14). 

LEMMA 6. Suppose that M is an a-triodic hereditarily unicoherent compact 
metric continuum, K is a non-degenerate indecomposable terminal subcontinuum 
of M, $ = E ( l , m) is a chain covering M, ^ = F (I, n) is a chain which 
refines S and covers K, and /x Ç Fn C\ K is an inaccessible point of K. Then 
there is a chain 2 — D(l, t) covering M such that 

(i) Qt refines S ; 
(ii) M e Dt. 

Proof. Suppose that the lemma is false. If B C M, then B has Property P 
if and only if B is a subcontinuum of M containing K, and no chain covering B 
satisfies (i) and (ii). We shall show that Property P is inductive. Suppose that 
J is a sequence such that for each positive integer i, Jt has Property P and 
Ji+i C Ji. Clearly, if n"=i Jt does not have Property P, then there is a 
chain J ^ which refines <f, covers n f= i Ju and fi is in the last link of 34?. Now 
J^7* is an open set containing C\T=iJi. Hence, there is a positive integer j such 
that Jj C.34?*. Thus, J3- does not have Property P. This contradiction shows 
that C\7=iJ% has Property P and Property P is inductive. 

Since M has Property P and K does not have Property P, there is a sub­
continuum M' of M such that Mr is irreducible with respect to having 
Property P. For notational convenience, we shall assume that M' = M. We 
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may further assume that M is not contained in any proper subchain of $. 
Since K is a terminal subcontinuum of M, it follows from Lemma 2 that there 
is a pair of points p £ K, q £ M — K such that M is irreducible from p to q. 
Since the composant of M determined by p is dense in M, there is a proper 
subcontinuum N of M such that K C N and iV intersects each link of <??. 
Now TV is a proper subcontinuum of M; hence, N does not have Property P 
and there is a chain & = G(l, &) covering N such that & refines $ and 
[x 6 G6. We may assume that no chain with fewer links than @ has these 
properties. 

We shall demonstrate that Gi P N P (E\ \J Em) ^ 0. For, suppose this is 
not true. Then there is a link Er £ E(2, m — 1) such that Gi P N C E r . Now 
^ * P iV intersects both Ei and Em. Let Gs be the first link of & which 
intersects N P ( E i U Em). Clearly 1 < s. For definiteness, let us suppose 
that Gs P N P Ei ^ 0. Let G* denote the first link of & which intersects 
iV Pi Em. Since G (5, 0 is a refinement of E ( l , m) which intersects E± and Em, 
some link of G(s, /) is contained in E r . Thus, Er contains a link of G(l, /) 
distinct from Gi. 

Since G* is the first link of 3? which intersects Em, G* C Ew_i. There is a 
link Ex of $ such that G*(l, /) C E*(x, m — 1) and G*(l, 0 is not contained 
in any proper subchain of E(x, m — 1). Since G*(l, t) intersects both Ei and 
Em, 1 ^ ^ 2 ^ r ^ w - l , Define a new chain by 

G*(l, t - 1) P E(x, w - 2) 0 G*(l, 0 P Em_i 0 G(t + 1, &). 

Since Gt+i C £m-i) this chain refines <f, covers N, and has ju in its last link. 
Moreover, this chain has fewer links than & y since each link of E(x, m — 1) 
contains at least one link of & and Er Ç E(x, m — 1) contains at least two 
links of &. This is contrary to the choice of S ,̂ and hence G\ P (Ei \J Em) P 
N 7* 0. We shall suppose that Gx P N P Ex ^ 0. 

Let F be an open set such that CI V C (Gi Pi Ei) - {/*}, and F P iV ^ 0. 
Let i? denote the component of M — F containing ju. Since each of N and i£ 
is a continuum intersecting K, either R (Z N VJ K = N or N C R^J K. We 
shall show that the last alternative is impossible. If F H iV C K, then, 
since ju is an inaccessible point of K, it follows from Remark 2 that R C K. 
Since N (IK, N (£_ R\J K = K. If V C\N (£K, then F Pi N (£ R VJ K 
and N <ZRVJ K. In either event, N (£ R\J K] hence i? C # U 2£ = iV. 
Since R is a component of M — V and N is covered by ^ , no continuum in 
M - V intersects both R and (M - V) - &* = M - &*. Thus, M - F 
is the union of two disjoint closed sets, one containing M — &*, the other 
containing R. Using normality, we obtain disjoint open sets 5 and T such 
that AT- . VCSVT,M - &* C TandR C S. Define a chain ^ = D(l,t) 
covering M as follows: 

9 = E(m, 3) P T 0 (E2 P r ) 

- ci we Ein r e (GiP5) u F© G(2,6) p5. 
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Since Q has properties (i) and (ii), this concludes the proof. 

LEMMA 7. Suppose that D is an a-triodic hereditarily unicoherent compact 
metric continuum, K and L are disjoint opposite terminal subcontinua of D, 
and <o' is an e-chain covering D. Then there is a chain ^ = F (I, n) covering D 
such that 

(1) Ĵ ~ is a refinement of $'; 
(2) FXC\K^Q and FnC\L^ 0; 
(3) there are positive integers i and k with K £_e F*(l, i), L C e F*(k, n). 

Proof. We first wish to obtain a chain J^"' satisfying (1) and (2). Minor 
modifications of 3^' will then yield a chain J ^ satisfying (1), (2), and (3). 
(The assumption that K and L are disjoint is not necessary, but it makes the 
proof of (3) easier.) 

According to Lemma 1, there is an e-chain S = E(l,m) which refines $', 
covers D, and K C.6 E*(j, m). Applying this lemma again, we obtain a chain 
& = G(l, b) covering D such that ^ refines <f and L <Ze G*(a, b); we may 
assume that no chain with fewer links than ^ has these properties. If 
Ei P L ^ 0, we may take ^ ' = S ; similarly, if G\ P K ^ 0, we may take 
<#"' = &. Thus, we may assume that Ex P L = 0 and Gi P K = 0. 

There is a link of 3^ contained in Ex and a link of Ŝ  contained in Em. An 
argument essentially the same as that given in the proof of Lemma 6 will 
show that GiCExKJ Em. (Substitute "links of ^ contained in £ t U Em" 
for * 'links of & intersecting N P (Ei \J Em)".) Indeed, G\ C Ei. For, suppose 
that Gi (Z Ei, hence that Gi C Em. Now GiC\K = 0, and since K C e E* (j, w), 
(£OT — Em_i) H Z ^ 0 . Hence, there is a link Gr £ G(l, m) such that 
Gr C Em. There is a positive integer z such that G*(l, r) C £*(£, m) and 
G*(l, r) (£ £*(z + 1, m). Then E(s, m - 1) P G*(2, r - 1) 0 £ m P 
G*(l, r) © G(r + 1, b) is a proper consolidation of & since Em contains Gi 
and Gr. This violates the choice of ^ as being a chain with fewest links which 
has the desired properties. Thus Gi C Ei. 

Now D is irreducible from a point & £ i£ to a point I £ L. Since the 
composant of D determined by / is dense in D, there is a proper subcontinuum 
N oi D such that Z 6 N and iV P Gx P Ei ^ 0. Since k & N, N\J L is a 
proper subcontinuum of D. We shall simply assume that L (Z N. 

Let V be an open set intersecting N such that CI V C Gi C Ei. Since 
Ex P L = 0 and Gi P X = 0, F P (L U X) = 0. Since £> is irreducible 
from k to /, no continuum in D — V intersects both K and L. (If i? is such a 
continuum, then RKJ K\J L is a proper subcontinuum of D containing k 
and /.) Hence, D — V is the union of two disjoint closed sets, one containing 
K, and the other containing L. Thus, there are disjoint open sets S and T 
such that M - V C S \J T, K C S and L C T. Define a chain ^ ' = F' (1, ») 
as follows: 

-i^"' = E ( m , 3 ) P S © ( E 2 P 5 ) 
- Cl F © E1 P 5 © (Gx P T) U F © G(2, b) P 7\ 
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Since ^ ' refines <f, &' refines <sf'. Moreover, (/Y - TV) Pi R ^ 0, and 
(TV - 7v_/) H L ^ 0. 

Let 0 and i? be open sets such that K C Q C CIQ C F'*(l, i)} L C R C 
CIRC F**(k, n), and CI Q P\ CI 2? = 0. We define the chain ^ = F(l , n) 
as follows: Fp = Fv', if p ^ i + 1, £ =̂  & - 1. If & - 1 ^ i + 1, then 

Fi+1 = Fi+1' - CI Q and / ^ = / W - CI 12. 

If k - 1 = i + 1, F ^ i = / W - (Cl Q U Cl 2Î). ^ satisfies (1) and (2) 
since J r / does, and ^ satisfies (3) as well. 

4. Principal results. In (2), the following theorem is proved. 

THEOREM 1. Suppose that M is an a-triodic hereditarily unicoherent compact 
metric continuum, e > 0, M is the union of two sub continua A and B, A is 
e-chainable and B is chainable. Then M is e-chainable. 

This is a slightly strengthened version of (2, p. 466, Theorem 1), and the 
proof given there will go through with only very minor changes. Note, in 
particular, that if A is not simply e-chainable but chainable, then M is 
chainable. 

THEOREM 2. A compact metric continuum M is chainable if and only if M is 
a-triodic, hereditarily unicoherent, and each indecomposable subcontinuum of M 
is chainable. 

Proof. Certainly, each of the three conditions is necessary for M to be 
chainable. Let us suppose, then, that the three conditions hold. 

If M fails to be chainable, then there is an e > 0 such that no e-chain 
covers M. Since the property of failing to be e-chainable is inductive, there 
is a subcontinuum M' of M which is irreducible with respect to this property. 
We may assume that M' = M. Clearly, M is decomposable. 

Case I. There is an indecomposable subcontinuum D of M such that D° ^ 0. 

Subcase la. D is a terminal subcontinuum of M. 

By Lemma 2, M is irreducible between a pair of points, one of which belongs 
to D. Thus, M — D is connected and Cl(ikf — D) is a continuum. Moreover, 
CI (M — D) is a proper subcontinuum of M, since D° ^ 0. Thus, M is the 
union of two proper subcontinua of M, CI (If — D), which is e-chainable, and 
D, which is chainable. Theorem 1 shows that C1(M — D) \J D = M is 
e-chainable. This contradiction establishes the theorem for Subcase la. 

Subcase lb. D is not a terminal subcontinuum of M. 

Then CI (ikf — D) is not connected. For, if Cl (M — D) is connected, then 
by Remark 1, both CI (M — D) and D are terminal subcontinua of M. 

We shall show that Cl(ikf — D) has exactly two components. Suppose that 
X, Y, and Z are distinct components of Cl(M — D). Since D contains a limit 
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point of each component of M — D, D certainly contains a limit point of each 
component of CI (M — D). Since each of X> F, and Z is closed, it follows that 
each must intersect D. Thus, X \J D, YVJD, and Z\J D are three continua 
which intersect, no one of which is contained in the union of the other twTo. 
By (3, p. 440), their union is a triod. Since this is impossible, CI (ikf — D) has 
exactly two components, X and Y. 

Now X is a proper subcontinuum of M\ hence, X is e-chainable. Remark 1 
shows that D C\ X is a terminal subcontinuum of X. Applying Lemma 1, 
we obtain a taut e-chain S — E ( l , m) covering X and a positive integer j , 
1 ^ j S m, such that D C\ X Ce E*(J, m). In like fashion, there is a taut 
e-chain @ = G(l, t) covering Y and a positive integer s, 1 ^ s S t, such that 
D f~\ Y C e G*(s, t). Since X and Y are disjoint closed sets, we may invoke the 
normality of M to assume that Cl G* Pi Cl <?* = 0. 

Since D° ^ 0, each of D C\ X and D C\ F is a proper terminal subcontinuum 
of D. Now D is indecomposable; hence, D is irreducible from P H I to 
D Pi F, i.e., D C\ X and D C\ Y are disjoint opposite terminal subcontinua 
of P . From Lemma 7, it follows that there is a taut e-chain JF~ = ^ ( 1 , w) 
covering D and positive integers i and & such that 1 ^ i < k — 2 < k ^ n, 
i n D C ^ * ( M ) , a n d F H D C ^ ^ U ) . Moreover, since the links o f ^ 
may be made as small as we please, we may assume that F(k, n) is a closed 
refinement of E(j, m), F (I, i) is a closed refinement of G(s, t), and 

Cl#~* P (C1(E*(1, j - 1)) U C1(G*(1, 5 - 1))) = 0; 

see Figure 1. 

FIGURE 1 
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We now apply, to $ and J^, the technique of "amalgamating two chains" 
used in the proof of Theorem 1, as given in (2). (Our construction shows that 
<o a n d ^ satisfy ( l)-(4) of (2, Lemma 4). Small modifications of $ and^~, 
detailed in (2, p. 465) will ensure that they satisfy (5) and (6) as well.) 
This yields an e-chain ffl covering I U D such that the subchain of ffl con­
taining Y P D is precisely F(l, i). Now we use this technique again, letting 
Ji? play the role of Ĵ ~, and Ŝ  play the role of S. This yields an e-chain covering 
M and concludes the proof of Subcase lb. 

Case II. Each indecomposable subcontinuum of M has void interior. 

Under this hypothesis, Bing has shown in the proof of (1, p. 658, Theorem 8) 
that there is a monotone upper semi-continuous decomposition J of M such 
that the decomposition space M/Jis homeomorphic to [0, 1]. Let / : M —> [0, 1] 
denote the projection map. Let A = /_ 1[0, J] and B = /"Ml» 1]. Each of A 
and B is a proper subcontinuum of ikf, hence each is e-chainable. By Remark 1, 
A P B is a terminal subcontinuum of A and of B; in like fashion, 
A H\ C\(B — A) is a terminal subcontinuum of A and Cl(B — A). 

Claim 1. If Q is a subcontinuum of Cl(B — A) such that Q C\ A C\ 
C\(B - A) j* 0 and Q <£ A P Cl(B - A), then A P C1(J5 - A) C Q. 

Suppose that there is a continuum Q satisfying the hypothesis but not the 
conclusion of Claim 1. Let p Ç (A f~\ C\{B — A)) — Q and let V be an open 
set such that p £ F and V P Q = 0. Since Q (£ A r\C\{B - A), Q<£A, 
and hence there is a point t £ Q with /( / ) > §. Now £ 6 A P CI (5 - -4), 
hence there is a point 5 6 F H f H O . / W ) P (5 - 4 ) . Since s $ A, 
\ <f(s) < / (* ) . Thus, each of C1(B - A) P ^ M i J O O ] and Q is a sub­
continuum of Cl(B —A) intersecting A P Cl(B — A), and neither is con­
tained in the union of A P CI(B — A) and the other (t £ Q — 
(A\Jf-i[hf(s)]), p £ C\(B - A) nf-i[hf(s)l and p t Q). Thus, 
4̂ Pi C\(B — A) is not a terminal subcontinuum of 0(23 — A). This contra­

diction establishes Claim 1. 
Lemma 4 yields a subcontinuum 2£ of A C\C\{B — A) such that X is 

irreducible with respect to being a terminal subcontinuum of A. I t follows 
that K is either a terminal point of A or a non-degenerate indecomposable 
continuum. 

We shall show that K is a terminal subcontinuum of Cl(B — A). If this is 
not true, then there are subcontinua L and R of Cl(B — A), each intersecting 
K, and neither is contained in the union of K and the other. Since K is a 
terminal subcontinuum of A, LKJRÇ^A. Suppose that L (£ A. Then 
L(ZA(^C\(B-A), and from Claim 1, A C\C\{B - A) C L. Since 
R(tL/\t follows that R ÇT A C\ Cl(B - A), and thus ^ P C1(B - A) C 2?. 
Hence, R, L, and 4̂ are three continua which intersect, no one of which is 
contained in the union of the other two. Thus, their union is a triod. This 
contradiction shows that K is indeed a terminal subcontinuum of CI (23 —A). 
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Let <o' and J^ ' be e-chains covering A and Cl(B — A), respectively. We 
now show that there are chains $ and J ^ covering A and Cl(B — A), respec­
tively, such that S refines <of, &~ refines JF7 , and the last link of <o intersects 
the last link oi^ in a point of K. If K is a terminal point of A, then it is also 
a terminal point of Cl(B — A), by the argument just given, and the existence 
of <o andJ^~ follows immediately from Lemma 1. Thus, we may assume that 
K is a non-degenerate indecomposable continuum; hence, K is chainable. 
Let & = G(l, d) be a chain covering K which refines both <o' and J^~'. Let 
fx G Gd be a point of K which is inaccessible from either A or Cl (B — ,4). 
(Since K has uncountably many disjoint composants, at most two of which 
are accessible from either A or Cl (B —A), such a point fx exists.) By Lemma 6, 
there is a chain $ = E ( l , x) which refines $*', covers A, and fx £ Ex C\ K. 
Similarly, there is a chain ^ = F (I, y) which refines J ^ , covers Cl (B — A), 
and /x 6 Fy C\K. Let U be an open set such that /x Ç £/ and CI U C Fx C\ Fy. 

Claim 2. No continuum in 7kf — U intersects both A — U and (M — U) — 
(f * = M - #*. 

Suppose that there is such a continuum, N. Then N intersects B — A, 
since N <£ <£**. Since N intersects A, N must intersect i H C 1 ( 5 - i ) . 
Thus, N P\ Cl(B — A) is a subcontinuum of C1(JE> — A) intersecting 
A nd(B - A)a.ndB - A. From Claim 1, it follows that A H CI (5 - .4) C 
N H C1(J3 - ^4). However, fx £ K C A H Cl(B - A), and M g AT. This 
contradiction establishes Claim 2. 

I t follows that M — U is the union of two disjoint closed sets, one containing 
A — U, the other containing M — <f*. Using normality, we obtain disjoint 
open setsSand Tsuch that M - U C S U T,A - U C S, and M -> ê* C T. 
An e-chain covering M is given by 

E(i,x -2)ns® (Exns) 
- ci u e EX r\ s e (Fy n T) \J U e F(y - 1, i) n r. 

This establishes Theorem 2. 

COROLLARY. Suppose that M is an a-triodic compact plane continuum which 
does not separate the plane. Then M is chainable if and only if each indecomposable 
subcontinuum of M is chainable. 

Theorem 2 and its corollary are extensions of (1, p. 660, Theorem 11 and 
Corollary 2). 

THEOREM 3. Suppose that M is an a-tr iodic hereditarily unicoherent compact 
metric continuum which is the union of countably many chainable continua. 
Then M is chainable. 

Proof. Suppose that / is a sequence of chainable subcontinua of M such that 
M = U ™= i Ji- If N is an indecomposable subcontinuum of M, then 
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N = U r = i ( ^ n / i ) . Since, for each i, N r\Ji is a continuum and no in­
decomposable continuum is the union of countably many proper subcontinua, 
there is a positive integer I such that N — N C\ Jt. Thus, N is a subcontinuum 
of Ji) hence N is chainable. Since each indecomposable subcontinuum of M 
is chainable, we apply Theorem 2 and find that M is w chainable. 
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