A CHARACTERIZATION OF CHAINABLE CONTINUA

J. B. FUGATE

1. Introduction. In this paper, certain results of Bing (1) and myself (2)
are extended. It is well-known that a chainable compact metric continuum
must be a-triodic (contain no triods), hereditarily unicoherent (the common
part of each two subcontinua is connected), and each subcontinuum must be
chainable. Our principal result states that a compact metric continuum M is
chainable if and only if M is a-triodic, hereditarily unicoherent and each
indecomposable subcontinuum of M is chainable. Some condition on the
indecomposable subcontinua of M seems essential, if we consider the dyadic
solenoid, .S, which is indecomposable, a-triodic and hereditarily unicoherent.
Indeed, each proper subcontinuum of S is an arc. However, S is not chainable,
since it cannot be embedded in the plane.

2. Definitions and notation. 4 chain & is a finite collection {Ej, . . ., E,}
of open sets such that E; N E; 5 @ if and only if |2 — j| < 1. We frequently
denote & by E(1, m) and denote \U7-; E; by E*(1, m). The elements of &
are called links; two links are adjacent if and only if they intersect. If non-
adjacent links are a positive distance apart, & is said to be taut. If E(1, m)
and F(1, ) are chains such that E; N\ F; # @ if and only if ¢ = mand j = 1,
then the chain {Ey, ..., E,, Fi,..., F,} is denoted by E(1,m) & F(1, j).
If E(1,m) is a chain and S is an open set intersecting the common part of
each pair of adjacent links, then the chain {E; NS, ..., E, NS} is denoted
by E(1,m) N S. If € > 0, then & is an e-chain if and only if each link of &
has diameter less than e. A compact metric continuum M is e-chainable if
and only if there is an e-chain covering M; M is chainable (snakelike, arclike)
if and only if for each ¢ > 0, M is e-chainable.

Finally, if E(1, m) is a chain covering M, and K is a subcontinuum of M,
then K s contained exactly in the subchain E(j, 1) (in symbols, K C°E*(j, 1))
if and only if K is not contained in any proper subchain of E(j,7) and

(CI(E*(1,; — 1) UCI(E*(I+ 1,m))) YK = 0.

3. Terminal subcontinua. Given an ¢ > 0, we must be able to cover M
with an e-chain. The basic idea is to decompose M into proper subcontinua
A and B, and e-chain each of these. We then fit the two chains together to
obtain a chain covering M. The key to this fitting process is the concept of
terminal subcontinuum.
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Definition 1. 1f M is a compact metric continuum and K is a subcontinuum
of M, then K is a terminal subcontinuum of M if and only if for each pair
L, N of subcontinua of M, each intersecting K, either L C N\UK or
N C L\UK. If K is degenerate, then K is a terminal point of M.

Remark 1. If the a-triodic, hereditarily unicoherent compact metric con-
tinuum M is the union of two of its proper subcontinua A and B, then each
is a terminal subcontinuum of M. Moreover, 4 N\ B is a terminal subcon-
tinuum of A4 and of B. (This is proved as Claim 1 in the proof of
(2, Theorem 1).)

Several important facts about terminal subcontinua are embodied in the
following lemmas. Proofs of Lemmas 1 and 2 may be found in (2).

LeEmMa 1. Suppose that M is an a-triodic, hereditarily unicoherent compact
metric continuum, K is a terminal subcontinuum of M, and & = E(1,m) is a
chain covering M. Then there is a chain G = G(1, n) covering M and an integer s,
1 < s =< n, such that

(1) 9 is a refinement of &,

(2) K C*G*(s,n),

(3) if & is taut, sois Y.

LemyMA 2. If M s a-triodic, hereditarily unicoherent compact metric continuum
and K is a subcontinuum of M, then K s a terminal subcontinuum of M if and
only if for each subcontinuum P of M which intersects K, K \J P 1is trreducible
between some pair of points, one of which belongs to K.

LemMA 3. Suppose that M is an a-triodic, hereditarily unicoherent compact
metric continuum, K is a terminal subcontinuum of M, each of A and B is a
proper subcontinuum of K and K = A \J B. Then at least one of A and B is a
terminal subcontinuum of M.

Proof. Suppose that the lemma fails. Since 4 is not a terminal subcontinuum
of M, by Lemma 2 there is a subcontinuum R of M such that RN\ 4 # @ and

() R\U A4 is not irreducible between any pair of points, one of which

belongs to 4.
Clearly, 4 C R. Since R intersects the terminal continuum K, applying
Lemma 2 again, we find that there are points p € R and ¢ € K such that
R \U K is irreducible from p to g. Moreover, ¢ € B — A4, for if ¢ € A, then
R is a subcontinuum of R \U K containing p and ¢; hence, R\U K = R and
R = R\U A4 is irreducible from p € R to ¢ € A. This violates (}). Not only
does ¢ € B — A4, but p € R — K, for if p € K, then p € B, otherwise we
contradict (f). Then B is a proper subcontinuum of R U K containing
p and ¢ and R U K is reducible from p to ¢. This contradiction shows that
p€R—K.

In a similar fashion, there is a subcontinuum .S of M such that SN B = @
and S U B is not irreducible between any pair of points, one of which is in B.

https://doi.org/10.4153/CJM-1969-040-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1969-040-x

CHAINABLE CONTINUA 385

Then S\U B = S and there are points x € S — K, y € 4 — B such that
S U K is irreducible from x to y.

Since each of R and S is a continuum intersecting K, it follows from the
definition of a terminal subcontinuum that either R C S\UW KorSC RVU K.
We shall assume that SC R\ UK. Since x € S — K, x € R — K. From (%),
R = R\U 4 is reducible from p to y € 4, and thus there is a proper sub-
continuum L of R such that p € L, y € L. Thus ¢ ¢ L. Now y € LN K,
hence L U K is a subcontinuum of R \U K containing p and g¢; thus,
LUK =R\UK and x€ L. Since g6 B— LN (SUK))CS, LN (SUK)
is a proper subcontinuum of S \U K containing x and y and S U K is reducible
from x to y. This contradiction establishes the lemma.

LemMmA 4. Suppose that M is an a-triodic, hereditarily unicoherent compact
metric continuum and K is a terminal subcontinuum of M. Then there is a
subcontinuum L of K such that

(i) L s a terminal subcontinuum of M,
(i1) L 1s irreducible with respect to (i);
(iii) L s indecomposable or is a single point, a terminal point of M.

Proof. If B C M, then B has Property P if and only if B is a terminal sub-
continuum of M and B C K. We show that Property P is inductive.

Suppose that N is a decreasing sequence such that for each positive integer 2,
N; is a continuum having Property P. Clearly, N;-1/V; is a continuum con-
tained in K. If M;-1V; does not have Property P, then M {~1/V; is not terminal
for M. Thus there are subcontinua D and E of M, each intersecting M ;=1V,
and neither is contained in the union of M. 1N; and the other. Let

d€D~<EU<F1N1>> and eEE—<Du<F%N,>>.
i=1 1=1

Since M — {d, e} is open in M and contains (N\;-1V; there is a positive
integer j such that N, C M — {d, e}. Thus, each of D and E intersect N; and
neither is contained in the union of IV; and the other. Hence, IV, is not a ter-
minal subcontinuum of M. This is impossible; hence Property P is inductive.

Since K has Property P, there is a subcontinuum L of K such that L is
irreducible with respect to Property P. This establishes (i) and (ii). According
to Lemma 3, L cannot be decomposable, hence (iii) is established.

LEMMA 5. Suppose that M is an a-triodic, hereditarily unicoherent compact
metric continuum and K is an indecomposable terminal subcontinuum of M.
Further, suppose that there is o subcontinuum A of M such that A N K # @,
K T A,and A C K. Let D be the composant of K containing A N K. If B is a
subcontinuum of M intersecting K, such that B ¢ K and K ( B, then
BNK CD.

Proof. Suppose that there is a continuum B for which the conclusion fails.
Since B M K is a proper subcontinuum of K not contained in D, BN K N
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D =@. Thus A YK N B = @. Now, K is a terminal subcontinuum of M;
it follows that A C B\JU K or B C A \U K. Suppose that A C B U K. Since
AFZ K, ANB #@. Then (4\UB) N K is a subcontinuum of K inter-
secting disjoint composants of K. Thus (4 \U B) M\ K = K. However, this
means that K is the union of two proper subcontinua, 4 M K and B M K.
This contradicts the indecomposability of K and establishes the lemma.

Definition 2. Suppose that M is an a-triodic, hereditarily unicoherent
compact metric continuum and K is an indecomposable terminal subcontinuum
of M. If there exists a continuum A satisfying the hypothesis of Lemma 5,
then the composant D is called the accessible composant of K. All other com-
posants are tnaccessible. If no such continuum A4 exists, then all composants
of K are inaccessible. In either case, a point of an inaccessible composant of K
is an inaccessible point of K.

Remark 2. Suppose that M is an a-triodic, hereditarily unicoherent compact
metric continuum, K is an indecomposable terminal subcontinuum of M, and
w is an inaccessible point of K. It follows immediately from Lemma 5 that if
R is a subcontinuum of M containing u, then R C K or K C R.

Definition 3. Suppose that M is a compact metric continuum and each of
K and L is a terminal subcontinuum of M. K and L are opposite terminal
subcontinua if and only if there are points 2 € K and / € L such that M is
irreducible from % to .

This notion is essentially a generalization of that of ‘“opposite terminal
points’’ found in (1). The following lemma extends (2, Theorem 14).

LemMmA 6. Suppose that M is an a-triodic hereditarily unicoherent compact
melric continuum, K s a non-degenerate indecomposable terminal subcontinuum
of M, & = E(1,m) is a chain covering M, ¥ = F(1,n) is a chain which
refines & and covers K, and u € F, N\ K is an inaccessible point of K. Then
there is a chain & = D(1,t) covering M such that

(i) D refines &;

(ii) v € D,

Proof. Suppose that the lemma is false. If B C M, then B has Property P
if and only if B is a subcontinuum of M containing K, and no chain covering B
satisfies (i) and (ii). We shall show that Property P is inductive. Suppose that
J is a sequence such that for each positive integer ¢, J; has Property P and
Ji1 C Ji Clearly, if N~ J; does not have Property P, then there is a
chain 3 which refines &, covers M1 J;, and u is in the last link of 2. Now
H* is an open set containing N §=1 J;. Hence, there is a positive integer 7 such
that J; C 2*. Thus, J; does not have Property P. This contradiction shows
that M;=1J; has Property P and Property P is inductive.

Since M has Property P and K does not have Property P, there is a sub-
continuum M’ of M such that M’ is irreducible with respect to having
Property P. For notational convenience, we shall assume that M’ = M. We
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may further assume that M is not contained in any proper subchain of &.
Since K is a terminal subcontinuum of 3/, it follows from Lemma 2 that there
is a pair of points p € K, ¢ € M — K such that M is irreducible from p to q.
Since the composant of M determined by p is dense in M, there is a proper
subcontinuum N of M such that K C N and N intersects each link of &.
Now N is a proper subcontinuum of M; hence, N does not have Property P
and there is a chain 4 = G(1,b) covering N such that ¥ refines & and
u € G, We may assume that no chain with fewer links than % has these
properties.

We shall demonstrate that G; N\ N N (E,. U E,) # 0. For, suppose this is
not true. Then thereisalink E, € E(2, m — 1) such that Gy YN C E,. Now
G* N N intersects both E; and E,. Let G, be the first link of ¥ which
intersects N M (E,\J E,,). Clearly 1 < s. For definiteness, let us suppose
that Ge M\ N N E; # @. Let G, denote the first link of ¥ which intersects
N M E,. Since G(s, t) is a refinement of E(1, m) which intersects E; and E,,
some link of G(s,t) is contained in E,. Thus, E, contains a link of G(1,¢)
distinct from Gi.

Since G, is the first link of & which intersects E,,, G; C E,_1. There is a
link E, of & such that G*(1,¢) C E*(x, m — 1) and G*(1, ¢) is not contained
in any proper subchain of E(x, m — 1). Since G*(1, ¢) intersects both E; and
E, 1=<x=2=r7r=m— 1. Define a new chain by

G*(1l,t —1)NE(@x,m—2) ® G*(1,t) YE,—1 ® G(t + 1,0).

Since G 41 C E,_y, this chain refines &, covers N, and has u in its last link.
Moreover, this chain has fewer links than ¥, since each link of E(x, m — 1)
contains at least one link of ¢ and E, € E(x, m — 1) contains at least two
links of &. This is contrary to the choice of %, and hence G; N\ (E; U E,) N
N # (. We shall suppose that G\ N N E; # 0.

Let 7 be an open set such that C1 V C (G1 N E1) — {u},and VN N #= @.
Let R denote the component of M — V containing u. Since each of N and R
is a continuum intersecting K, either RC N\UK = Nor NC RUK. We
shall show that the last alternative is impossible. If VN N C K, then,
since u is an inaccessible point of K, it follows from Remark 2 that R C K.
Since NCK, NCRUK=K. If VNN{ZK, then VNNZRUK
and N C R\UK. In either event, N R\UK; hence RC NUK = N.
Since R is a component of M — V and N is covered by ¥, no continuum in
M — V intersects both R and (M — V) — G* = M — G*, Thus, M — V
is the union of two disjoint closed sets, one containing M — &*, the other
containing R. Using normality, we obtain disjoint open sets .S and 7" such
that M — VCSUT, M — %* C Tand R C S. Defineachain 9 = D(1, t)
covering M as follows:

D =Em3)NT® ENT)
—ClVOENT® GNS) UV @®GE2b)NS.
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Since & has properties (i) and (ii), this concludes the proof.

LeEMMA 7. Suppose that D is an a-triodic hereditarily unicoherent compact
metric continuum, K and L are disjoint opposite terminal subcontinua of D,
and &' is an e-chain covering D. Then there is a chain ¥ = F(1,n) covering D
such that

(1) & is a refinement of &';

2) FiNK #0and F, N L # 0,

(3) there are positive integers 1 and k with K C* F*(1, 1), L Ce° F*(k,n).

Proof. We first wish to obtain a chain %' satisfying (1) and (2). Minor
modifications of %' will then yield a chain % satisfying (1), (2), and (3).
(The assumption that K and L are disjoint is not necessary, but it makes the
proof of (3) easier.)

According to Lemma 1, there is an e-chain & = E(1, m) which refines &,
covers D, and K C* E*(j, m). Applying this lemma again, we obtain a chain
% = G(1,b) covering D such that ¥ refines & and L C°® G*(a, b); we may
assume that no chain with fewer links than & has these properties. If
E,N L # 0, we may take #' = & ; similarly, if Gy "\ K # @, we may take
F' = 9. Thus, we may assume that £y VL = @ and Gt N\ K = 0.

There is a link of & contained in E; and a link of ¢ contained in E,. An
argument essentially the same as that given in the proof of Lemma 6 will
show that Gy C E;\U E,,.. (Substitute “links of & contained in E;\U E,,”
for “links of ¢4 intersecting N N (E; U E,)”.) Indeed, G; C E;. For, suppose
that G; Z Ei, hence that Gy C E,. Now Gi M K = @, and since K C°® E*(j, m),
(En — En-1) VYK # 0. Hence, there is a link G, € G(1,m) such that
G, C E,,.. There is a positive integer z such that G*(1,7) C E*(z, m) and
G*(1l,r) ¢ E¥(z + 1, m). Then E(z,m — 1) N G*©2,r — 1) & E, N
G*(1,7) ® G(r + 1,b) is a proper consolidation of ¥ since E,, contains G,
and G,. This violates the choice of & as being a chain with fewest links which
has the desired properties. Thus G1 C E;.

Now D is irreducible from a point £ € K to a point [ € L. Since the
composant of D determined by [ is dense in D, there is a proper subcontinuum
N of D such that ] € N and NNG N E; #@. Since k¢ N, NUL is a
proper subcontinuum of D. We shall simply assume that L C N.

Let V be an open set intersecting NV such that Cl V C G; C E:. Since
ENL =@ and GGNK =0, VN (LUK) = 0. Since D is irreducible
from % to I/, no continuum in D — V intersects both K and L. (If R is such a
continuum, then R\U K \U L is a proper subcontinuum of D containing &
and 1.) Hence, D — V is the union of two disjoint closed sets, one containing
K, and the other containing L. Thus, there are disjoint open sets .S and 7T
suchthat M — VC SUT,K C Sand L C T. Define a chain %’ = F'(1, %)
as follows:

F' = Em,3)NS® (E:NS)
—ClVOENS® G:NT)UV®GE2,b) NT.
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Since # refines &, ¥’ refines &’. Moreover, (Fy — Fy) N\ R # @, and
(F — F,_/) "L # 0.

Let Q and R be open sets such that K C Q C ClIQ C F'*(1,7), LC R C
CIR C F'*(k,n), and CIQ N\ CIR = 0. We define the chain ¥ = F(1, n)
as follows: F, =F,, if p=#1+1, p£k—1. If B — 1344+ 1, then

FZ'+1 = FH—I, — Cl Q and Fk—l = Fk__1, — ClR.

If k—1=44+1, Fiys = Fiud — (CLQU CIR). & satisfies (1) and (2)
since.# ' does, and.# satisfies (3) as well.

4. Principal results. In (2), the following theorem is proved.

THEOREM 1. Suppose that M is an a-triodic hereditarily unicoherent compact
metric continuum, € > 0, M s the union of two subcontinua A and B, 4 is
e-chatnable and B 1s chainable. Then M 1s e-chainable.

This is a slightly strengthened version of (2, p. 466, Theorem 1), and the
proof given there will go through with only very minor changes. Note, in
particular, that if 4 is not simply e-chainable but chainable, then M is
chainable.

THEOREM 2. A compact metric continuum M is chainable if and only if M 1is
a-triodic, hereditarily unicoherent, and each indecomposable subcontinuum of M
is chainable.

Proof. Certainly, each of the three conditions is necessary for M to be
chainable. Let us suppose, then, that the three conditions hold.

If M fails to be chainable, then there is an ¢ > 0 such that no e-chain
covers M. Since the property of failing to be e-chainable is inductive, there
is a subcontinuum M’ of M which is irreducible with respect to this property.
We may assume that M’ = M. Clearly, M is decomposable.

Case 1. There is an indecomposable subcontinuum D of M such that D° # 0.
Subcase 1a. D is a terminal subcontinuum of M.

By Lemma 2, M is irreducible between a pair of points, one of which belongs
to D. Thus, M — D is connected and CI(M — D) is a continuum. Moreover,
CI(M — D) is a proper subcontinuum of M, since D° % @J. Thus, M is the
union of two proper subcontinua of M, CI1(M — D), which is e-chainable, and
D, which is chainable. Theorem 1 shows that CI(M — D)\UD = M is
e-chainable. This contradiction establishes the theorem for Subcase Ia.

Subcase Ib. D is not a terminal subcontinuum of M.

Then Cl1(M — D) is not connected. For, if CI(M — D) is connected, then
by Remark 1, both CI(M — D) and D are terminal subcontinua of 1.

We shall show that C1(M — D) has exactly two components. Suppose that
X, Y, and Z are distinct components of CI(M — D). Since D contains a limit
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point of each component of M — D, D certainly contains a limit point of each
component of C1(M — D). Since each of X, ¥, and Z is closed, it follows that
each must intersect D. Thus, X U D, YU D, and Z \U D are three continua
which intersect, no one of which is contained in the union of the other two.
By (3, p. 440), their union is a triod. Since this is impossible, C1(M — D) has
exactly two components, X and Y.

Now X is a proper subcontinuum of M; hence, X is e-chainable. Remark 1
shows that D M X is a terminal subcontinuum of X. Applying Lemma 1,
we obtain a taut e-chain & = E(1, m) covering X and a positive integer 7,
1 =j = m, such that D N\ X C¢E*(j, m). In like fashion, there is a taut
e-chain ¥ = G(1, t) covering ¥ and a positive integer s, 1 < s < ¢, such that
DN Y C°G*(s, t). Since X and Y are disjoint closed sets, we may invoke the
normality of M to assume that C1G* N\ Cl &* = @.

Since D°® # @, each of D M X and D M Y is a proper terminal subcontinuum
of D. Now D is indecomposable; hence, D is irreducible from D M X to
DNY, ie, DX and D M Y are disjoint opposite terminal subcontinua
of D. From Lemma 7, it follows that there is a taut e-chain # = F(1, n)
covering D and positive integers ¢ and k such that 1 £+ <k — 2 <k £ n,
X ND Ce¢F*k,n),and Y N\ D C* F*(1, 7). Moreover, since the links of #
may be made as small as we please, we may assume that F(k, n) is a closed
refinement of E(j, m), F(1,1) is a closed refinement of G(s, t), and

CLF* N (CH(E*(1,j — 1) U CLG*(1, s = 1)) = §;

see Figure 1.

Fy
Fn
Ey Ej Ej Fi En
F;
G Gs1 Gs o Gt
I
F Fi
Ficure 1
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We now apply, to ¢ and &, the technique of ‘‘amalgamating two chains’
used in the proof of Theorem 1, as given in (2). (Our construction shows that
& and F satisfy (1)-(4) of (2, Lemma 4). Small modifications of ¢ and %,
detailed in (2, p. 465) will ensure that they satisfy (5) and (6) as well.)
This yields an e-chain 5 covering X \U D such that the subchain of # con-
taining ¥ M D is precisely F(1,7). Now we use this technique again, letting
H play the role of &, and ¥ play the role of & . Thisyields an e-chain covering
M and concludes the proof of Subcase Ib.

Case 11. Each indecomposable subcontinuum of M has void interior.

Under this hypothesis, Bing has shown in the proof of (1, p. 658, Theorem 8)
that there is a monotone upper semi-continuous decomposition J of M such
that the decomposition space M/J is homeomorphic to [0, 1]. Letf: M — [0, 1]
denote the projection map. Let A = 1[0, 3] and B = f~1[3, 1]. Each of 4
and B is a proper subcontinuum of M, hence each is e-chainable. By Remark 1,
A M B is a terminal subcontinuum of 4 and of B; in like fashion,
A NCI(B — A) is a terminal subcontinuum of 4 and CI(B — 4).

Clatm 1. If Q is a subcontinuum of CI(B — A4) such that Q M A N
Cl(B—A)#0and QZANCI(B — 4), then 4 NCI(B — 4) C Q.

Suppose that there is a continuum Q satisfying the hypothesis but not the
conclusion of Claim 1. Let p € (4 N CI(B — 4)) — Q and let V be an open
set such that p € V.and VN Q = @. Since Q Z A NCIB — 4), Q Z 4,
and hence there is a point ¢ € Q with f(¢) > 3. Now p € A NCI(B — 4),
hence there is a point s € VN f1(0,f(¢) N (B — A). Since s ¢ A4,
1 < f(s) < f(). Thus, each of CI(B — 4) Nf~1[},f(s)] and Q is a sub-
continuum of CI(B — A4) intersecting 4 M CI(B — A4), and neither is con-
tained in the union of 4 N CI(B — 4A) and the other (1 € Q —
AV fD, p€ ClB —A4)Nf3f(s)], and p ¢ Q). Thus,
A N CI(B — A) is not a terminal subcontinuum of ClI(B — A). This contra-
diction establishes Claim 1.

Lemma 4 yields a subcontinuum K of 4 M CI(B — 4) such that K is
irreducible with respect to being a terminal subcontinuum of 4. It follows
that K is either a terminal point of 4 or a non-degenerate indecomposable
continuum.

We shall show that K is a terminal subcontinuum of CI(B — A4). If this is
not true, then there are subcontinua L and R of CI(B — 4), each intersecting
K, and neither is contained in the union of K and the other. Since K is a
terminal subcontinuum of 4, L\UR ¢ A. Suppose that L Z A. Then
LZANCIB —A4), and from Claim 1, 4 "CI(B — A) C L. Since
R ¢ L, it follows that R Z 4 N CI(B — 4), and thus 4 N CI(B — 4) C R.
Hence, R, L, and 4 are three continua which intersect, no one of which is
contained in the union of the other two. Thus, their union is a triod. This
contradiction shows that K is indeed a terminal subcontinuum of CI(B — 4).
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Let &’ and #' be e-chains covering 4 and CI(B — A4), respectively. We
now show that there are chains ¢’ and % covering 4 and CI(B — 4), respec-
tively, such that & refines &', % refines.% ', and the last link of & intersects
the last link of & in a point of K. If K is a terminal point of 4, then it is also
a terminal point of C1(B — A4), by the argument just given, and the existence
of & and Z follows immediately from Lemma 1. Thus, we may assume that
K is a non-degenerate indecomposable continuum; hence, K is chainable.
Let 9 = G(1,d) be a chain covering K which refines both &’ and #". Let
u € G; be a point of K which is inaccessible from either 4 or CI(B — 4).
(Since K has uncountably many disjoint composants, at most two of which
are accessible from either 4 or CI1(B — 4), such a point u exists.) By Lemma 6,
there is a chain & = E(1, x) which refines &’, covers 4, and u € E, N K.
Similarly, there is a chain.# = F(1,y) which refines %', covers Cl(B — 4),
and u € F, N\ K. Let U be an open set such thatu € Uand Cl U C E, N F,.

Clatm 2. No continuum in M — U intersects both A — Uand (M — U) —
&* = M — &*.

Suppose that there is such a continuum, N. Then N intersects B — 4,
since N Z &*. Since N intersects 4, N must intersect 4 N Cl(B — A4).
Thus, NNCI(B — A4) is a subcontinuum of CI(B — A) intersecting
ANCIB — 4)and B — A. From Claim 1, it follows that A N CI(B — 4) C
NNCI(B — 4). However, u € KCANCIB — A4), and u ¢ N. This
contradiction establishes Claim 2.

It follows that M — U is the union of two disjoint closed sets, one containing
A — U, the other containing M — &*. Using normality, we obtain disjoint
opensetsSand Tsuchthat M — UCSUT, 4 — UC S,and M — &*C T.
An e-chain covering M is given by

E(l,x —2)NS® (E.NS)
—ClU®ENS® (F,NNTHYVUU®Fly—1,1)NT.
This establishes Theorem 2.

COROLLARY. Suppose that M is an a-triodic compact plane continuum which
does not separate the plane. Then M is chainable if and only if each indecomposable
subcontinuum of M 1is chainable.

Theorem 2 and its corollary are extensions of (1, p. 660, Theorem 11 and
Corollary 2).

THEOREM 3. Suppose that M s an a-triodic hereditarily unicoherent compact
metric continuum which is the union of countably many chainable continua.
Then M 1is chainable.

Proof. Suppose that J is a sequence of chainable subcontinua of M such that
M= \U~1J;. If N is an indecomposable subcontinuum of M, then
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N = Ur1(NNJ,). Since, for each 7, NN\ J; is a continuum and no in-
decomposable continuum is the union of countably many proper subcontinua,
there is a positive integer I such that N = N M J;. Thus, N is a subcontinuum
of J;; hence N is chainable. Since each indecomposable subcontinuum of M
is chainable, we apply Theorem 2 and find that M is wv chainable.
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